Model Checking Early RequirementsSpecificationsin Tropos

MarcoPistore
ITC-IRST
pistore@itc.it

Ariel Fuxman
University of Toronto
afuxman@cs.tamto.edu

Abstract

This paper describesan attemptto bridge the gap be-
tweenearly requirrmentsspecificationand formal meth-
ods.In particular, weproposea new specificatiodanguage,
called Formal Tropos thatis foundedon the primitive con-
ceptsof early requirementgramevorks(actor, goal, strate-
gic dependency)15], but supplementshem with a rich
tempoal specificationlanguage. We also extend existing
formal analysistechniques,in particular modelchecking
to allow for an automaticverification of relevant proper
ties for an early requirrmentsspecification. Our prelimi-
nary experimentdemonstate that formal analysisreveals
gapsandinconsistencief early requirrmentghat are by
nomeandrivial to discoverwithoutthehelpofformalanal-
ysistools.

1. Intr oduction

Early requirementsnalysiss oneof themostimportant
anddifficult phase®f the softwaredevelopmentprocessit
is the phasewherethe requirement&ngineelis concerned
with understandinghe organizationakontext for aninfor-
mationsystemandthe goalsandsocialdependenciesf its
staleholders.This phasedemandgritical interactionswith
usersand other staleholders. A misunderstandingt this
pointmayleadto expensveerrorsduringlaterdevelopment
stagesNot surprisingly severalapproacheblave beenpro-
posedin recentyearson suitableconceptsjanguagesaind
analysigechniquespecificallytailoredfor this phasde.g.,
[8, 15, 1]).

Formal methodshave a great potential as powerful
meansfor the specification early dehugging and certifica-
tion of software. They have beensuccessfullyappliedin
several industrial applications,and they are even becom-
ing integral componentof standardsn certainfields [2].
However, the applicationof formal methodsto early re-
guirementds by no meandrivial. Most formal techniques
have beendesignedo work (andhave beenmainly applied)
in laterphaseof softwaredevelopmentsuchasthe design

PaoloTraverso
ITC-IRST
traveiso@itc.it

JohnMylopoulos
University of Toronto
jm@cs.toonto.edu

phasgseefor instancg6]). As aresult,thereis amismatch
betweenthe conceptsusedfor early requirementspecifi-
cations(e.g., goal and actor) and the constructsof formal
specificatiolanguagesuchasZ [13], SCR[11], etc.

Our long-termaim is to provide a framework for the
effective useof formal methodsin the early requirements
phase. The framework should allow for the formal and
mechanizedanalysisof early requirementsspecifications
expressedn aformal modelinglanguageln this paperwe
presensomeresultsthat constitutea first steptowardsthis
goal. This is accomplishedy extendingand formalizing
an existing early requirementsnodelinglanguagealsoby
building on state-of-the-artormal verificationtechniques.

In order to allow for formal analysis,we extend the
i* modelinglanguagg15] into a formal specificationlan-
guagecalled Formal Tropog. The languageoffers all the
primitive conceptof i* (suchasactors,goals,anddepen-
denciesamongactors),but supplementghemwith a rich
temporalspecificatiolanguagenspiredby KAOS[8].

We alsoextendanexisting formal verificationtechnique,
model checking[10], in orderto supportthe mechanized
analysisof Formal Troposspecifications. Using this ma-
chinery we provide for differentkinds of analysison a For-
mal Troposspecification. For instance checkingwhether
thespecificatioris consistentpr whetherit respectanum-
ber of desiredproperties.Moreover, a specificationcanbe
animatedin orderto give the userimmediatefeedbackon
its implications.

The proposedhapproacthasbeenimplementedasa pro-
totypetool, calledT-Tool. T-Toolis built ontop of NuSMV
[5], astate-of-the-arsymbolicmodelchecleroriginally de-
signedfor hardwareverification. In orderto adaptthe ver-
ification techniqueof NuSMV to the new applicationdo-
main, we have definedan intermediatelanguage,and we
have extendedNuSMYV to supportthis new inputlanguage.
T-Tool translatesa Formal Troposspecificatiorinto thein-

1Formal Troposis partof a widerscopeframavork, called Tropos[4],
which proposeshe applicationof conceptsfrom the early requirements
phaseto the whole software developmentprocessjncluding late require-
ments architecturabnddetaileddesign,andimplementation.

2Up-to-dateinformationon Formal TroposandT-Tool canbefoundat
http://sra.itc.it/tools/t-tool/.

termediatdanguageandthen calls NuSMV for the actual
verification.We have experimentedvith FormalTroposand
T-Tool, usinga simplecasestudy In spiteof its simplicity,

the casestudydemonstratethe benefitsof formal analysis
in revealing incompletenessind inconsisteng errorsthat
areby nomeandrivial to discoverin aninformal setting.

Structur e of the paper. In Section2 we describethe i*
modeling languageand introducethe casestudy we will
work on in the rest of the paper Section3 presentghe
Formal Troposlanguageand explains its original aspects
with respecto ani* specification.Section4 elaborateshe
differentkinds of formal analysisthatthe engineeicanper
form within the proposedramawvork, while Section5 de-
scribesthe technicalaspectof the verification performed
by T-Tool. Finally, Section6 presentsomeconcludingre-
marksanddiscusse$utureresearcidirections.

2. The i* Modeling Language

Thei* modelinglanguagéhasbeenspecificallydesigned
for the descriptionof early requirements.It assumeshat
during this phaseit is importantto understancand model
social settingswhich involve actorswho dependon each
otherfor goalsto be achieved, tasksto be performed,and
resourceso befurnished.The languageprovidesa graphi-
cal notationto describesuchsettings.An SD diagram,for
instancejs usedto representhe strategic dependenciesf
the actors,a centralconceptof i*. Dependenciesxpress
intentionalrelationshipghat exist amongactorsin orderto
fulfill somestratgic objectves. A dependeng describes
an “agreement’betweentwo actors,the dependerandthe
dependeeThetypeof the dependengdescribeshe nature
of the agreementGoal dependencieareusedto represent
delegation of responsibilityfor fulfilling a goal. Softgoal
dependenciearesimilarto goaldependenciegut theirful-
fillment cannotbe definedprecisely(becausét dependon
subjectvecriteria,or canoccuronly to agivenextent). Task
dependencieepresensituationsvherethedependeés re-
quiredto performa given actiity, while resouce depen-
denciegequirethedependeeo provide aresource.

The detailson i* arepresentedn [15]. Herewe briefly
review it by usingthe InsuranceCompary casestudy ini-
tially introducedin [16]. The actorsof the casestudyare
the customersand the insurancecompaty, Customer and
InsuranceCo. The maingoal of the custometis to be re-
imbursedfor damagesn caseof an accident(goal Beln-
sured in whatfollows). As the customelis not ableto ful-
fill this goal by herself,the goalis refinedinto a goal de-
pendeng CoverDamages, from the custometo theinsur
ancecompaty. Corverselytheinsuranceeompalty depends
on its customerdo have a continuedbusiness by fulfill-
ing softgoaldependenciesuchas AttractCustomers. In
orderto achiere the previous goals, it is necessaryo in-

Premium
CoverDamage!

Attract
Customers

Q(;epchenl

Garage

‘AppraiseDamale

Figure 1. SD diagram of the case study.

Dependencies

clude additional actors,such as Garage and Appraiser,

and additionaldependenciesFor instance the Customer

dependson the Garage to have her car repaired(depen-
deng RepairCar) andtheinsurancecompaly dependson

the Appraiser to estimatethe reasonabilityand amountof

thedamagegAppraiseDamage).

Figure 1 presentsani* SD diagramfor the casestudy
We usea subsetof this casestudy as the running exam-
ple for therestof the paper In particulay we focuson the
CoverDamages andRepairCar dependencies.

3. The Formal TroposLanguage

This sectionpresentghe mostrelevant aspectof For-
mal TroposusingthelnsuranceCompaly example(seeFig-
ure2). A thoroughdefinitionof theFormalTroposlanguage
appearsn [9].

Formal Troposhasbeendesignedo supplementhe i*
specificationanguagewith the descriptionof the dynamic
aspectof dependencieamongactors. While usingit, we
focusnot only onthe dependenciethemseles,but alsoon
the circumstances$n which they arise,and on the condi-
tionsthatleadto their fulfillment. In this way, the dynamic
aspectsof a requirementsspecificationare introducedat
the strateyic level, without requiringan operationalization
of the specification.In orderto be ableto representhese
dynamicaspectsdependencieas well as actorsbecome
“classes’in the Formal Troposspecification.We canhave
mary instance®f ary oneclassduringthe evolution of the
system(e.g., differentRepairCar dependenciemay exist
for different Customers, or for differentaccidentsof the
samecar), and attributesare associatedo the instancef
actorsanddependenciedn orderto representheirrelation-
ships(e.g.,a customemvantsher carto berepaired).

A FormalTroposspecificatiordescribesherelevantob-
jectsof a domainandthe relationshipsamongthem. The
descriptionof eachobjectis structuredn two layers. The

Keepdob

Entity Claim
Attrib ute constantcar: Car
Entity Car
Attrib ute runsOK: boolean
Actor InsuranceCo
Actor Garage
Actor Customer
Goal Belnsured
Mode maintain
Fulfillment definition Ycov : CoverDamages
(cov.depender = self — QFulfilled (cov))
DependencyCoverDamages
Type goal
Mode achieve
DependerCustomer
DependednsuranceCo
Attrib ute constantcl: Claim
Creation
condition —cl.car.runsOK
trigger JustCreated(cl)
DependencyRepairCar
Type goal
Mode achieve
DependerCustomer
DependeeGarage
Attrib ute constantcl : Claim
Creation
condition —cl.car.runsOK
Fulfillment
condition for dependercl.car.runsOK

Figure 2. The Formal Tropos specification.

outer layer is similar to a classdeclaration,sinceit de-
fines the structureof the instancegogetherwith their at-
tributes.Theinnerlayerexpressepropertiesof thelifetime
of theobject,givenin atypedfirst-orderlineartime tempo-
rallogic. A classcanbeanactor, adependencyor anentity.
Entitiesareusedto represenhon-intentionaklementghat
exist in the organizationalsettingbeing modeled. In our
example(seeFigure2) we have the entitiesClaim andCar.
The attributesof a Formal Troposclassdenoterelation-
ships amongdifferent objects. For example, eachclaim
filed by a customenrefersto a specificcar, representedy
attribute car of entity Claim (seeFigure?2). The facetcon-
stant of this attribute statesthat, oncea car is associated
to aclaim, therelationshipmustremainunchangedorever.
FormalTroposdefinesotherattribute facets suchasmulti-
valued andoptional, whichdo notappeain our example.
As in i*, actorsin Formal Troposhave goalsthat de-
scribetheir stratgic interestsFor instancejn our example,
the actor Customer hasa goal namedBelnsured. Fur

thermore,intentional relationshipsamongactorsare rep-
resentedas dependencieésee,e.g., dependencie€over-
Damages and RepairCar in the example). The type of
a dependeng (goal, softgoal, task, resource), aswell as
its dependeranddependeeactors,areincludedasspecial
attributesin the dependengclassdeclaration.

An importantaspeciof Formal Troposis thatit focuses
onthe conditionsfor the fulfillment of goalsanddependen-
cies. More precisely goalsand dependenciesan be ful-
filled with differentmodalities For example,the modality
of RepairCar is achieve, which meanghataninstanceof
thedependengbecomedulfilled oncethecaris eventually
repaired. Dependeng CoverDamages also hasachieve
modality, sinceit becomesdulfilled assoonastheinsurance
compary reimhursesthe damagesOn the otherhand,goal
Belnsured of actorCustomer is of maintain modality, as
the customerexpectsto be insuredin a continuing way.
There are other modalities, such as achieve&maintain,
which is a combinationof the previous two modes. Also
avoid modality, which meanghatthefulfillment conditions
shouldbe prevented.

Theinnerlayerof aFormalTroposclassdeclaratiorcon-
sistsof propertieghat describethe dynamicaspectf ac-
tors, goals,and dependenciesimportantmomentsin the
lifetime of aninstanceof adependengareits creationand
its fulfilment. Consequentlywe distinguishthreetypes
of propertiedor dependencie<reation propertieshould
hold at the time of creationof a new instanceof the depen-
dengy, while fulfillment propertiesshouldhold whena de-
pendeng is satisfied. Finally, invariant propertiesshould
be true throughoutthe lifetime of the dependeng Actor
goalshave fulfillment properties,but not creationproper
ties or invariants,sincethey areassumedo ariseandexist
togethemwith their correspondingctor Onthe otherhand,
entitiesand actor classeamay have creationand invariant
properties but clearly not fulfilment ones. In additionto
the type of the property we alsodistinguishthosethat ex-
presssufficient conditions(facettrigger), necessargondi-
tions (facetcondition), andnecessary-and-didientcondi-
tions (facetdefinition).

In our example, dependeng CoverDamages hasacre-
ation condition (formula—cl.car.runsOK in Figure2) that
stateghatthecarshouldnotbeworking atthetime thegoal
arises Its creationtriggerrepresentthefactthat,whenever
acustomefilesaclaimcl (formulaJustCreatedcl)), ade-
pendenyg for covering the repairsarises.Accordingto the
specificationin Figure2, thegoalof repairingacarcanonly
ariseif the caris notworking. Similarly, a necessargon-
dition for the fulfillment of the dependengis that the car
shouldberunningOK. Thisis aconditionthatthecustomer
imposeg(...thegaragewould be hapyy to declarea carre-
pairedevenif it doesnot run). Formal Troposrepresents
this factwith the facetfor depender.

In additionto facets,Formal Tropospropertiesare de-
scribedwith formulasgiven in a typed first-orderlinear
time temporallogic. In thelogic, quantifiersv and3 range
over all the instancef a given class. The formulasmay
refer to the attributes of the classthat the corresponding
propertybelongsto. Also, instancesmay expressproper
ties aboutthemselesusing the keyword self (seethe ful-
fillment definition of goal Belnsured in Figure2). Three
specialpredicatecanappearin the temporallogic formu-
las: predicateJustCreatedel) holdsin a stateif element
el existsin this statebut notin the previousone. Predicate
Fulfilled (el) holdsif el hasbeenfulfilled. Finally, pred-
icate JustFulfilled (el) holdsif Fulfilled (el) holdsin this
state,but not in the previousone. Predicates-ulfilled and
JustFulfilled aredefinedonly for goalsanddependencies.

Using suitabletemporal operators,the logic makes it
possibleto expresspropertiesthat are not limited to the
currentstateof the system,but alsoto its pastand future
history. For instanceformulaC¢ (alwaysin the future ¢)
expresseshefactthatformula¢ shouldholdin the current
stateandin all the future statesof the evolution of the sys-
tem. Formula$¢ (sometimesn the past)holdsif ¢ is true
in the currentstateor if it wastruein somepaststateof the
system. The classicaltemporaloperatorsusedin the For-
mal Troposformulasareo (next state),e (previousstate) 0
(eventuallyin the future), 4 (sometimesn the past),[] (al-
waysin thefuture)andB (alwaysin the past).Otheruseful
operatorsare (OV4) (once,in the pastor in the future)and
(OAM) (alwaysin the pastandin the future). Goal and
dependengmodalitiesoftenhidetheusageof temporalop-
erators.This is doneon purpose.Reducingthe numberof
temporaloperatorsn the formulasresultsin moreintuitive
andreadablespecificationsModalitiesprovide an easy-to-
understandubsebdf thelanguagef temporalogics. When
the modalitiesarenot sufficient to captureall the temporal
aspectf a condition, the temporaloperatorsnay appear
explicitly in the formulas. This is the casefor goal Beln-
sured of actor Customer in the examplein Figure?2. Its
fulfillment conditionrequiresthatwhenerera CoverDam-
ages dependengexistsfor the customerit will eventually
befulfilled (formulaQFulfilled (cov)). Sincethegoalhasa
maintain modality, this propertyhasto holdin acontinuous
way for the goalto befulfilled.

Thepropertiesusedsofarin theexamplearerequiredto
hold for all scenarios.In general,we distinguishtwo sets
of properties:thosethat are enforced,and thosethat ex-
pressdesiied behaiors. The propertiesof the former set
defineconstraintoon the behaior of thesystemthathold in
all valid scenarios.The propertiesof the latter setdenote
expectationson the behavior of the systemandareusedto
validatethe model. Thesecanbe eitherassertion proper
ties,which aredesiredto hold for all the valid scenariof
a system;or possibility propertieswhich shouldhold for

atleastonevalid scenarioIn thenext sectionwe illustrate
how to checkwhetherassertionsindpossibilitiessatisfythe
constraintof a specification.

4.Formal Analysis

Formal analysistechniquesaretypically appliedduring
latephase®f developmenin orderto validatethe designor
implementationof a systemagainstits requirements.Our
aim is to useformal analysistechniquesn orderto assist
the analystduring requirementelicitation, by allowing her
to identify errorsandlimitationsof thespecificatiorthatare
not evidentin aninformal setting.

Our formal analysistool, T-Tool, takesa Formal Tropos
specificationasinput, and builds an automatorthat repre-
sentsall the possibleexecutionsof the systemthat satisfy
the constraintsof the specification(seeSection5). Once
theautomatoris built, T-Tool verifiesexpectedbehaviors of
the system expressedvith assertionandpossibility prop-
erties. Whenever an assertiorfails, T-Tool reportsa coun-
terexamplescenarian which theassertionis violated.

Consistencycheck. Thisis the simplestform of validation
of a specification. It aimsto verify that thereis at least
onescenarioof the systemthat respectsll the constraints
enforcedby the requirementsspecification. If this is not
the case,the specificationis inconsistent Inconsistencies
occurquite often, especiallyso whenthe requirementsare
acquiredrom differentstaleholders.

Assertionvalidation. Thedesignecanrepresenéxpected
behaviors of the systemthroughassertion properties.As-
sertionscomefrom differentsources.The mostimportant
onesare thosethat represenexpectationsrom the stale-
holders(“if all therequirementaremetby thesystemthen
| expectthis propertyto bevalid”). In generalwe arein-
terestedn gatheringassertionsvhich, althoughnot likely
to beverifiedimmediately areexpectedo yield interesting
countergamples.Suchcountergamplesshouldenablethe
staleholdersto expresstheir goalswith greateraccurag,
anddrive the elicitation of othergoals. Assertionproper
ties canbe also specifieddirectly by the engineerin order
to checkwhethersheis correctlymodelingtheintendedbe-
havior of the system. For instance,if therearetwo ways
to specifyarequirementhatseemequivalent,onemightbe
enforcedandtheotherchecled. If thetwo requirementsre
notequialent,thebehaior thatdistinguisheshemexhibits
situationgthatwerenot takeninto account.

Going back to our example, an importantgoal of the
staleholdersis to avoid “unreasonable’tlaims, thoughit
is difficult for themto preciselydefinethe concept. Nev-
erthelessthey areableto presentparticularscenarioghat
involve suchclaims.For instancethey donotwantto cover
claimsfor which thereis no proof (e.g.,aninvoice)thatthe

t1 to t3 t4 ts
carl.runsOK T 1L 1 T T
cll.car carl | carl | carl | carl
cl2.car carl | carl | carl | carl
covl.cl cli cli cli cli
Fulfilled (covl) L 1 € T
repl.cl cl2 cl2 cl2
Fulfilled (repl) 1 T T

Figure 3. An example of a countere xample .

carwasrepaired We statethisasanassertionif aninstance
of CoverDamages for agivenclaimis fulfilled andthecar
runsOK, thenthestaleholderssxpectthatarepairhasbeen
performedfor that claim.

DependencyCoverDamages
Fulfillment
assertioncondition for dependee
cl.car.runsOK — Jrep : RepairCar
(rep.cl = cl A Fulfilled (rep))

When checkingthe assertion the tool exhibits the coun-
terexampleshavn in Figure3. Thekey pointis that, when
the car stopsrunning OK at time t,, the customemakes
two claimscll andcl2, for thesamecar carl, but with dif-

ferentinsurancecompanies.At time ¢, aninstancecovl

of goal dependeng CoverDamages for cll arises.Then,
attimetz, aninstancerepl of RepairCar arisesput is as-
sociatedo the otherclaim (cl2). Later, attime ¢4, repl is

fulfilled andthe car startsrunning OK; eventually at time
ts, covl is fulfilled. The problemhereis thatdamagesre
coveredfor a certainclaim, while the repairis performed
for anotherclaim regardingthe samecar. Indeed this situa-
tion mightoccurin reallife if acustomehaspoliciesattwo

insurancecompanies Whenher car breaks shecanrepair
it at onegarageandattemptto getdamagecostsfrom both
insurancecompanies.This is an inadmissiblesituation, at
leastin the domainwe consider A preliminaryfix for this
problemis to requiretherepairsfor acertainclaimto beper

formedbeforetheclaimis covered.This canbeachieredby
addingthe following fulfillment conditionconstraintto the
specificatiorof Figure2.

DependencyCoverDamages
Fulfilment condition for dependee
drep : RepairCar(rep.cl = cl A Fulfilled (rep))

Possibility check. It is often the casethat, even though
a specificationis consistentreasonablscenariosareruled
out as valid executionsbecausehey are in conflict with
someconstraintof thesystem.Thereforejt is importantto
checkthatthe specificatiorallows for all the scenarioghat
the staleholdersregardas possible. This kind of scenario

is specifiedin Formal Troposin termsof possibility prop-

erties.Whenperforminga possibilityched, T-Tool verifies
thatthereis at leastone scenarioin which suchproperties
hold. In caseof anaffirmative answeyrthetool presentsan

example whichis a scenariahataccountdor the possibil-
ity. For instance the staleholdersmay mentionthe possi-
bility thata caris sodamagedhatit is impossibleto repair

In this case the insurancecompaly is still responsibleor

coveringdamagesThis canbespecifiedwith apropertyfor

dependengCoverDamages thatstateghepossibility that
aftera carbreaksjt mayneverrun OK again,asfollows:

DependencyCoverDamages
Creation
possibility condition for depender
QFulfilled (self) A O—cl.car.runsOK

The property statesthat it is possiblethat some Cover-
Damages instancebe eventuallyfulfilled evenif theasso-
ciatedcarneverrunsOK againaftertheinstances created.
Whenwe performthe possibilitycheck,T-Tool informsthe
userthatthe possibility doesnot exist. The checkreveals
a conflict betweenthe possibility propertyand the fulfill-
ment constrainfor CoverDamages previouslyintroduced
in this section. The problemis thatthe constraintdoesnot
allow theinsurancecompaly to cover the damagesf are-
pair hasnot beenperformed.If we modify the constraintin
orderto allow theinsurancecompaly to cover damagesn
casehecarneverrunsOK again,T-Tool returnssuccessor
thepossibilitycheck.

DependencyCoverDamages
Fulfilment condition for dependee
Jrep : RepairCar(rep.cl = cl A Fulfilled (rep)))
v O=cl.car.runsOK

Animation of the specification. T-Tool also allows the
userto interactvely explore the automatorgeneratedrom
the Formal Troposspecification. Sincethe automatorex-
hibits only the sequencesf statesthat respectall the re-
guirementsthe usergetsimmediatefeedbackon their ef-
fects. Thoughvery simple,the animationof requirements
is extremelyusefulto identify missingtrivial requirements,
which are often taken for grantedin an informal setting.
For instance,had we forgottento add the creationcondi-
tion —cl.car.runsOk in the specificatiorof RepairCar, we
would have obtainechistorieswherethe goal of repairinga
carariseswhenthecaris runningOK. Moreover, the possi-
bility of shaving valid evolutionsof the systemis oftenan
effective way of communicatingvith the staleholders.

5. From Formal Troposto Model Checking

In this sectionwe give technicaldetailson the analysis
performedby T-Tool on a Formal Tropos specification(a

morethoroughexplanationis givenin [9]). The first step
carriedout by T-Tool consistsf transforminga given For-
mal Troposspecificatiorinto an equivalentspecificationn
a suitableIntermediatel anguage. This translationis per
formedin a completelyautomaticway, and doesnot re-
quirethe userto “operationalizethe specificationin order
to verify it. Thelntermediatd.anguagespecificationis then
passedo the NuSMV modelverifier, which performsthe
actualanalysis.

The Intermediate Language. In the IntermediatelLan-

guagethe stratayic flavor of Formal Troposis lost, andthe

focusshiftsto the dynamicaspect®f the system.Somede-

tails of the Formal Troposspecificatiorareremosedduring

the translation. This is the case,for instance for the dis-

tinctionamongthedifferentdependengtypes.While these
aspectareimportantin the overall descriptionandspecifi-
cationof the systemthey donotplay ary role in theformal

analysisdescribedere.

In Figure4, we give anexcerptof the Intermediatd_an-
guagetranslationfor our running example. It consistsof
four parts: classdeclarationsconstrints assertionsand
possibilityproperties.

The class declamations (keyword CLASS) define the
datatypesof the system;they correspondo the entities,
actors,anddependencie§.e., the outerlayer) of the For-
mal Troposspecification We notethatsomenew attributes,
not presentin the Formal Tropos specification,are added
to classdefinitionsduring the translation. This is the case,
for instance pof attribute fulfilledBelnsured of Customer,
or attribute fulfilled of dependeng CoverDamages. The
factthatgoalsanddependencielsave beerfulfilled is prim-
itive in Formal Tropos(Fulfilled predicate)put is encoded
asa statevariablein the Intermediatd_anguagethis is an
exampleof the changeof focusthat occurswhentranslat-
ing aFormalTroposspecificationnto thelntermediatd_an-
guage. The Intermediatd_anguagestill allows for the dy-
namic creationof classinstances. In Figure 4, predicate
JustCreatedis usedto checkwhethera given instanceof
a classhasbeencreatedin the currenttime instanceof a
scenario.

Constaint formulas(keyword CONSTRAINT) restrict
the valid temporalbehaiors of the system.Someof these
formulasmodelthe semanticof a Formal Troposspecifi-
cation.Forinstancethefirsttwo CONSTRAINT formulas
in Figure 4 expressthe fact that attribute car of a Claim
and attribute cl of a RepairCar are constant Other for-
mulas correspondo the temporalconstraintsthat consti-
tutetheinnerlayer of the Formal Troposspecification.For
instancethe third andfourth CONSTRAINT formulasin
Figure4 correspondrespectiely, to the creation andful-
fillment condition of goal dependeng RepairCar, while
thelast CONSTRAINT formulacorrespondso the fulfill-
ment condition of goalBelnsured. As theseformulasare

CLASS Claim
car: Car
CLASS Car
runsOK: boolean
CLASS Customer
fulfilledBelnsured: boolean
CLASS InsuranceCo
CLASS Garage
CLASS CoverDamages
depender: Customer
dependee: InsuranceCo
cl: Claim
fulfilled: boolean
CLASS RepairCar
depender: Customer
dependee: Garage
cl: Claim
fulfilled: boolean
CONSTRAINT Vcl : Claim Vcar : Car
(cl.car = car — o(cl.car = car))
CONSTRAINT Vrc : RepairCar Vcl : Claim
(rc.cl = cl — o(rc.cl = cl))
CONSTRAINT Vrc : RepairCar
(JustCreatedrc) — —rc.cl.car.runsOK)
CONSTRAINT Vrc : RepairCar
((rc.fulfilled A — e rc.fulfilled) — rc.cl.car.runsOK)
CONSTRAINT Ycust : Customer
(cust.fulfilledBelnsured <«
(OAE)(Ycov : CoverDamages
cov.depender = cust — ¢cov.fulfilled))
ASSERTION Ycov : CoverDamages
((cov.fulfilled A — e cov.fulfilled) —
(cov.cl.car.runsOK — 3Jrep : RepairCar
(rep.cl = cov.cl A rep.fulfilled)))
POSSIBILITY dcov : CoverDamages
(JustCreatedcov) A cov.fulfilled
A O-cov.cl.car.runsOK)

Figure 4. Example of Intermediate Language.

no longer syntacticallyanchoredo the creationor fulfill-
mentof a dependeny, they needa “context” to definetheir
meaning. This context is provided by the translationrules
thatmapa FormalTroposspecificatiorinto anintermediate
Languagene.For instancethefulfillment conditiong of a
dependeng Dep with anachieve modality is mappednto
aCONSTRAINT of theform

vd : Dep ((d-fulfilled A = o d.fulfilled) — ¢)

stating that “when an achieve dependeng becomesful-
filled, its fulfilment conditionshouldhold”. Thisis therule
thathasbeenappliedto thefulfillment conditionof Repair-
Car (compareFigures2 and4).

As we canseein this translationwe addauxiliary tem-
poral operatorgo the Intermediatd_anguagespecification.
Theseoperatorgdepenchotonly onthekind of formulabe-

ing translatedbut alsoon the modeof the dependeng For
instancejn thecaseof amaintain dependeny, thetransla-
tion of the fulfillment condition¢ is givenby therule

Vd : Dep (d.fulfiled — (OAE)¢)

statingthat“if a maintain dependengis fulfilled, thenits
conditionsshouldhold duringthefull lifetime of thedepen-
deng”. In our specificationa similar rule appliesfor goal
Belnsured of the Customer.

The assertionand possibility formulas (keywords AS-
SERTION andPOSSIBILITY) stateexpectedproperties
of the behavior of the system. They correspondo the as-
sertion andpossibility propertiesof Formal Tropos.

The Intermediatd_anguageplaysa fundamentalole in
bridgingthe gapbetweenFormal Troposandformal meth-
ods. Firstof all, it is muchmorecompacthanFormal Tro-
pos,andthereforeallows for amuchsimplerformal seman-
tics (see[9] for details). Second,it is ratherindependent
from the particularconstructsof Formal Tropos. By mov-
ing to differentdomainsjt will probablybecomenecessary
to“tune” FormalTropos for instanceby addingnen modal-
ities for the dependenciesThe formal approachdescribed
in this papercanbealsoappliedto thesedialectsof Formal
Tropos,at the costof defininga new translation. Further
more,the Intermediatd_anguagecanbeappliedto require-
mentdanguageshatarebasednadifferentsetof concepts
thanthoseof FormalTropos suchasKAOSI8]. Finally, the
Intermediatd_anguagewhile moresuitableto formalanal-
ysis, is still independenfrom the particularanalysistech-
niguesthatwe employ. For the moment,we have applied
only modelcheckingtechniqueshowever, we planto also
applytechniquedbasedn satisfiabilityor theorenproving.

Model Checking. Startingfrom anintermediatd_anguage
representatiof a Formal Troposspecificationthe actual
verification is performedwithin the NuSMV framework.
NuSMV [5] is a state-of-the-artmodel checler basedon
symbolic representationiechniques. Symbolic techniques
[3] have beendevelopedto facethe well-known statespace
explosionproblem.Model checkingis foundedon theidea
of exploring the whole statespaceof afinite statemachine
which describeghe possibleevolutions of a specification.
If that statespaceis huge,asit is usuallythe casein real
applicationsjt is impossibleto exploreit explicitly. Sym-
bolic techniquesepresensetsof statesn termsof boolean
propositionsand castthe basicoperationof modelcheck-
ing algorithmsaslogical operationsonthesepropositions.
Although symbolictechniquesnake it possibleto ana-
lyze large systemsthey still assumehat the systemto be
analyzeds finite. In our case,whenwe passan Interme-
diate Languagespecificationto NuSMV, we put an upper
boundin the numberof instancef eachclassof entities,
actorsor dependenciethat canbe created. The choiceof

the numberof instancess a critical point. In our experi-
mentswe have seerthatmary subtlebugsonly appearhen
more that one instanceof a particularclassis introduced.
Consideffor instancehescenarialiscussed Sectiord, of
thecustomemho presentglaimsto two differentinsurance
companiedor the sameaccident.Clearly, this scenariare-
quiresusto allow for morethanoneinstanceof Claim and
InsuranceCo in the system.On the otherhand,our exper
imentssuggesthat bugsusuallybecomeevident with just
a smallnumberof instanceslin particular in the Insurance
Compaly casestudyall the mistalesbecameavidentwith
at mosttwo instance®f eachclass.

Given the IntermediateLanguagespecificationand the
boundsin the numberof instancesthefirst stepperformed
by the tool is to synthesizea (symbolic) automatonfor
the specification. The statesof this automatorrespecthe
CLASS structureof the Intermediatel anguagespecifica-
tion, andits executionsareall andonly the executionsthat
respecthe CONSTRAINT formulas.

NuSMV providesa synthesisalgorithmfor LTL speci-
ficationsthat is basedon a tableauconstructiontechnique
[7]. In orderto dealwith the featuresof the Intermediate
Languagewe hadto extendthis algorithmin severaldirec-
tions. For instance the tableauconstructiondescribedn
[7] andthe LTL logics usually exploited in model check-
ing only considerfuture temporaloperators.For early re-
guirementshowever, it is also convenientto reasonabout
thepast.Therefore we have extendedhetableauconstruc-
tion to dealwith the pastfragmentof LTL. Also, although
it is possibleto defineclassesn NuSMV and instantiate
them,NuSMV doesnotallow the creationof new instances
atrun-time.Thisis becauséuSMV wasinitially designed
to verify hardwaresystemswheretherearenodynamiccre-
ationsof componentsinternally, we modelthefactthatan
instancehasheencreatedvith specialstatusbit. Moreover,
guantifiersareinterpretedsothattheir rangeis restrictecto
theinstance®f a classthatexist in thecurrentstate.

An immediateoutcomeof the synthesigrocesss con-
sisteny checking.In fact,if a specificationis inconsistent
with respecto the declarednumberof instancesthe syn-
thesisprocesdails andno automatoris built. If the speci-
ficationis consistentthe formal analysiscanproceed Ani-
mationof the specifications performedusingthe simulator
provided by NuSMV, which allows both for aninteractve
explorationof theautomatonandfor arandomexecutionof
acertainnumberof steps Assertionvalidationandpossibil-
ity checkingareperformedusingthe standardapproachof
modelchecking,by verifying the ASSERTION andPOS-
SIBILITY formulasagainstthe executionsof the automa-
ton. Wheneeroneof thesecheckdails, thetool reportsthe
failureto the user In the caseof aninvalid ASSERTION,
NuSMV providesa countergample,which corresponds$o
a scenariothat violatesthe assertion.For POSSIBILITY

formulas,if they hold, T-Tool presentsan examplewhich
correspondso ascenaridhatrespectshe possibility.

6. Conclusions

We have describeda formal modelinglanguagédor early
requirementsinda prototypetool which supportsts analy-
sis. An importantcontrikution of this work is to demon-
strate that formal analysistechniquesare useful during
early developmentphasessuchas early requirementsen-
gineering. The novelty of the approachlies in extending
modelcheckingtechniques— whichrely mostlyondesign-
inspiredspecificatiolanguages— sothatthey canbeused
for earlyrequirementsnodelingandanalysis.Preliminary
resultssuggesthattheapproachs successfuin identifying
subtle bugs that are difficult to detectin an informal set-
ting. Moreover, suchbugscanbe detectedeven whenwe
considerexampleswith a smallnumberof instances.

Therearetwo bodiesof relatedwork thatareworth men-
tioningin thiscontext. Alloy [12] is alanguagdor themod-
eling andthe validation of the structuralaspectof a soft-
ware system.While completelyoutsidethe scopeof early
requirementsAlloy proposesa methodologyfor applying
formal analysisto the early discovery of bugsin a specifi-
cationthatis very similar to ours. For instanceunder and
over-specificatiorof a systemareidentifiedusingexpected
propertieswhich arevery muchlik e our assertiorandpos-
sibility properties.KAOS[8, 14] is a framework that sup-
ports(early) requirements&nalysis but relieson a different
methodologyandanalysistechniquesKAOSreliesmostly
ontheoremnproving to supportrequirementsinalysisrather
thanon modelchecking.As a consequencen KAOS[14]
the emphasids on obtaininga formal specificationof the
goal conflictsthat occurin the requirementspecification.
Ourtechniquespntheotherhand,provide concretescenar
ios of theseconflicts. While modelcheckingtechniquesl-
low for anautomatiayeneratiorof thescenariostheformal
analysigechnique®f [14] maybevery expensve.

There are several directions for further researchon
this project. First, we are working on the application
of the methodologyto more complex casestudies,which
shouldgive anextensie evaluationof the scalabilityof our
methodologyto real applications,andto domainswherea
large numberof instanceds necessaryor the verification.
Secondwe areworkingin extendingtheformalverification
tool. Sofar, we have mostlyadaptedrerificationtechniques
of NuSMV to thenew domain;however, thereis muchwork
to be done on formal methodstechniquesspecifically tai-
loredto requirement&ngineering For instancewe should
enhancehe animatorof the specificationsAt the moment,
NuSMYV allows for an exploration of the evolution of the
systemin termsof the Intermediatd_anguagespecification,
andrepresentsracesin a takular format similar to the one

of Figure3. We areinvestigatingdifferentwaysto extend
T-Tool, sothattracesarepresentea@tthe Formal Troposab-
stractionevel andtheexecutionf thesystemareproposed
in a form corvenientfor the user Finally, we will investi-
gatethe possibility of applyingsomeof the techniqueof
the KAOS framework to Formal Tropos,suchasgoal de-
compositionandoperationalization.

References

[1] A. Anton. Goal basedrequirementsanalysis. In Proc.
ICRE’96, 1996.

[2] J. Bowen and V. Starridou. Safety-critical systems,for-
mal methodsandstandardslEE/BCSSoftwae Engineering
Journal, 8(4):189-2091993.

[3] J.R.Burch,E. M. Clarke, K. L. McMillan, D. L. Dill, and
L. J.Hwang.SymbolicModel Checking:10%° statesandbe-
yond. Informationand Computation98(2):142—-1701992.

[4] J. Castro,M. Kolp, and J. Mylopoulos. A requirements-
drivendevelopmentmethodology.In Proc CAISE’'01, 2001.

[5] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri.
NuSMV: a new SymbolicModel Checler. Int. Journal on
Softwae Tools for Tecdhnolagy Transfer(STTT) 2(4):410-
425,2000.

[6] A. Cimatti, F. Giunchiglia,G. Mongardi,D. RomanoF. To-
rielli, andP. Traverso. Formal Verificationof a Railway In-
terlocking SystemusingModel Checking. Journal on For-
mal Aspectsn Computing 10:361-3801998.

[7] E.Clarke, O. Grumbeg, andK. Hamaguchi.Anotherlook
atLTL modelchecking.Formal Methodsin SystenbDesign
10(1):57-711997.

[8] A. DardenneA. vanLamsweerdeandsS. Fickas. Goal di-
rectedrequirementsacquisition. Scienceof ComputerPro-
gramming 20:3-50,1993.

[9] A. Fuxman. Formal analysisof early requirmentsspeci-
fications Masters thesis,University of Toronto, Toronto,
Canada2001.

[10] J.HalpernandM. Vardi. Model checkingvs.theoremprov-
ing: A manifesto.In Proc.KR'91, 1991.

[11] C.Heitmeyer, R.Jefords,andB. Labav. Automatedconsis-
teng/ checkingof requirementspecifications ACM Trans.
on Softwae Eng and Methodol@y, 5(3):231-2611996.

[12] D.JacksonAlloy: A lightweightobjectmodellingnotation.
Technicalreport,MIT, July 2000.

[13] J.Spivey. TheZ Notation PrenticeHall, 1989.

[14] A. vanLamsweerdeR. Darimont,andE. Letier. Manag-
ing conflictsin goal-drivenrequirement&ngineeringlEEE
Transactionon Softwae Engineering 1998.

[15] E.Yu. Towardsmodellingandreasoningsupportfor early-
phaserequirement&ngineering Proc. RE'97, 1997.

[16] E.YuandJ.Mylopoulos. Towardsmodellingstrateyic actor
relationshipsfor information systemsdevelopment— with
examplesfrom businesgprocesgeengineeringln Proc. 4th
Workshopon InformationTechnolggiesand Systems1994.

