CSC148 Intro. to Computer Science

Lecture 7: Recursive Functions/Structures
Trees

Amir H. Chanaei, Summer 2016

Office Hours: R 10-12 BA4222

ahchanaei@cs.toronto.edu
http://www.cs.toronto.edu/~ahchanaei/

Course page:
http://www.cs.toronto.edu/~ahchanaei/teaching/20165/csc148/
Last week

- Reading recursive functions utilized list comprehension
- Tracing recursive functions
 - *dig down, come up*
 - Trace `max_list([4, 2, [[4, 7], 5], 8])`

```python
def max_list(L):
    if isinstance(L, list):
        return max([max_list(x) for x in L])
    else:  # L is an int
        return L
```

Today

- More recursive functions
- Tracing recursive functions using stacks
- Recursive structures
More recursive examples

- **Factorial function**
 \[\text{Factorial}(n) = n \times \text{Factorial}(n-1) \]
 \[\text{Factorial}(0) = 1 \]

- **Fibonacci function**
 \[\text{Fibonacci}(n) = \text{Fibonacci}(n-1) + \text{Fibonacci}(n-2) \]
 \[\text{Fibonacci}(1) = 1 \]
 \[\text{Fibonacci}(0) = 1 \]

A recursive function has at least one **base case** and at least one **recursive case**.
Another example

A recursive definition: Balanced Strings

- **Base case:**
 - A string containing no parentheses is balanced

- **Recursive cases:**
 - (x) is balanced if x is a balanced string
 - xy is balanced if x and y are balanced strings
How about these functions?

- \(f(n) = n^2 + n - 1 \)
- \(f(n) = g(n-1) + 1, \quad g(n) = n/2 \)
- \(f(n) = 5, \quad f(n-1) = 4 \)
- \(f(n) = n \times (n-1) \times (n-2) \times \ldots \times 2 \times 1 \)
- \(f(n) = f(n/2) + 1, \quad f(1) = 1 \)
Recursive programs

- Solution defined in terms of solutions for smaller problems

  ```python
  def solve (n):
      
      ... 
      value = solve(n-1) + solve(n/2) 
      
      ... 
  ```

- One or more base cases

  ```python
  if (n < 10):
      value = 1
  ```

- Some base case is always reached eventually; otherwise it’s an infinite recursion
General form of recursion

if (condition to detect a base case):
 {do something without recursion}

else: (general case)
 {do something that involves recursive call(s)}
Recursive programs cont’ed

0! = 1 and n! = n.(n-1)!

def factorial(n):
 # pre: n ≥ 0
 # post: returns n!
 if (n==0): return 1
 else: return n * factorial (n-1)

- structure of code typically parallels structure of definition
Recursive programs cont’ed

Fib(0) = 1, Fib(1) = 1, Fib(n) = Fib(n-1) + Fib(n-2)

def fib(n):
 # pre: n ≥ 0
 # post: returns the nth Fibonacci number
 if (n < 2):
 return 1
 else:
 return fib(n-1) + fib(n-2)

- structure of code typically parallels structure of definition
Stacks and tracing calls

- Recall:
 - stack applications in compilers/interpreters
 - tracing method calls

- Activation record
 - all information necessary for tracing a method call
 - such as parameters, local variables, return address, etc.

- When method called:
 - activation record is created, initialized, and pushed onto the stack

- When a method finishes:
 - its activation record (that is on top of the stack) is popped from the stack
Tracing program calls

- Recall: stack of activation records
 - When method called:
 - activation record created, initialized, and pushed onto the stack
 - When a method finishes,
 - its activation record is popped

Stack of activation records
Tracing recursive programs

- same mechanism for recursive programs

Stack of activation records
Tracing Factorial

1. `def f(n):`
2. # pre: n≥0
3. # post: returns n!
4. if (n==0): return 1
5. else: return n * f(n-1)

Stack of activation records

<table>
<thead>
<tr>
<th>line#</th>
<th>func.</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>5, f, 0</td>
<td></td>
<td>Return 1</td>
</tr>
<tr>
<td>5, f, 1</td>
<td></td>
<td>Return 1</td>
</tr>
<tr>
<td>5, f, 2</td>
<td></td>
<td>Return 2</td>
</tr>
<tr>
<td>8, m, 3</td>
<td></td>
<td>Return 6</td>
</tr>
</tbody>
</table>

Recursion 7-13
Tracing Factorial: intuitively

- $f(3)$
Tracing max_list(), using stack?

1. def max_list(L):
2. if isinstance(L, list):
3. return max([max_list(x) for x in L])
4. else: # L is an int
5. return L

Trace max_list([4, 2, [[4, 7], 5], 8])
Tracing max_list(), using stack?

Trace max_list([4, 2, [[4, 7], 5], 8])
Tracing Fibonacci

1. def fib(n):
2. # pre: n ≥ 0
3. # post: returns the
4. # nth Fibonacci number
4. if (n < 2): return 1
5. else: return fib(n-1) +
6. fib(n-2)

Hint: requires 9 pushes

<table>
<thead>
<tr>
<th>line#</th>
<th>func.</th>
<th>n</th>
<th>temp</th>
</tr>
</thead>
</table>

Stack of activation records
Why 9?

- Using rewriting

\[
\begin{align*}
\text{fib}(4) & \rightarrow \\
\text{fib}(3) + \text{fib}(2) & \rightarrow \\
\text{fib}(2) + \text{fib}(1) & \rightarrow \\
\text{fib}(1) + \text{fib}(0) & \rightarrow
\end{align*}
\]
Recursive vs iterative

- Recursive functions impose a loop
- The loop is implicit and the compiler/interpreter (here, Python) takes care of it
- This comes at a price: time & memory
- The price may be negligible in many cases

- After all, no recursive function is more efficient than its iterative equivalent
Recursive vs iterative

- Every recursive function can be written iteratively (by explicit loops)
 - may require stacks too
- yet, when the nature of a problem is recursive, writing it iteratively can be
 - time consuming, and
 - less readable

- So, recursion is a very powerful technique for problems that are naturally recursive
More examples

- Merge Sort
- Quick Sort
- Tower of Hanoi

- Balanced Strings
- Traversing Trees
- In general, properties of Recursive Definitions/Structures

-

Looking for exercises? Implement the above examples without seeing the sample solutions/algorithms.
Merge sort

Msort (A, i, j)
if (i < j)
 S1 := Msort(A, i, (i+j)/2)
 S2 := Msort(A, (i+j)/2, j)
 Merge(S1, S2, i, j)
end

Implement it in Python
Quick sort

Qsort (A, i, j)
if (i < j)
 p := partition(A)
 Qsort (A, i, p-1)
 Qsort (A, p+1, j)
end

Implement it in Python
Tower of Hanoi

\[
\text{Hanoi}(n, s, d, aux) \\
\text{if } (n=1) \\
\quad \text{“move from “} +s+ \text{ “to “} +d \\
\text{else} \\
\quad \text{Hanoi}(n-1, s, aux, d) \\
\quad \text{“move from “} +s+ \text{ “to “} +d \\
\quad \text{Hanoi}(n-1, aux, d, s) \\
\text{end}
\]
Let’s move on to a new topic
Tree terminology

- Set of nodes (possibly with values or labels), with directed edges between some pairs of nodes
- One node is distinguished as root
- Each non-root node has exactly one parent
- A path is a sequence of nodes $n_1; n_2; \ldots; n_k$, where there is an edge from n_i to n_{i+1}, $i < k$
- The length of a path is the number of edges in it
- There is a unique path from the root to each node. In the case of the root itself this is just n_1, if the root is node n_1
- There are no cycles; no paths that form loops.
Tree terminology cont’d

- **leaf**: node with no children
- **internal node**: node with one or more children
- **subtree**: tree formed by any tree node together with its descendants and the edges leading to them.
- **height**: $1 +$ the maximum path length in a tree. A node also has a height, which is $1 +$ the maximum path length of the tree rooted at that node.
- **depth**: length of the path from the root to a node, so the root itself has depth 0
- **arity**, branching factor: maximum number of children for any node
General tree implementation

class Tree:
 """
 A bare-bones Tree ADT that identifies the root with the entire tree.
 """

 def __init__(self, value=None, children=None):
 """
 Create Tree self with content value and 0 or more children

 :param value: value contained in this tree
 :type value: object
 :param children: possibly-empty list of children
 :type children: list[Tree]
 """

 self.value = value
 # copy children if not None
 self.children = children.copy() if children else []
def leaf_count(t):
 """
 Return the number of leaves in Tree t.

 :param t: tree to count the leaves of
 :type t: Tree
 :rtype: int
 """

>>> t = Tree(7)
>>> leaf_count(t)
1
>>> t = descendants_from_list(Tree(7), [0, 1, 3, 5, 7, 9, 11, 13], 3)
>>> leaf_count(t)
6
"""
How many leaves?

```python
def leaf_count(t):
    """
    Return the number of leaves in Tree t.
    
    :param t: tree to count the leaves of
    :type t: Tree
    :rtype: int
    
    >>> t = Tree(7)
    >>> leaf_count(t)
    1
    >>> t = descendants_from_list(Tree(7), [0, 1, 3, 5, 7, 9, 11, 13], 3)
    >>> leaf_count(t)
    6
    """
    if len(t.children) == 0:
        # t is a leaf
        return 1
    else:
        # t is an internal node
        return sum([leaf_count(c) for c in t.children])
```

Trees 7-30
def height(t):

 """Return 1 + length of longest path of t."

 :param t: tree to find height of
 :type t: Tree
 :rtype: int

 >>> t = Tree(13)
 >>> height(t)
 1
 >>> t = descendants_from_list(Tree(13),
 [0, 1, 3, 5, 7, 9, 11, 13], 3)
 >>> height(t)
 3
 """

 # 1 more edge than the maximum height of a child, except
 # what do we do if there are no children?
 pass
def height(t):
 """
 Return 1 + length of longest path of t.
 :param t: tree to find height of
 :type t: Tree
 :rtype: int
 >>> t = Tree(13)
 >>> height(t)
 1
 >>> t = descendants_from_list(Tree(13), [0, 1, 3, 5, 7, 9, 11, 13], 3)
 >>> height(t)
 3
 """

 # 1 more edge than the maximum height of a child, except
 # what do we do if there are no children?
 if len(t.children) == 0:
 # t is a leaf
 return 1
 else:
 # t is an internal node
 return 1+max([height(c) for c in t.children])
def arity(t):

 Return the maximum branching factor (arity) of Tree t.

:param t: tree to find the arity of
:type t: Tree
:rtype: int

>>> t = Tree(23)
>>> arity(t)
0
>>> tn2 = Tree(2, [Tree(4), Tree(4.5), Tree(5), Tree(5.75)])
>>> tn3 = Tree(3, [Tree(6), Tree(7)])
>>> tn1 = Tree(1, [tn2, tn3])
>>> arity(tn1)
4

pass
def arity(t):
 """
 Return the maximum branching factor (arity) of Tree t.

 :param t: tree to find the arity of
 :type t: Tree
 :rtype: int

 >>> t = Tree(23)
 >>> arity(t)
 0
 >>> tn2 = Tree(2, [Tree(4), Tree(4.5), Tree(5), Tree(5.75)])
 >>> tn3 = Tree(3, [Tree(6), Tree(7)])
 >>> tn1 = Tree(1, [tn2, tn3])
 >>> arity(tn1)
 4
 """
 if len(t.children) == 0:
 # t is a leaf
 return 0
 else:
 # t is an internal node
 return max([len(t.children)] + [arity(n) for n in t.children])
def count(t):
 """Return the number of nodes in Tree t.

 :param t: tree to find number of nodes in
 :type t: Tree
 :rtype: int

 >>> t = Tree(17)
 >>> count(t)
 1
 >>> t4 = descendants_from_list(Tree(17), [0, 2, 4, 6, 8, 10, 11], 4)
 >>> count(t4)
 8
 """
 pass
def count(t):
 """
 Return the number of nodes in Tree t.

 :param t: tree to find number of nodes in
 :type t: Tree
 :rtype: int

 >>> t = Tree(17)
 >>> count(t)
 1
 >>> t4 = descendants_from_list(Tree(17), [0, 2, 4, 6, 8, 10, 11], 4)
 >>> count(t4)
 8
 """

 if len(t.children) == 0:
 # t is a leaf
 return 1
 else:
 # t is an internal node
 return 1 + sum([count(n) for n in t.children])