CSC148 Intro. to Computer Science

Lecture 8: Binary Trees, BST

Amir H. Chinaei, Summer 2016

Office Hours: R 10-12 BA4222
ahchinaei@cs.toronto.edu
http://www.cs.toronto.edu/~ahchinaei/

Course page: http://www.cs.toronto.edu/~ahchinaei/teaching/20165/csc148/

Last week

- Tracing recursive programs

Last week

- Recursive structures
 - Trees terminology

Today

- Today
 - Binary trees (arity=2)
 - Examples of methods/functions on binary trees
 - Binary tree traversals
 - Introduction to Binary Search Trees (BST)

Binary Trees

- Change our generic Tree design so that we have two named children, left and right, and can represent an empty tree with None
Binary Trees

- Change our generic Tree design so that we have two named children, left and right, and can represent an empty tree with None.

```python
class BinaryTree:
    # A Binary Tree, i.e. arity 2.
    def __init__(self, data, left=None, right=None):
        # Create BinaryTree self with data & children left & right.
        self.data, self.left, self.right = data, left, right

    def __eq__(self, other):
        # Return whether BinaryTree self is equivalent to other.
        return (type(self) == type(other) and
                self.data == other.data and
                (self.left, self.right) == (other.left, other.right))

    def __repr__(self):
        # Represent BinaryTree (self) as a string that can be evaluated to
        # produce an equivalent BinaryTree.
        return "BinaryTree({}, {}, {})".format(repr(self.data),
                                                repr(self.left),
                                                repr(self.right))

    def __str__(self, indent=
```

Special methods (eq)

```python
def __eq__(self, other):
    # Return whether BinaryTree self is equivalent to other.
    return (type(self) == type(other) and
            self.data == other.data and
            (self.left, self.right) == (other.left, other.right))

>>> BinaryTree(7).__eq__("seven")
False
>>> b1 = BinaryTree(7, BinaryTree(5))
>>> b1.__eq__(BinaryTree(7, BinaryTree(5), None))
True
```

Special methods (str)

```python
def __str__(self, indent="
```

Special methods (repr)

```python
def __repr__(self):
    # Represent BinaryTree (self) as a string that can be evaluated to
    # produce an equivalent BinaryTree.
    return "BinaryTree({}, {}, {})".format(repr(self.data),
                                            repr(self.left),
                                            repr(self.right))
```

contains

- you've implemented contains on linked lists, nested Python lists, general Trees before; implement this function, then modify it to become a method
contains

- you've implemented contains on linked lists, nested Python lists, general trees before; implement this function, then modify it to become a method

```python
def __contains__(self, value):
    """Return whether tree rooted at node contains value.
    :param object value: value to search for
    :type value: object
    :rtype: bool
    >>> BinaryTree(3, BinaryTree(7), BinaryTree(9)).__contains__(7)
    True
    >>> BinaryTree(3, BinaryTree(7), BinaryTree(9)).__contains__(1)
    False
    >>> (self.data == value or (self.left and value in self.left) or (self.right and value in self.right))
```

moving on to a new topic

arithmetic expression trees

- Binary arithmetic expressions can be represented as binary trees:

```plaintext```
```
evaluating a binary expression tree

- There are no empty expressions
 - if it's a leaf, just return the value
 - otherwise...
 • evaluate the left tree
 • evaluate the right tree
 • combine left and right with the binary operator

- Python built-in eval might be handy
 >>> eval("2+3")
 5
```

moving on to a new topic

```python
def evaluate(b):
 """Evaluate the expression rooted at b. If b is a leaf, return its float data. Otherwise, evaluate b.left and b.right and combine them with b.data.
 Assume:
 -- b is a non-empty binary tree
 -- interior nodes contain data in {"+", "-", "*", "/"}
 -- interior nodes always have two children
 -- leaves contain float data
 :param b: binary tree representing arithmetic expression
 :type b: BinaryTree
 :rtype: float
 >>> b = BinaryTree(3.0)
 >>> evaluate(b)
 3.0
 >>> b = BinaryTree("*", BinaryTree(3.0), BinaryTree(4.0))
 >>> evaluate(b)
 12.0
 >>> if b.left is None and b.right is None:
 ... return b.data
 ... else:
 ... return eval(str(evaluate(b.left)) +
 ... str(b.data) +
 ... str(evaluate(b.right)))
```

Tree traversal: inorder

- A recursive definition:
  - visit the left subtree inorder
  - visit this node itself
  - visit the right subtree inorder

- The code is almost identical to the definition.

def inorder_visit(root, act):
    """Visit each node of binary tree rooted at root in order and act.
    :param root: binary tree to visit
    :type root: BinaryTree
    :param act: function to execute on visit
    :type act: (BinaryTree)object
    :type: None
    >>> b = BinaryTree(8)
    >>> b = insert(b, 4)
    >>> b = insert(b, 2)
    >>> b = insert(b, 6)
    >>> b = insert(b, 12)
    >>> def f(node): print(node.data)
    >>> inorder_visit(b, f)
    2
    4
    6
    8
    12
    ... if root is not None:
    inorder_visit(root.left, act)
    act(root)
    inorder_visit(root.right, act)

Tree traversal: preorder

- A recursive definition:
  - visit this node itself
  - visit the left subtree preorder
  - visit the right subtree preorder

- The code is almost identical to the definition.

def preorder_visit(root, act):
    """Visit each node of binary tree rooted at root in preorder and act.
    :param root: binary tree to visit
    :type root: BinaryTree
    :param act: function to execute on visit
    :type act: (BinaryTree)object
    :type: None
    >>> b = BinaryTree(8)
    >>> b = insert(b, 4)
    >>> b = insert(b, 2)
    >>> b = insert(b, 6)
    >>> b = insert(b, 12)
    >>> def f(node): print(node.data)
    >>> preorder_visit(b, f)
    8
    4
    2
    6
    12
    ... if root is not None:
    preorder_visit(root.left, act)
    act(root)
    preorder_visit(root.right, act)

Tree traversal: postorder

- A recursive definition:
  - visit the left subtree postorder
  - visit the right subtree postorder
  - visit this node itself

- The code is almost identical to the definition.

def postorder_visit(root, act):
    """Visit each node of binary tree rooted at root in postorder and act.
    :param root: binary tree to visit
    :type root: BinaryTree
    :param act: function to execute on visit
    :type act: (BinaryTree)object
    :type: None
    >>> b = BinaryTree(8)
    >>> b = insert(b, 4)
    >>> b = insert(b, 2)
    >>> b = insert(b, 6)
    >>> b = insert(b, 12)
    >>> def f(node): print(node.data)
    >>> postorder_visit(b, f)
    2
    6
    4
    12
    8
    ... if root is not None:
    postorder_visit(root.left, act)
    act(root)
    postorder_visit(root.right, act)
Tree traversal: level order

- visit this node
- visit this node's children
- visit this node's grandchildren
- visit this node's great grandchildren
- ...

Let's have a helper function

```python
def visit_level(tree, level, act):
 # Visit each node of BinaryTree t at level n and act on it.
 # param t: binary tree to visit
 # param n: level to visit
 # param act: function to execute on nodes at level n
 # type t: BinaryTree
 # type n: int
 # type act: (BinaryTree) -> Any
 # rtype: int
 return 0
```

```python
def levelorder(t, act):
 # Visit BinaryTree t in level order and act on each node.
 # param t: binary tree to visit
 # param act: function to use during visit
 # type t: BinaryTree
 # type act: (BinaryTree) -> Any
 # type n: None
 # type visited: int
 # type n: int
 # rtype: None
```

```
this approach uses iterative deepening
visited, n = visit_level(t, 0, act), 0
while visited > 0:
 n += 1
 visited = visit_level(t, n, act)
```

moving on to a new topic

Intro to: Binary Search Trees

- Add ordering conditions to a binary tree:
  - data are comparable
  - data in left subtree are less than node.data
  - data in right subtree are more than node.data
**Binary Search Trees**

- A BST with one node has height 1
- A BST with 3 nodes may have height 2
- A BST with 7 nodes may have height 3
- A BST with 15 nodes may have height 4
- A BST with \( n \) nodes may have height \( \lceil \lg n \rceil \)

- If the BST is "balanced", then we can check whether an element is present in about \( \lg n \) node accesses.

---

**bst_contains**

```python
def bst_contains(node, value):
 """Return whether tree rooted at node contains value.
 Assume node is the root of a Binary Search Tree
 :param node: node of a Binary Search Tree
 :type node: BinaryTree|None
 :param value: value to search for
 :type value: object
 :rtype: bool
 >>>
 bst_contains(None, 5) # False
 bst_contains(BinaryTree(7, BinaryTree(5), BinaryTree(9)), 5) # True
 if node is None:
 return False
 elif value < node.data:
 return bst_contains(node.left, value)
 elif value > node.data:
 return bst_contains(node.right, value)
 else:
 return True
```

---

**bst_insert**

```python
def insert(node, data):
 """Insert data in BST rooted at node if necessary, and return new root.
 Assume node is the root of a Binary Search Tree.
 :param node: root of a binary search tree.
 :type node: BinaryTree
 :param data: data to insert into BST, if necessary
 :type data: object
 >>> b = BinaryTree(5)
 >>> b1 = insert(b, 3)
 >>> print(b1)
 5
 3
 <BLANKLINE>
 return_node = node
 if not node:
 return_node = BinaryTree(data)
 elif data < node.data:
 node.left = insert(node.left, data)
 elif data > node.data:
 node.right = insert(node.right, data)
 else:
 # nothing to do
 pass
 return return_node
```