CSC 418/2504 Computer Graphics, Winter 2008

Assignment no. 2. Due: February 4 (beginning of tutorial)

- 1. In the figure below, the 3D segment AB is projected by a standard perspective camera to the image segment ab. The point C on AB bisects AB in a ratio of t:(1-t), and its projection c bisects ab in a ratio of s:(1-s). Denote by Z_A, Z_B, Z_C the depths of A, B and C.
 - A. Express t as a function of s, Z_A, Z_B (in particular show it is independent of the focal length).
 - B. Express Z_C as a function of s, Z_A , Z_B (simplify the result).

- 2. In this question we explore recovering information from the perspective projection of a rectangle. Assume the camera is a standard perspective camera, i.e. the focal point is at the origin and the X and Y axes of the world coordinate system are aligned with the x and y axes of the camera. A rectangle (on some tilted plane) is projected by the perspective camera into a quadrilateral. The vertices of the quadrilateral in the image are at p_1 =(0,0.2828), p_2 =(0.1818,0.5143), p_3 =(0.0952,0.6734) and p_4 (-0.1053,0.4466).
 - A. The edges of the rectangle define two directions in 3D. Find their vanishing points.
 - B. Find the vanishing line of the 3D plane of the rectangle.
 - C. Let r_1 be a ray from the focal point of the camera through one vanishing point on the screen, and r_2 a ray from the focal point through the second vanishing point. Are r_1 , r_2 orthogonal?
 - D. Compute the focal length.
 - E. Find the normal to the plane of the rectangle.

- 3. A corner of a box (with three orthogonal faces) is imaged under orthographic projection as shown below, where $p_0=(0,0)$, $p_1=(-2,1)$, $p_2=(0,2)$ and $p_3(3,1)$.
 - A. Compute Z_1 - Z_0 , Z_2 - Z_0 , Z_3 - Z_0 , where Z_i is the depth of p_i .
 - B. Compute the normals to the box faces .

4. Read chapters 1-5 in the OpenGL programming guide (the "red book"). An online version is at http://www.glprogramming.com/red/index.html . This reading is intended to prepare you for the next programming assignments.