
Model CheckingEarly RequirementsSpecificationsin Tropos

Ariel Fuxman
Universityof Toronto

afuxman@cs.toronto.edu

MarcoPistore
ITC-IRST

pistore@itc.it

JohnMylopoulos
Universityof Toronto
jm@cs.toronto.edu

PaoloTraverso
ITC-IRST

traverso@itc.it

Abstract

This paper describesan attemptto bridge the gap be-
tweenearly requirementsspecificationand formal meth-
ods.In particular, weproposea newspecificationlanguage,
calledFormalTropos, that is foundedon theprimitive con-
ceptsof early requirementsframeworks(actor, goal,strate-
gic dependency)[15], but supplementsthem with a rich
temporal specificationlanguage. We also extendexisting
formal analysistechniques,in particular modelchecking,
to allow for an automaticverification of relevant proper-
ties for an early requirementsspecification. Our prelimi-
nary experimentsdemonstrate that formal analysisreveals
gapsand inconsistenciesin early requirementsthat are by
nomeanstrivial to discoverwithoutthehelpof formalanal-
ysistools.

1. Intr oduction

Early requirementsanalysisis oneof themostimportant
anddifficult phasesof thesoftwaredevelopmentprocess.It
is the phasewherethe requirementsengineeris concerned
with understandingtheorganizationalcontext for an infor-
mationsystem,andthegoalsandsocialdependenciesof its
stakeholders.This phasedemandscritical interactionswith
usersand other stakeholders. A misunderstandingat this
pointmayleadto expensiveerrorsduringlaterdevelopment
stages.Not surprisingly, severalapproacheshavebeenpro-
posedin recentyearson suitableconcepts,languagesand
analysistechniquesspecificallytailoredfor thisphase(e.g.,
[8, 15, 1]).

Formal methodshave a great potential as powerful
meansfor the specification,early debuggingandcertifica-
tion of software. They have beensuccessfullyappliedin
several industrial applications,and they are even becom-
ing integral componentsof standardsin certainfields [2].
However, the applicationof formal methodsto early re-
quirementsis by no meanstrivial. Most formal techniques
havebeendesignedto work (andhavebeenmainlyapplied)
in laterphasesof softwaredevelopment,suchasthedesign

phase(seefor instance[6]). As aresult,thereis amismatch
betweenthe conceptsusedfor early requirementsspecifi-
cations(e.g.,goal andactor)and the constructsof formal
specificationlanguagessuchasZ [13], SCR[11], etc.

Our long-term aim is to provide a framework for the
effective useof formal methodsin the early requirements
phase. The framework should allow for the formal and
mechanizedanalysisof early requirementsspecifications
expressedin a formal modelinglanguage.In this paper, we
presentsomeresultsthatconstitutea first steptowardsthis
goal. This is accomplishedby extendingand formalizing
an existing early requirementsmodelinglanguage,alsoby
building on state-of-the-artformal verificationtechniques.

In order to allow for formal analysis,we extend the
i* modelinglanguage[15] into a formal specificationlan-
guagecalledFormal Tropos1. The languageoffers all the
primitive conceptsof i* (suchasactors,goals,anddepen-
denciesamongactors),but supplementsthem with a rich
temporalspecificationlanguageinspiredby KAOS[8].

Wealsoextendanexistingformalverificationtechnique,
model checking[10], in order to supportthe mechanized
analysisof Formal Troposspecifications.Using this ma-
chinery, weprovidefor differentkindsof analysisonaFor-
mal Troposspecification.For instance,checkingwhether
thespecificationis consistent,or whetherit respectsanum-
berof desiredproperties.Moreover, a specificationcanbe
animatedin orderto give the userimmediatefeedbackon
its implications.

Theproposedapproachhasbeenimplementedasa pro-
totypetool,calledT-Tool2. T-Tool is built ontopof NuSMV
[5], astate-of-the-artsymbolicmodelcheckeroriginally de-
signedfor hardwareverification. In orderto adaptthever-
ification techniquesof NuSMV to the new applicationdo-
main, we have definedan intermediatelanguage,and we
haveextendedNuSMV to supportthis new input language.
T-Tool translatesa FormalTroposspecificationinto thein-

1FormalTroposis partof a wider-scopeframework, calledTropos[4],
which proposesthe applicationof conceptsfrom the early requirements
phaseto thewholesoftwaredevelopmentprocess,including late require-
ments,architecturalanddetaileddesign,andimplementation.

2Up-to-dateinformationonFormalTroposandT-Tool canbefoundat
http://sra.itc.it/tools/t-tool/.

termediatelanguageandthencalls NuSMV for the actual
verification.Wehaveexperimentedwith FormalTroposand
T-Tool, usinga simplecasestudy. In spiteof its simplicity,
thecasestudydemonstratesthebenefitsof formal analysis
in revealing incompletenessand inconsistency errors that
areby nomeanstrivial to discover in aninformalsetting.

Structur e of the paper. In Section2 we describethe i*
modeling languageand introducethe casestudy we will
work on in the rest of the paper. Section3 presentsthe
Formal Troposlanguageand explains its original aspects
with respectto ani* specification.Section4 elaboratesthe
differentkindsof formalanalysisthattheengineercanper-
form within the proposedframework, while Section5 de-
scribesthe technicalaspectsof the verificationperformed
by T-Tool. Finally, Section6 presentssomeconcludingre-
marksanddiscussesfutureresearchdirections.

2. The i* Modeling Language

Thei* modelinglanguagehasbeenspecificallydesigned
for the descriptionof early requirements.It assumesthat
during this phaseit is importantto understandandmodel
social settingswhich involve actorswho dependon each
otherfor goalsto be achieved, tasksto be performed,and
resourcesto befurnished.Thelanguageprovidesa graphi-
cal notationto describesuchsettings.An SD diagram,for
instance,is usedto representthestrategic dependenciesof
the actors,a centralconceptof i*. Dependenciesexpress
intentionalrelationshipsthatexist amongactorsin orderto
fulfill somestrategic objectives. A dependency describes
an “agreement”betweentwo actors,the dependerandthe
dependee. The typeof thedependency describesthenature
of theagreement.Goal dependenciesareusedto represent
delegationof responsibilityfor fulfilling a goal. Softgoal
dependenciesaresimilarto goaldependencies,but theirful-
fillment cannotbedefinedprecisely(becauseit dependson
subjectivecriteria,or canoccuronly to agivenextent).Task
dependenciesrepresentsituationswherethedependeeis re-
quired to perform a given activity, while resource depen-
denciesrequirethedependeeto providea resource.

Thedetailson i* arepresentedin [15]. Herewe briefly
review it by usingthe InsuranceCompany casestudy, ini-
tially introducedin [16]. The actorsof the casestudyare
the customersandthe insurancecompany, Customer and
InsuranceCo. The main goal of the customeris to be re-
imbursedfor damagesin caseof an accident(goal BeIn-
sured in whatfollows). As thecustomeris not ableto ful-
fill this goal by herself,the goal is refinedinto a goal de-
pendency CoverDamages, from thecustomerto theinsur-
ancecompany. Conversely, theinsurancecompany depends
on its customersto have a continuedbusiness,by fulfill-
ing softgoaldependenciessuchasAttractCustomers. In
order to achieve the previous goals, it is necessaryto in-

CustomerGarage

RepairCar

KeepClient

KeepJob

Attract
Customers

Appraiser

AppraiseDamage

CoverDamages

Premium

InsuranceCo

Resource

TaskSoftgoal

Goal

Dependencies

Figure 1. SD diagram of the case stud y.

clude additional actors,such as Garage and Appraiser,
andadditionaldependencies.For instance,the Customer
dependson the Garage to have her car repaired(depen-
dency RepairCar) andthe insurancecompany dependson
the Appraiser to estimatethe reasonabilityandamountof
thedamages(AppraiseDamage).

Figure1 presentsan i* SD diagramfor the casestudy.
We usea subsetof this casestudy as the running exam-
ple for the restof thepaper. In particular, we focuson the
CoverDamages andRepairCar dependencies.

3. The Formal TroposLanguage

This sectionpresentsthe most relevant aspectsof For-
malTroposusingtheInsuranceCompany example(seeFig-
ure2). A thoroughdefinitionof theFormalTroposlanguage
appearsin [9].

Formal Troposhasbeendesignedto supplementthe i*
specificationlanguagewith thedescriptionof the dynamic
aspectsof dependenciesamongactors.While usingit, we
focusnot only on thedependenciesthemselves,but alsoon
the circumstancesin which they arise,and on the condi-
tionsthat leadto their fulfillment. In this way, thedynamic
aspectsof a requirementsspecificationare introducedat
the strategic level, without requiringan operationalization
of the specification.In order to be ableto representthese
dynamicaspects,dependenciesas well as actorsbecome
“classes”in theFormalTroposspecification.We canhave
many instancesof any oneclassduringtheevolution of the
system(e.g.,differentRepairCar dependenciesmay exist
for differentCustomers, or for differentaccidentsof the
samecar),andattributesareassociatedto the instancesof
actorsanddependencies,in orderto representtheirrelation-
ships(e.g.,a customerwantsher carto berepaired).

A FormalTroposspecificationdescribestherelevantob-
jectsof a domainandthe relationshipsamongthem. The
descriptionof eachobjectis structuredin two layers. The

Entity Claim
Attrib ute constantcar: Car

Entity Car
Attrib ute runsOK: boolean

Actor InsuranceCo
Actor Garage
Actor Customer

Goal BeInsured
Mode maintain
Fulfillment definition

�
cov � CoverDamages�

cov.depender � self ��� Fulfilled
�
cov ���

DependencyCoverDamages
Typegoal
Mode achieve
DependerCustomer
DependeeInsuranceCo
Attrib ute constantcl: Claim
Creation

condition 	 cl.car.runsOK
trigger JustCreated

�
cl �

DependencyRepairCar
Typegoal
Mode achieve
DependerCustomer
DependeeGarage
Attrib ute constantcl : Claim
Creation

condition 	 cl.car.runsOK
Fulfillment

condition for dependercl.car.runsOK

Figure 2. The Formal Tropos specification.

outer layer is similar to a classdeclaration,since it de-
fines the structureof the instancestogetherwith their at-
tributes.Theinnerlayerexpressespropertiesof thelifetime
of theobject,givenin a typedfirst-orderlinear-timetempo-
ral logic. A classcanbeanactor, adependency, or anentity.
Entitiesareusedto representnon-intentionalelementsthat
exist in the organizationalsettingbeing modeled. In our
example(seeFigure2) wehavetheentitiesClaim andCar.

Theattributesof a FormalTroposclassdenoterelation-
shipsamongdifferent objects. For example, eachclaim
filed by a customerrefersto a specificcar, representedby
attributecar of entity Claim (seeFigure2). Thefacetcon-
stant of this attribute statesthat, oncea car is associated
to aclaim, therelationshipmustremainunchangedforever.
FormalTroposdefinesotherattributefacets,suchasmulti-
valuedandoptional, whichdo not appearin our example.

As in i*, actorsin Formal Troposhave goals that de-
scribetheirstrategic interests.For instance,in ourexample,
the actor Customer hasa goal namedBeInsured. Fur-

thermore,intentional relationshipsamongactorsare rep-
resentedas dependencies(see,e.g., dependenciesCover-
Damages andRepairCar in the example). The type of
a dependency (goal, softgoal, task, resource), aswell as
its dependeranddependeeactors,areincludedasspecial
attributesin thedependency classdeclaration.

An importantaspectof FormalTroposis that it focuses
on theconditionsfor the fulfillmentof goalsanddependen-
cies. More precisely, goalsanddependenciescanbe ful-
filled with differentmodalities. For example,themodality
of RepairCar is achieve, which meansthatan instanceof
thedependency becomesfulfilled oncethecaris eventually
repaired. Dependency CoverDamages also hasachieve
modality, sinceit becomesfulfilled assoonastheinsurance
company reimbursesthedamages.On theotherhand,goal
BeInsured of actorCustomer is of maintain modality, as
the customerexpectsto be insuredin a continuing way.
There are other modalities, such as achieve&maintain ,
which is a combinationof the previous two modes. Also
avoid modality, whichmeansthatthefulfillment conditions
shouldbeprevented.

Theinnerlayerof aFormalTroposclassdeclarationcon-
sistsof propertiesthatdescribethedynamicaspectsof ac-
tors, goals,anddependencies.Importantmomentsin the
lifetime of aninstanceof a dependency areits creationand
its fulfillment. Consequently, we distinguishthree types
of propertiesfor dependencies.Creationpropertiesshould
hold at thetime of creationof a new instanceof thedepen-
dency, while fulfillment propertiesshouldhold whena de-
pendency is satisfied.Finally, invariant propertiesshould
be true throughoutthe lifetime of the dependency. Actor
goalshave fulfillment properties,but not creationproper-
tiesor invariants,sincethey areassumedto ariseandexist
togetherwith their correspondingactor. On theotherhand,
entitiesandactor classesmay have creationand invariant
properties,but clearly not fulfillment ones. In addition to
the type of the property, we alsodistinguishthosethatex-
presssufficient conditions(facettrigger), necessarycondi-
tions(facetcondition), andnecessary-and-sufficientcondi-
tions(facetdefinition).

In ourexample,dependency CoverDamages hasa cre-
ationcondition(formula 	 cl.car.runsOK in Figure2) that
statesthatthecarshouldnotbeworkingat thetimethegoal
arises.Its creationtriggerrepresentsthefactthat,whenever
acustomerfilesaclaimcl (formulaJustCreated

�
cl �), ade-

pendency for coveringthe repairsarises.Accordingto the
specificationin Figure2, thegoalof repairingacarcanonly
ariseif the car is not working. Similarly, a necessarycon-
dition for the fulfillment of the dependency is that the car
shouldberunningOK. This is aconditionthatthecustomer
imposes(...thegaragewould be happy to declarea car re-
pairedeven if it doesnot run). Formal Troposrepresents
this factwith thefacetfor depender.

In addition to facets,Formal Tropospropertiesarede-
scribedwith formulasgiven in a typed first-order linear-
time temporallogic. In thelogic, quantifiers

�
and
 range

over all the instancesof a given class. The formulasmay
refer to the attributesof the classthat the corresponding
propertybelongsto. Also, instancesmay expressproper-
ties aboutthemselvesusingthe keyword self (seethe ful-
fillment definition of goal BeInsured in Figure2). Three
specialpredicatescanappearin the temporallogic formu-
las: predicateJustCreated

�
el � holds in a stateif element

el exists in this statebut not in thepreviousone. Predicate
Fulfilled

�
el � holds if el hasbeenfulfilled. Finally, pred-

icate JustFulfilled
�
el � holds if Fulfilled

�
el � holds in this

state,but not in the previousone. PredicatesFulfilled and
JustFulfilled aredefinedonly for goalsanddependencies.

Using suitabletemporaloperators,the logic makes it
possibleto expresspropertiesthat are not limited to the
currentstateof the system,but also to its pastand future
history. For instance,formula �
� (alwaysin the future �)
expressesthefactthat formula � shouldhold in thecurrent
stateandin all thefuturestatesof theevolution of thesys-
tem. Formula ��� (sometimesin thepast)holdsif � is true
in thecurrentstateor if it wastruein somepaststateof the
system. The classicaltemporaloperatorsusedin the For-
malTroposformulasare � (next state),� (previousstate),�
(eventuallyin thefuture), � (sometimesin thepast), � (al-
waysin thefuture)and � (alwaysin thepast).Otheruseful
operatorsare

� ������� (once,in thepastor in thefuture)and� �
���
� (always in the pastand in the future). Goal and
dependency modalitiesoftenhidetheusageof temporalop-
erators.This is doneon purpose.Reducingthenumberof
temporaloperatorsin theformulasresultsin moreintuitive
andreadablespecifications.Modalitiesprovideaneasy-to-
understandsubsetof thelanguageof temporallogics.When
themodalitiesarenot sufficient to captureall the temporal
aspectsof a condition,the temporaloperatorsmay appear
explicitly in the formulas. This is the casefor goal BeIn-
sured of actorCustomer in the examplein Figure2. Its
fulfillment conditionrequiresthatwhenevera CoverDam-
ages dependency existsfor thecustomer, it will eventually
befulfilled (formula � Fulfilled

�
cov �). Sincethegoalhasa

maintain modality, thispropertyhasto holdin acontinuous
way for thegoalto befulfilled.

Thepropertiesusedsofar in theexamplearerequired to
hold for all scenarios.In general,we distinguishtwo sets
of properties: thosethat are enforced,and thosethat ex-
pressdesired behaviors. The propertiesof the former set
defineconstraintson thebehavior of thesystemthathold in
all valid scenarios.The propertiesof the latter setdenote
expectationson thebehavior of thesystemandareusedto
validatethe model. Thesecanbe eitherassertionproper-
ties,which aredesiredto hold for all thevalid scenariosof
a system;or possibility properties,which shouldhold for

at leastonevalid scenario.In thenext section,we illustrate
how to checkwhetherassertionsandpossibilitiessatisfythe
constraintsof a specification.

4. Formal Analysis

Formal analysistechniquesaretypically appliedduring
latephasesof developmentin orderto validatethedesignor
implementationof a systemagainstits requirements.Our
aim is to useformal analysistechniquesin order to assist
theanalystduringrequirementselicitation,by allowing her
to identify errorsandlimitationsof thespecificationthatare
not evidentin aninformal setting.

Our formal analysistool, T-Tool, takesa FormalTropos
specificationasinput, andbuilds an automatonthat repre-
sentsall the possibleexecutionsof the systemthat satisfy
the constraintsof the specification(seeSection5). Once
theautomatonis built, T-Tool verifiesexpectedbehaviorsof
thesystem,expressedwith assertionandpossibility prop-
erties. Whenever anassertionfails, T-Tool reportsa coun-
terexamplescenarioin which theassertionis violated.

Consistencycheck. This is thesimplestform of validation
of a specification. It aims to verify that there is at least
onescenarioof the systemthat respectsall the constraints
enforcedby the requirementsspecification. If this is not
the case,the specificationis inconsistent. Inconsistencies
occurquiteoften,especiallysowhenthe requirementsare
acquiredfrom differentstakeholders.

Assertionvalidation. Thedesignercanrepresentexpected
behaviors of the systemthroughassertionproperties.As-
sertionscomefrom differentsources.The most important
onesare thosethat representexpectationsfrom the stake-
holders(“if all therequirementsaremetby thesystem,then
I expectthis propertyto be valid”). In general,we arein-
terestedin gatheringassertionswhich, althoughnot likely
to beverifiedimmediately, areexpectedto yield interesting
counterexamples.Suchcounterexamplesshouldenablethe
stakeholdersto expresstheir goalswith greateraccuracy,
anddrive the elicitation of othergoals. Assertionproper-
ties canbe alsospecifieddirectly by the engineerin order
to checkwhethersheis correctlymodelingtheintendedbe-
havior of the system. For instance,if thereare two ways
to specifya requirementthatseemequivalent,onemightbe
enforcedandtheotherchecked.If thetwo requirementsare
notequivalent,thebehavior thatdistinguishesthemexhibits
situationsthatwerenot takeninto account.

Going back to our example, an importantgoal of the
stakeholdersis to avoid “unreasonable”claims, thoughit
is difficult for themto preciselydefinethe concept. Nev-
ertheless,they areableto presentparticularscenariosthat
involvesuchclaims.For instance,they donotwantto cover
claimsfor which thereis no proof (e.g.,aninvoice)thatthe

��� ��� ��� ��� ���
car1.runsOK � � �
cl1.car car1 car1 car1 car1
cl2.car car1 car1 car1 car1
cov1.cl cl1 cl1 cl1 cl1
Fulfilled (cov1) �
rep1.cl cl2 cl2 cl2
Fulfilled (rep1) � �

Figure 3. An example of a countere xample .

carwasrepaired.Westatethisasanassertion:if aninstance
of CoverDamages for agivenclaimis fulfilled andthecar
runsOK, thenthestakeholdersexpectthatarepairhasbeen
performedfor that claim.

DependencyCoverDamages
Fulfillment

assertioncondition for dependee
cl.car.runsOK ��
 rep � RepairCar�

rep.cl � cl � Fulfilled
�
rep ���

When checkingthe assertion,the tool exhibits the coun-
terexampleshown in Figure3. Thekey point is that,when
the car stopsrunningOK at time

� �
, the customermakes

two claimscl1 andcl2, for thesamecar car1, but with dif-
ferent insurancecompanies.At time

���
, an instancecov1

of goaldependency CoverDamages for cl1 arises.Then,
at time

���
, aninstancerep1 of RepairCar arises,but is as-

sociatedto theotherclaim (cl2). Later, at time
���

, rep1 is
fulfilled andthe car startsrunningOK; eventually, at time���

, cov1 is fulfilled. Theproblemhereis thatdamagesare
coveredfor a certainclaim, while the repair is performed
for anotherclaimregardingthesamecar. Indeed,thissitua-
tion mightoccurin reallife if acustomerhaspoliciesat two
insurancecompanies.Whenhercarbreaks,shecanrepair
it at onegarageandattemptto getdamagecostsfrom both
insurancecompanies.This is an inadmissiblesituation,at
leastin thedomainwe consider. A preliminaryfix for this
problemis to requiretherepairsfor acertainclaimtobeper-
formedbeforetheclaimis covered.Thiscanbeachievedby
addingthefollowing fulfillment conditionconstraintto the
specificationof Figure2.

DependencyCoverDamages
Fulfillment condition for dependee

 rep � RepairCar

�
rep.cl � cl � Fulfilled

�
rep ���

Possibility check. It is often the casethat, even though
a specificationis consistent,reasonablescenariosareruled
out as valid executionsbecausethey are in conflict with
someconstraintsof thesystem.Therefore,it is importantto
checkthat thespecificationallows for all thescenariosthat
the stakeholdersregardaspossible.This kind of scenario

is specifiedin FormalTroposin termsof possibility prop-
erties.Whenperformingapossibilitycheck, T-Tool verifies
that thereis at leastonescenarioin which suchproperties
hold. In caseof anaffirmative answer, thetool presentsan
example, which is a scenariothataccountsfor thepossibil-
ity. For instance,the stakeholdersmay mentionthe possi-
bility thatacaris sodamagedthatit is impossibleto repair.
In this case,the insurancecompany is still responsiblefor
coveringdamages.Thiscanbespecifiedwith apropertyfor
dependency CoverDamages thatstatesthepossibility that
afteracarbreaks,it maynever run OK again,asfollows:

DependencyCoverDamages
Creation

possibility condition for depender
� Fulfilled

�
self�!�"�
	 cl.car.runsOK

The property statesthat it is possiblethat someCover-
Damages instancebeeventuallyfulfilled evenif theasso-
ciatedcarnever runsOK againaftertheinstanceis created.
Whenweperformthepossibilitycheck,T-Tool informsthe
userthat the possibility doesnot exist. The checkreveals
a conflict betweenthe possibility propertyandthe fulfill-
ment constraintfor CoverDamages previouslyintroduced
in this section.Theproblemis that theconstraintdoesnot
allow the insurancecompany to cover thedamagesif a re-
pair hasnot beenperformed.If we modify theconstraintin
orderto allow the insurancecompany to cover damagesin
casethecarneverrunsOK again,T-Tool returnssuccessfor
thepossibilitycheck.

DependencyCoverDamages
Fulfillment condition for dependee

 rep � RepairCar

�
rep.cl � cl � Fulfilled

�
rep �����

�"�
	 cl.car.runsOK

Animation of the specification. T-Tool also allows the
userto interactively explore theautomatongeneratedfrom
the Formal Troposspecification.Sincethe automatonex-
hibits only the sequencesof statesthat respectall the re-
quirements,the usergetsimmediatefeedbackon their ef-
fects. Thoughvery simple,the animationof requirements
is extremelyusefulto identify missingtrivial requirements,
which are often taken for grantedin an informal setting.
For instance,had we forgottento add the creationcondi-
tion 	 cl.car.runsOk in thespecificationof RepairCar, we
wouldhaveobtainedhistorieswherethegoalof repairinga
carariseswhenthecaris runningOK. Moreover, thepossi-
bility of showing valid evolutionsof thesystemis oftenan
effectivewayof communicatingwith thestakeholders.

5. From Formal Troposto Model Checking

In this sectionwe give technicaldetailson the analysis
performedby T-Tool on a Formal Troposspecification(a

morethoroughexplanationis given in [9]). The first step
carriedout by T-Tool consistsof transforminga givenFor-
mal Troposspecificationinto anequivalentspecificationin
a suitableIntermediateLanguage.This translationis per-
formed in a completelyautomaticway, and doesnot re-
quire theuserto “operationalize”thespecificationin order
to verify it. TheIntermediateLanguagespecificationis then
passedto the NuSMV modelverifier, which performsthe
actualanalysis.

The Intermediate Language. In the IntermediateLan-
guage,thestrategic flavor of FormalTroposis lost,andthe
focusshiftsto thedynamicaspectsof thesystem.Somede-
tailsof theFormalTroposspecificationareremovedduring
the translation. This is the case,for instance,for the dis-
tinctionamongthedifferentdependency types.While these
aspectsareimportantin theoverall descriptionandspecifi-
cationof thesystem,they donotplayany role in theformal
analysisdescribedhere.

In Figure4, we giveanexcerptof theIntermediateLan-
guagetranslationfor our running example. It consistsof
four parts: classdeclarations,constraints, assertions, and
possibilityproperties.

The class declarations (keyword CLASS) define the
datatypesof the system;they correspondto the entities,
actors,anddependencies(i.e., the outer layer) of the For-
malTroposspecification.Wenotethatsomenew attributes,
not presentin the Formal Troposspecification,are added
to classdefinitionsduring the translation.This is thecase,
for instance,of attribute fulfilledBeInsured of Customer,
or attribute fulfilled of dependency CoverDamages. The
factthatgoalsanddependencieshavebeenfulfilled is prim-
itive in FormalTropos(Fulfilled predicate),but is encoded
asa statevariablein the IntermediateLanguage;this is an
exampleof the changeof focusthat occurswhentranslat-
ingaFormalTroposspecificationinto theIntermediateLan-
guage.The IntermediateLanguagestill allows for the dy-
namic creationof classinstances. In Figure 4, predicate
JustCreated is usedto checkwhethera given instanceof
a classhasbeencreatedin the currenttime instanceof a
scenario.

Constraint formulas(keyword CONSTRAINT) restrict
thevalid temporalbehaviors of the system.Someof these
formulasmodelthe semanticsof a Formal Troposspecifi-
cation.For instance,thefirst two CONSTRAINT formulas
in Figure 4 expressthe fact that attribute car of a Claim
andattribute cl of a RepairCar are constant. Other for-
mulascorrespondto the temporalconstraintsthat consti-
tutetheinner layerof theFormalTroposspecification.For
instance,the third andfourth CONSTRAINT formulasin
Figure4 correspond,respectively, to the creation and ful-
fillment condition of goal dependency RepairCar, while
thelastCONSTRAINT formulacorrespondsto the fulfill-
ment condition of goalBeInsured. As theseformulasare

CLASS Claim
car: Car

CLASS Car
runsOK: boolean

CLASS Customer
fulfilledBeInsured: boolean

CLASS InsuranceCo
CLASS Garage
CLASS CoverDamages

depender: Customer
dependee: InsuranceCo
cl: Claim
fulfilled: boolean

CLASS RepairCar
depender: Customer
dependee: Garage
cl: Claim
fulfilled: boolean

CONSTRAINT # cl $ Claim # car $ Car%
cl.car & car ')(% cl.car & car *�*

CONSTRAINT # rc $ RepairCar # cl $ Claim%
rc.cl & cl '+(% rc.cl & cl *�*

CONSTRAINT # rc $ RepairCar%
JustCreated

%
rc *,')- rc.cl.car.runsOK *

CONSTRAINT # rc $ RepairCar%�%
rc.fulfilled ./-10 rc.fulfilled *2' rc.cl.car.runsOK *

CONSTRAINT # cust $ Customer%
cust.fulfilledBeInsured 3%54 .,67* % # cov $ CoverDamages

cov.depender & cust ')8 cov.fulfilled *�*
ASSERTION # cov $ CoverDamages%�%

cov.fulfilled .1-/0 cov.fulfilled *2'%
cov.cl.car.runsOK ')9 rep $ RepairCar%

rep.cl & cov.cl . rep.fulfilled *�*�*
POSSIBILITY 9 cov $ CoverDamages%

JustCreated
%
cov *:.18 cov.fulfilled

. 4 - cov.cl.car.runsOK *
Figure 4. Example of Intermediate Langua ge.

no longersyntacticallyanchoredto the creationor fulfill-
mentof a dependency, they needa “context” to definetheir
meaning.This context is providedby the translationrules
thatmapaFormalTroposspecificationinto anIntermediate
Languageone.For instance,thefulfillment condition � of a
dependency Dep with anachieve modality is mappedinto
aCONSTRAINT of theform

�
d � Dep

���
d.fulfilled �;	"� d.fulfilled ���<�=�

stating that “when an achieve dependency becomesful-
filled, its fulfillment conditionshouldhold”. This is therule
thathasbeenappliedto thefulfillment conditionof Repair-
Car (compareFigures2 and4).

As we canseein this translation,we addauxiliary tem-
poraloperatorsto theIntermediateLanguagespecification.
Theseoperatorsdependnotonly on thekind of formulabe-

ing translated,but alsoon themodeof thedependency. For
instance,in thecaseof amaintain dependency, thetransla-
tion of thefulfillment condition � is givenby therule

�
d � Dep

�
d.fulfilled � � �
�>�
���=�

statingthat “if a maintain dependency is fulfilled, thenits
conditionsshouldholdduringthefull lifetime of thedepen-
dency”. In our specification,a similar rule appliesfor goal
BeInsured of theCustomer.

The assertionand possibility formulas(keywords AS-
SERTION andPOSSIBILITY) stateexpectedproperties
of the behavior of the system.They correspondto the as-
sertion andpossibility propertiesof FormalTropos.

The IntermediateLanguageplaysa fundamentalrole in
bridgingthegapbetweenFormalTroposandformal meth-
ods.First of all, it is muchmorecompactthanFormalTro-
pos,andthereforeallowsfor amuchsimplerformalseman-
tics (see[9] for details). Second,it is ratherindependent
from the particularconstructsof Formal Tropos. By mov-
ing to differentdomains,it will probablybecomenecessary
to “tune” FormalTropos,for instanceby addingnew modal-
ities for the dependencies.The formal approachdescribed
in this papercanbealsoappliedto thesedialectsof Formal
Tropos,at the costof defininga new translation.Further-
more,theIntermediateLanguagecanbeappliedto require-
mentslanguagesthatarebasedonadifferentsetof concepts
thanthoseof FormalTropos,suchasKAOS[8]. Finally, the
IntermediateLanguage,while moresuitableto formalanal-
ysis, is still independentfrom the particularanalysistech-
niquesthat we employ. For the moment,we have applied
only modelcheckingtechniques;however, we plan to also
applytechniquesbasedonsatisfiabilityor theoremproving.

Model Checking. Startingfrom anIntermediateLanguage
representationof a FormalTroposspecification,the actual
verification is performedwithin the NuSMV framework.
NuSMV [5] is a state-of-the-artmodel checker basedon
symbolic representationtechniques.Symbolic techniques
[3] havebeendevelopedto facethewell-known statespace
explosionproblem.Model checkingis foundedon theidea
of exploring thewholestatespaceof a finite statemachine
which describesthe possibleevolutionsof a specification.
If that statespaceis huge,as it is usually the casein real
applications,it is impossibleto explore it explicitly. Sym-
bolic techniquesrepresentsetsof statesin termsof boolean
propositionsandcastthebasicoperationsof modelcheck-
ing algorithmsaslogical operationson thesepropositions.

Although symbolic techniquesmake it possibleto ana-
lyze large systems,they still assumethat the systemto be
analyzedis finite. In our case,whenwe passan Interme-
diateLanguagespecificationto NuSMV, we put an upper
boundin the numberof instancesof eachclassof entities,
actorsor dependenciesthat canbe created.The choiceof

the numberof instancesis a critical point. In our experi-
mentswehaveseenthatmany subtlebugsonly appearwhen
more that one instanceof a particularclassis introduced.
Considerfor instancethescenariodiscussedin Section4,of
thecustomerwhopresentsclaimsto two differentinsurance
companiesfor thesameaccident.Clearly, this scenariore-
quiresusto allow for morethanoneinstanceof Claim and
InsuranceCo in thesystem.On theotherhand,our exper-
imentssuggestthat bugsusuallybecomeevident with just
a smallnumberof instances.In particular, in theInsurance
Company casestudyall the mistakesbecameevidentwith
at mosttwo instancesof eachclass.

Given the IntermediateLanguagespecificationand the
boundsin thenumberof instances,thefirst stepperformed
by the tool is to synthesizea (symbolic) automatonfor
the specification.The statesof this automatonrespectthe
CLASS structureof the IntermediateLanguagespecifica-
tion, andits executionsareall andonly theexecutionsthat
respecttheCONSTRAINT formulas.

NuSMV providesa synthesisalgorithmfor LTL speci-
ficationsthat is basedon a tableauconstructiontechnique
[7]. In order to dealwith the featuresof the Intermediate
Language,wehadto extendthis algorithmin severaldirec-
tions. For instance,the tableauconstructiondescribedin
[7] and the LTL logics usually exploited in modelcheck-
ing only considerfuture temporaloperators.For early re-
quirements,however, it is alsoconvenientto reasonabout
thepast.Therefore,wehaveextendedthetableauconstruc-
tion to dealwith thepastfragmentof LTL. Also, although
it is possibleto defineclassesin NuSMV and instantiate
them,NuSMV doesnotallow thecreationof new instances
at run-time.This is becauseNuSMV wasinitially designed
to verify hardwaresystems,wheretherearenodynamiccre-
ationsof components.Internally, we modelthefactthatan
instancehasbeencreatedwith specialstatusbit. Moreover,
quantifiersareinterpretedsothattheir rangeis restrictedto
theinstancesof a classthatexist in thecurrentstate.

An immediateoutcomeof the synthesisprocessis con-
sistency checking.In fact, if a specificationis inconsistent
with respectto the declarednumberof instances,the syn-
thesisprocessfails andno automatonis built. If thespeci-
ficationis consistent,theformalanalysiscanproceed.Ani-
mationof thespecificationis performedusingthesimulator
providedby NuSMV, which allows both for an interactive
explorationof theautomaton,andfor arandomexecutionof
acertainnumberof steps.Assertionvalidationandpossibil-
ity checkingareperformedusingthestandardapproachof
modelchecking,by verifying theASSERTION andPOS-
SIBILITY formulasagainsttheexecutionsof the automa-
ton. Wheneveroneof thesechecksfails,thetool reportsthe
failureto theuser. In thecaseof an invalid ASSERTION ,
NuSMV providesa counterexample,which correspondsto
a scenariothat violatesthe assertion.For POSSIBILITY

formulas,if they hold, T-Tool presentsan examplewhich
correspondsto ascenariothatrespectsthepossibility.

6. Conclusions

Wehavedescribedaformalmodelinglanguagefor early
requirementsandaprototypetool whichsupportsits analy-
sis. An importantcontribution of this work is to demon-
strate that formal analysis techniquesare useful during
early developmentphases,suchasearly requirementsen-
gineering. The novelty of the approachlies in extending
modelcheckingtechniques— whichrely mostlyondesign-
inspiredspecificationlanguages— sothatthey canbeused
for early requirementsmodelingandanalysis.Preliminary
resultssuggestthattheapproachis successfulin identifying
subtlebugs that are difficult to detectin an informal set-
ting. Moreover, suchbugscanbe detectedeven whenwe
considerexampleswith a smallnumberof instances.

Therearetwo bodiesof relatedwork thatareworthmen-
tioningin thiscontext. Alloy [12] is alanguagefor themod-
eling andthe validationof the structuralaspectsof a soft-
waresystem.While completelyoutsidethe scopeof early
requirements,Alloy proposesa methodologyfor applying
formal analysisto the early discovery of bugsin a specifi-
cationthat is very similar to ours.For instance,under- and
over-specificationof a systemareidentifiedusingexpected
properties,which areverymuchlike ourassertionandpos-
sibility properties.KAOS [8, 14] is a framework thatsup-
ports(early)requirementsanalysis,but relieson a different
methodologyandanalysistechniques.KAOSreliesmostly
ontheoremproving to supportrequirementsanalysis,rather
thanon modelchecking.As a consequence,in KAOS[14]
the emphasisis on obtaininga formal specificationof the
goal conflicts that occur in the requirementsspecification.
Our techniques,on theotherhand,provideconcretescenar-
ios of theseconflicts.While modelcheckingtechniquesal-
low for anautomaticgenerationof thescenarios,theformal
analysistechniquesof [14] maybeveryexpensive.

There are several directions for further researchon
this project. First, we are working on the application
of the methodologyto more complex casestudies,which
shouldgiveanextensiveevaluationof thescalabilityof our
methodologyto real applications,andto domainswherea
largenumberof instancesis necessaryfor the verification.
Second,weareworkingin extendingtheformalverification
tool. Sofar, wehavemostlyadaptedverificationtechniques
of NuSMV to thenew domain;however, thereis muchwork
to be doneon formal methodstechniquesspecificallytai-
loredto requirementsengineering.For instance,we should
enhancetheanimatorof thespecifications.At themoment,
NuSMV allows for an explorationof the evolution of the
systemin termsof theIntermediateLanguagespecification,
andrepresentstracesin a tabular format similar to theone

of Figure3. We areinvestigatingdifferentwaysto extend
T-Tool, sothattracesarepresentedattheFormalTroposab-
stractionlevelandtheexecutionsof thesystemareproposed
in a form convenientfor the user. Finally, we will investi-
gatethe possibility of applyingsomeof the techniquesof
the KAOS framework to Formal Tropos,suchasgoal de-
compositionandoperationalization.

References

[1] A. Anton. Goal basedrequirementsanalysis. In Proc.
ICRE’96, 1996.

[2] J. Bowen and V. Stavridou. Safety-criticalsystems,for-
malmethodsandstandards.IEE/BCSSoftwareEngineering
Journal, 8(4):189–209,1993.

[3] J. R. Burch,E. M. Clarke, K. L. McMillan, D. L. Dill, and
L. J.Hwang.SymbolicModelChecking: ?A@CBED statesandbe-
yond. InformationandComputation, 98(2):142–170,1992.

[4] J. Castro,M. Kolp, and J. Mylopoulos. A requirements-
drivendevelopmentmethodology.In ProcCAiSE’01, 2001.

[5] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri.
NuSMV: a new SymbolicModel Checker. Int. Journal on
Software Tools for Technology Transfer(STTT). 2(4):410–
425,2000.

[6] A. Cimatti,F. Giunchiglia,G. Mongardi,D. Romano,F. To-
rielli, andP. Traverso.FormalVerificationof a Railway In-
terlockingSystemusingModel Checking. Journal on For-
malAspectsin Computing, 10:361–380,1998.

[7] E. Clarke, O. Grumberg, andK. Hamaguchi.Anotherlook
at LTL modelchecking.Formal Methodsin SystemDesign,
10(1):57–71,1997.

[8] A. Dardenne,A. vanLamsweerde,andS. Fickas. Goaldi-
rectedrequirementsacquisition. Scienceof ComputerPro-
gramming, 20:3–50,1993.

[9] A. Fuxman. Formal analysisof early requirementsspeci-
fications. Master’s thesis,University of Toronto,Toronto,
Canada,2001.

[10] J.HalpernandM. Vardi. Model checkingvs. theoremprov-
ing: A manifesto.In Proc.KR’91, 1991.

[11] C.Heitmeyer, R.Jeffords,andB. Labaw. Automatedconsis-
tency checkingof requirementsspecifications.ACM Trans.
onSoftware Eng. andMethodology, 5(3):231–261,1996.

[12] D. Jackson.Alloy: A lightweightobjectmodellingnotation.
Technicalreport,MIT, July 2000.

[13] J.Spivey. TheZ Notation. PrenticeHall, 1989.
[14] A. van Lamsweerde,R. Darimont,andE. Letier. Manag-

ing conflictsin goal-drivenrequirementsengineering.IEEE
Transactionon Software Engineering, 1998.

[15] E. Yu. Towardsmodellingandreasoningsupportfor early-
phaserequirementsengineering.Proc.RE’97, 1997.

[16] E. Yu andJ.Mylopoulos.Towardsmodellingstrategic actor
relationshipsfor information systemsdevelopment– with
examplesfrom businessprocessreengineering.In Proc.4th
Workshopon InformationTechnologiesandSystems, 1994.

