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In this thesis, we investigate the formulation, optimization and ambiguities in single-image

3D surface reconstruction from geometric and photometric constraints. We examine linear,

discrete and quadratic constraints for shape from planar curves, shape from texture, and shape

from shading.

The problem of recovering 3D shape from the projection of planar curves on a surface

is strongly motivated by perception studies. Applications include single-view modeling and

uncalibrated structured light. When the curves intersect, the problem leads to a linear system

for which a direct least-squares method is sensitive to noise. We derive a more stable solution

and show examples where the same method produces plausible surfaces from the projection of

parallel (non-intersecting) planar cross sections.

The problem of reconstructing a smooth surface under constraints that have discrete ambi-

guities arise in areas such as shape from texture, shape from shading, photometric stereo and

shape from defocus. While the problem is computationally hard, heuristics based on semidefi-

nite programming may reveal the shape of the surface.

Finally, we examine the shape from shading problem without boundary conditions as a

polynomial system. This formulation allows, in generic cases, a complete solution for ideal

polyhedral objects. For the general case we propose a semidefinite programming relaxation

procedure, and an exact line search iterative procedure with a new smoothness term that favors

folds at edges. We use this numerical technique to inspect shading ambiguities.
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“In the past, research in the pattern recognition field has been limited

to the identification of two-dimensional shapes, mainly because it was

thought that any three-dimensional analysis would be more difficult.

The idea seems to have been that the 2-D work would pave the road

for future 3-D work. However, progress has been slow and it may well

be that the study of three-dimensional projections is an easier step.”

Lawrence G. Roberts, 1963
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Chapter 1

Introduction

1.1 Overview

The single-image 3D reconstruction problem is to recover a 3D surface from its 2D image.

The motivation to study this inverse problem is that 3D shape is an inherent invariant of objects

to variations in pose, illumination conditions and surface markings. This invariance can be

very useful for recognition and categorization. In addition, 3D information makes the problem

of segmenting a scene into different bodies much simpler. While most current methods for

segmentation and recognition are based on 2D appearance models, they do not generalize far

beyond their training set. It is almost impossible for 2D-based methods to identify two ob-

jects with the same 3D shape but very different texture or surface markings as similar objects.

2D appearance-based systems are also limited in their ability to interpret articulated objects

and occlusion [130]. Therefore, both 2D and 3D processing are essential to achieve generic

recognition and categorization. Although technologies such as laser range finders and multiple

view geometry can provide accurate surface reconstructions, the single-image problem is of

fundamental theoretical and practical importance to the science of vision.

This thesis examines the formulation, optimization and ambiguities in single-image 3D

surface reconstruction from geometric and photometric constraints. The thesis consists of in-
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: The three types of single-image 3D reconstruction problems we will deal with are
shape from planar curves (left), shape from texture (middle), and shape from shading (right).
In each case, the goal is to come up with a plausible 3D interpretation of the scene (or a family
of 3D interpretations). Although these specific images are different at the local level, humans
can identify their three-dimensional shape similarity.

troductory and research chapters. Chapters 1, 2 and 5 contain background material. Rather

than being comprehensive surveys, they are meant to provide a high-level conceptual discus-

sion of previous approaches, highlight points that are less widely known, and direct the reader

to the relevant literature. Chapters 3, 4, and 6 are expanded versions of our papers [39–41].

They present our research on shape from planar curves, shape from texture and shape from

shading. Examples of the sort of images that will be examined are shown in figure 1.1. The

original contributions in these chapters are quite technical, hence their summary is deferred to

chapter 7.

Whereas most work in computer vision is organized by problems and the emphasis is on

implementation, the general organization here revolves around mathematical techniques. In-

stead of presenting a particular system for a particular problem, the thesis identifies similar

mathematical structures in seemingly different problems that were treated independently in the

past. Compared to the “problem oriented approach”, the “technique oriented approach” is also

easier to study and implement with software components. As a consequence, we present more

general, robust and cleaner algorithms to some of these problems.
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1.2 Reconstruction by humans

Much of computer vision research, including 3D reconstruction, was inspired by human per-

ception. Ideally, we would like computer systems to be able to perform every visual task that

humans can do. Theoretical insights about human perception may lead to further generaliza-

tions. For example, binocular stereo in computer vision was inspired by human perception, and

generalized to multi-camera stereo systems. Although we will not deal directly with humans,

the questions of what humans can do and how are always in the background.

There is a lot of evidence suggesting that humans attempt to interpret images as three-

dimensional surfaces [75, 106, 112, 129, 134, 142, 171, 193]. The surfaces could be unfamiliar,

and their shape never seen before. Even more, the images could be of unnatural images, such as

line drawings, textured surfaces, and artificially shaded images, as shown in figure 1.1. While

human 3D perception may not be veridical, it is often better than current computer vision

systems, especially in real world scenes. All this may suggest that 3D perception is central to

human vision, possibly for its role in recognition.

Humans’ object recognition had been studied extensively, and a complete account is out of

the scope of this thesis. An up-to-date survey is presented in [61]. One key question that had

been examined is whether humans perform recognition in a viewpoint-invariant manner. This

issue has not been completely settled yet, as both viewpoint-invariant and viewpoint-dependent

neurons have been detected [61]. However, even if object recognition by humans is viewpoint-

dependent, that does not mean that 3D reconstruction processes are not involved. Due to the

inherent ambiguities in single-image 3D reconstruction, it is possible that the estimations of

the same surface seen from different viewpoints will not be identical.

1.3 Reconstruction by computers

The need for 3D reconstruction was clear to the pioneers of computer vision, like Roberts [157],

Horn [75] and Marr [129]. However, over the years the problem proved to be very difficult.
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The primary source of difficulty is the fact that depth information is discarded during projection

onto the image plane. That makes the problem ill-posed, since different 3D surfaces can have

exactly the same image. In fact, for any pair of images, there exists a Lambertian surface

that produces the two images under two illumination conditions (the surface can have arbitrary

albedo at every point, and shadows and inter-reflections are ignored) [27]. This implies that

no non-trivial function of the image of a surface can be completely invariant to illumination

changes. Hence, the problem is severely under-constrained and additional assumptions have to

be made.

Fortunately, surfaces in our world have many regular properties that leave a trace in the

projected image. Single-image reconstruction methods take advantage of such regularities.

They usually deal with the following elements:

1. Assumptions about the world and image formation process. Assumptions reflect

prior knowledge about surfaces that we expect to see. They may also involve assumptions

about the illumination and the way the regularity projects onto the image. The goal of a

reconstruction method is to invert the image formation process. Note that the assumption

may hold or not, so ideally there should be a way to do a consistency check.

2. Cue extraction from the image. This is a low-level image processing step, where el-

ements such as edges and texture features are identified. Perceptual organization and

grouping principles might be applied to generate hypotheses about the 3D relations be-

tween image features.

3. Constraints. Constraints are mathematical conditions that the surface and problem pa-

rameters should satisfy. The constraints are derived from the image cues under the as-

sumed image formation model. The goal is to solve for the surface, or family of surfaces,

that satisfies the constraints.

4. Optimization. Even if the system of constraints fully characterizes the surface we may

not be able to find the solution. Optimization complexity is a serious issue, since systems
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of nonlinear constraints could be instances of NP-hard problems. The systems tend to

be large since they depend on the desired surface resolution. In practice these systems

are noisy, and exact solutions may not exist. Therefore, we may need to settle with

approximation algorithms that have no quality guarantees.

5. Ambiguities. Depth cues are often very ambiguous at the local level. Typically, it is

impossible to recover the 3D shape from small image windows, and hence there is a

need to integrate the cues over substantial parts of the image. It may also be the case that

some global ambiguities remain, for example an in/out Necker reversal. Ambiguities are

important to study, since they reveal the limitations of bottom-up reconstruction under a

particular set of assumptions, no matter how good the optimization procedure being used

is. In order to determine the shape, additional prior knowledge should be used to pick a

shape inside the space of ambiguous shapes.

It is evident that the problem is difficult, involving the making of assumptions, large op-

timization problems, and dealing with ambiguous solutions. For these reasons, after the first

wave of pioneering work in computer vision, interest in single image reconstruction declined

during the 90s and the problem almost disappeared from computer vision courses and text-

books. Recognition methods turned into appearance and statistical models, while surface re-

construction methods turned towards multiple view geometry. Of course, multiple view meth-

ods are not a complete solution to the surface reconstruction problem, the same way that at-

taching a barcode to objects is not a solution to visual recognition.

In recent years research interest in single image reconstruction has somewhat increased.

Apart from the classical computer vision setting in robotics, several new applications are

emerging. First, there is now a large amount of unannotated images on the Internet which are of

interest to search engines. Even a rough 3D reconstruction, such as identification of buildings

and roads, could be a first step towards recovering some information about their content and

the person who took them. Second, computer graphics applications increased the demand for

3D models of characters and environments. Interfaces of freeform sketching systems [32,139]
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as well as single view modeling from photographs [217] would improve if part of the recon-

struction process is automated. These programs range between computer-aided user interfaces

and human-assisted computer vision.

1.4 Reconstruction by recognition

The reconstruction paradigm presented thus far is completely bottom-to-top, going from image

features to a system of constraints and its solution surface. In this thesis we will focus on the

formulation and optimization phases only. To complete the picture we briefly examine here

the question whether a top-to-bottom approach can do surface reconstructions without going

through the complicated optimization phase.

Roberts’ thesis [157] was the first attempt in computer vision to fit known 3D models of

polyhedra to an image. After preprocessing the image with an edge-detector and detecting cor-

ners, the program solved for 3D poses of the polyhedral models so that the projection of their

3D vertices onto the image would be close to the image corners. Rather than using 3D recon-

struction to aid recognition, in this approach 3D reconstruction is essentially a byproduct of

the recognition process. The approach is limited since except for very restricted domains (e.g.

industrial parts), we cannot assume a-priori knowledge of the surfaces we might encounter.

One way to increase the amount of shapes that can be resolved is to fit a linear combination

of shape models. For instance, Atick [3] demonstrated the use of shapes basis for approxi-

mate 3D reconstruction of faces from single images. We will discuss in detail linear subspaces

derived from planar curves in chapters 2 and 3. This approach is appealing, since once the

category of an object is identified the search for the shape can be carried out in a low dimen-

sional subspace. However, real-world shapes can be quite complicated and generally cannot be

approximated by low-dimensional linear subspaces. This is in contrast to diffuse BRDFs and

global illumination for which low-dimensional models make reasonable approximations. The

problem is that as the image resolution is scaled up, the possible variability of shapes increases
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beyond what low-dimensional models of the entire image can represent.

To get beyond the limitations of entire surface recognition it was suggested to perform

3D reconstruction by recognizing image parts. The idea of recognizing parts is old (e.g.

Marr [129]). However, some of the more recent methods use learned surface patches instead of

volumetric primitives. In its radical version [51, 67, 73, 78, 135, 168], the only 3D-aware com-

ponent is a recognition module that proposes candidate surface parts for each image part. This

leads to a labeling problem, where the goal is to choose among the proposed surface parts those

that are compatible with their neighbors. Probabilistic formulations of the problem use Markov

Random Fields (MRF), similar to other labeling problems and texture synthesis in particular.

Reconstruction by recognition of parts was demonstrated on some real images that were

impossible to reconstruct with previous edge-based and shape from shading methods [168].

Yet, there are limits to the generality of this approach. On the one hand, small image patches

can be very ambiguous locally. For instance, it is impossible to estimate the orientation (and

depth) of a constant-intensity patch. In fact, as we shall see in chapter 6, its shape need not

be planar. This is reminiscent of the problems in Pentland’s local shape from shading ap-

proach [75]. On the other hand, large image patches require an image-shape dictionary whose

size grows exponentially with the patch size. Furthermore, the resulting labeling problems are

generally NP-hard.

A more traditional approach combines learned statistics with geometric and photometric

constraints. Partial recognition can be used to establish the system of constraints or resolve

surface ambiguities. For example, Han and Zhu [66] learned 3D edges of cloth and used

these edges as boundary conditions for shape from shading. Lipson and Shpitalni [120] used

statistics of angles to improve the interpretation of ambiguous polyhedra. The sketching system

of Chen et al. [28] used a database of detailed 3D models in conjunction with a traditional

analysis of edges and corners.

In conclusion, although we will not deal with recognition in this thesis, there is definitely

room for additional learned knowledge for setting constraints on the shape. Note, however,



CHAPTER 1. INTRODUCTION 8

that while recognition can be done by detecting some distinctive features, the nature of the 3D

reconstruction problem is very different, requiring the assignment of depth at every surface

point.

1.5 Constraints formulation

In this section we give a brief introduction to the formulation of constraints on surfaces. Here

and throughout most of the thesis we assume an orthographic projection. Before we can spec-

ify constraints we need to choose a representation for the surface. The common practice is

to represent the surface as a function z(x,y), or another linear surface representation (spline).

Other surface representations, notably level sets and point clouds, could be more appropriate

for a moving surface with topology changes. Since we deal with a single image these repre-

sentations have no advantage.

In a linear surface representation a set of N points (xi, yi, zi) is related to a vector of pa-

rameters v via basis functions (z1, . . . , zN)T = Bv, where we assume that (xi, yi) are known,

and zi are the unknowns.

Throughout the thesis we will meet several such linear representations. For example, a

height map on a grid has the trivial basis B = I, v = (z1, . . . , zN )
T . In chapter 4 we will work

with a low-dimensional spline basis made of smooth functions. In Chapter 6 we will look at tri-

angular meshes. In choosing a basis there is a tradeoff between the number of basis functions,

which affects the computational cost, and the fidelity of the representation. However, mathe-

matically all linear representations are similar in the sense that one can perform an approximate

conversion between any two linear representations. That is, if (z1, . . . , zN)T ≈ B1v1 ≈ B2v2,

we can use the pseudo-inverse operator to obtain v1 ≈ B+
1 B2v2. Thus, constraints specified in

one linear representation can be cast to any other linear representation. Obviously, the loss of

accuracy in such conversions depends on the fidelity of the bases.

The advantage of linear representations is that surface depth and derivatives are simple
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Table 1.1: Common linear constraints.

Constraint Formulation Possible sources

known depth zi = z0 stereo or symmetry
co-planar points zi = axi + byi + d (see chapter 2)
known normal pi = p0, qi = q0 brightest point in the Lambertian model,

vanishing line of a plane in perspective
known normal tilt qi = pi tan τ occluding contour and shape from texture

linear functions. For example, on a grid we may approximate the surface derivatives using

finite differences pij = zi+1,j − zij , qij = zi,j+1 − zij . The surface normal is a vector in

direction (−p,−q, 1). It is sometimes convenient to represent a unit normal vector with slant σ

and tilt τ angles. The (slant,tilt) representation is similar to (latitude,longitude) in geography.

In such a representation a unit normal vector is (sin σ cos τ, sin σ sin τ, cosσ).

Next we turn to discuss various types of constraints. Surprisingly, most single-image con-

straints studied in computer vision fall into only three categories.

1. Linear constraints. Linear constraints are by far the most studied class of constraints.

Some examples are given in table 1.1. We will examine co-planarity constraints in detail

in chapters 2 and 3. Note that linear constraints may be specified with equalities or

inequalities.

2. Discrete constraints. We call a discrete constraint a case where some known linear

function of the surface can attain finitely many known values. The most common case

is binary (sign) ambiguity, due to in/out Necker reversal. This ambiguity appears in the

analysis of shape from texture that we will examine in detail in chapter 4. An important

binary ambiguity is Perkins’ cubic corner [84,198]. Interestingly, the perspective shape-

from-angle problem can have more than two solutions [210, 212].



CHAPTER 1. INTRODUCTION 10

3. Quadratic constraints. Quadratic constraints show up naturally in problems that in-

volve known angles. For example, an orthogonality constraint between two planar faces

with normals (−p1,−q1, 1) and (−p2,−q2, 1) can be written as p1q1 + p2q2 + 1 = 0. In

chapter 6 we will discuss quadratic constraints in shape from shading.

Obviously, there are constraints that don’t fit nicely into the classification above. Notable

exceptions are non-Lambertian reflectance functions (e.g. Phong’s model). However, if specu-

lar reflection can be separated from diffuse reflectance and the illumination direction is known,

there is actually a linear constraint at specular points (the normal is the bisector of the viewing

and illumination directions).

1.6 Optimization

The formulation of constraints leads to an optimization problem, whose difficulty depends

on the type of constraints being applied. Systems of linear constraints are tractable, as long

as they are well conditioned. Linear inequality constraints lead to linear programming (LP).

Linear equality constraints can be solved by procedures of numerical linear algebra. For the

size of problems we work with in chapter 2, the SVD procedure is generally accurate. Note

that there is extensive literature on iterative methods for large sparse linear systems. However,

when it comes to the computation of null vectors, which are essential to obtain the space of

solutions, iterative methods [60, 99] are less reliable, or might be impractically slow for very

large systems.

Unlike linear constraints, discrete ambiguities lead to combinatorial problems. For small

number of discrete constraints an exhaustive search might still be feasible, but many of these

problems are NP-hard. Continuous quadratically constrained quadratic programs (QCQP) are

generally NP-hard as well. Note that QCQP subsumes both LP and problems with discrete

binary ambiguities.

In chapters 4 and 6 we will apply semidefinite programming (SDP) relaxations to discrete
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ambiguities in surface reconstruction and quadratic constraints in shape from shading. SDP is

currently a very active research area with a wide range of applications. For a general intro-

duction to SDP see [68, 115, 189]. Recently, SDP-based approximation algorithms have been

developed for several computer vision problems, such as image restoration [94,95], segmenta-

tion [95, 140], graph matching [4, 169, 215] and finding correspondences in stereo [190].

While SDP methods are slower than many other iterative methods, they have several at-

tractive properties. First, for some combinatorial problems, notably max-cut [59], SDP-based

algorithms provide the best currently known approximation ratio. Second, SDP methods do

not depend on an initial guess. Third, SDP solvers can integrate linear constraints, which are

problematic for other nonlinear optimization methods. Fourth, tight bounds from convex relax-

ations can be used in branch-and-bound schemes to find globally optimal solutions [23,24,155].

Last, SDP has inspired faster iterative algorithms of similar quality in practice but without any

guarantee [18]. Thus, SDP relaxations are radically different from shape optimization methods

used in the past in computer vision.



Chapter 2

Planarity

2.1 History of planarity constraints

The problem of remotely measuring distances, and the perception of surface shape, have oc-

cupied artists, opticians, photogrammeters, psychologists and many others long before the age

of computers. In computer vision, Roberts’ thesis [157] from 1963 marks the beginning of

investigations into single-image 3D reconstruction. It was only natural for the early works to

start by examining polyhedral objects. The reason is that intersecting planar faces of polyhedra

generate straight edges (brightness discontinuities) in the image, which are relatively easy to

detect. Essentially, the problem reduces to making a 3D interpretation out of an edge map or a

line drawing. Despite the simplicity of planar faces their theory is not trivial. In this chapter we

survey the historical development, motivations, and formulations of co-planarity constraints.

Additional historical accounts can be found in [158, 183, 197] and the first edition of [37].

Roberts’ thesis dealt with objects whose shape was known beforehand. The next logical

step, carried out by Guzman [64], was to try to identify different bodies in an image of unknown

objects. Guzman defined types of vertices, such as “fork” or “T-junction”, and realized that

certain types cannot be linked by an edge if the edges were to belong to a single 3D body. He

also tested his program on optical illusions such as the Reuterswärd-Penrose triangle. Tests on

12
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impossible objects are important, since although we can generally assume that pictures come

from real objects, it is still a good idea for a method to be able to check the internal consistency

of its assumptions.

Guzman’s program used a collection of heuristics that worked most of the time. In a subse-

quent work, Huffman [79] and Clowes [30] independently analyzed more rigorously the pos-

sible configurations of trihedral vertices (vertices formed by the intersection of three distinct

planar surfaces). In their scheme, known as “Huffman-Clowes labeling”, each edge is labeled

as “convex”, “concave” or “occluding”. Their junction catalogue contains the labels of edges

meeting at a valid trihedral junction. The problem of determining whether a line drawing has

no 3D realization became to assign each edge a label such that the labels of edges meeting at a

vertex form a valid junction in the restricted catalogue. This labeling problem is NP-hard [97].

However, Waltz [202] showed that after assigning labels around a vertex, the number of pos-

sibilities for neighboring vertices reduce drastically. The median-case of labeling a random

trihedral drawing is linear in the number of junctions [143].

It is interesting to note that the people involved in these early projects made various con-

tributions outside computer vision. Roberts worked on packet switching and is a pioneer of

the internet. Huffman is known for his work on compression. Waltz’s filtering algorithm,

known as arc-consistency, is an important procedure in the field of constraints satisfaction

problems (CSP). Marvin Minsky supervised Guzman and was involved in Waltz’s work. He

also supervised Horn’s pioneering thesis on shape from shading, and is known for his works

on artificial intelligence.

Research on line labeling continued in several directions. Huffman [79] and Malik [126]

extended the labeling framework to curved surfaces. Varley [197] extended the junction cata-

logue to tetrahedral vertices. Additional results are covered in a recent book by Cooper [33].

Other works looked at the question of identifying faces from images of polyhedra or wire-

frames [122, 174, 191].

Even if we ignore the issues of extracting line drawings from real images and the com-
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plexity of finding legal labelings, there are several problems with the line labeling approach.

First, line labeling does not output 3D surfaces. Second, it was found that the average number

of legal labelings of tetrahedral vertices is exponential in the number of vertices [197, 199].

Thus, labelings are insufficient for characterizing 3D shapes. Third, a legal labeling is a nec-

essary but insufficient condition for 3D realizability, as there are illusory drawings that have

legal labelings but cannot be realized as 3D objects (note that the NP-hardness result for line

labeling [97] does not necessarily reduce SAT formulas to drawings of polyhedra that can be

realized as 3D objects).

These problems led Sugihara [183] to add algebraic co-planarity constraints. His conditions

are necessary and sufficient for a labeled line drawing to be realizable as a 3D polyhedron.

Linear systems of co-planarity constraints already appeared in Falk [42], but Falk did not solve

them numerically. When Sugihara attempted to solve these systems, he encountered some

numerical issues which will be the subject of chapter 3. Although Sugihara’s original method

begins with a line labeling, it was later argued that the line labeling step is unnecessary if the

algebraic system can be formed [71, 158, 199].

In parallel, and completely independently from the work done on the analysis of polyhedra,

there has been work on constraints from planar cross sections. Objects with planar cross sec-

tions are very common. They include surfaces of revolution (SOR [31]), and more generally,

Straight Homogeneous Generalized Cylinders (SHGC [196]). In addition, linear systems aris-

ing from structured light have similar structure [14]. Figure 2.1 illustrates fully uncalibrated

structured light. The curves in the image are projections of planar cross sections of the sur-

face. The goal is to compute the 3D surface from the observed network of curves without any

information about the planes. The surface at the bottom of figure 2.1 was computed using our

method, which will be described in chapter 3. Notice that all planar curves could be placed on

the same plane. A key here is to escape from flat and nearly-flat solutions.
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Figure 2.1: 3D reconstruction from uncalibrated structured light. Top left: a planar laser strip
projected on the object. Top right: curves extracted from a video sequence of projected strips.
Bottom: a rendering of the computed surface.
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2.2 Motivations for planarity constraints

There are many reasons to study planarity. Perception studies (e.g. [181, 188]) have demon-

strated cases where humans clearly make the planarity assumption. For example, Pizlo et

al. [148] showed that planarity can even override stereo depth cues. Although the extraction of

salient curves from real images is a difficult problem by itself, it is hard to believe the sophisti-

cated ability to interpret curves as 3D surfaces had been evolved with no relation to perception

of real scenes. Why are humans making the planarity assumption? Although there is currently

no definitive answer to this question, there are several possible explanations.

A somewhat naive argument for the importance of planarity is that planar curves are com-

mon in the environment. A closer look reveals that planar curves are ubiquitous mainly in

man-made objects, like buildings. Planarity is justified in artificial environments, but uncom-

mon in nature, albeit several exceptions. In some regions the ground is flat, and the same holds

for calm water. Cylindrical and ellipsoidal objects have a planar rim from any viewpoint [100].

Planarity is also important for motion analysis, since objects thrown in the air trace a roughly

planar trajectory.

It is worth pointing out that co-planarity subsumes parallelism and co-linearity. There is no

need to treat these conditions separately as many sources do. A common principle of perceptual

organization is that parallel lines in the image are likely to be the projection of parallel lines in

3D (under orthographic projection). A similar principle is that parallel lines in the image are

likely to be the projection of co-planar lines in 3D. The subtle difference between the two is

that nearly-parallel lines in the image can still be the projection of co-planar 3D lines, which

is a linear constraint, in contrast to nonlinear measurements for nearly-parallel lines in 3D

(e.g. [119]). The same holds for co-linearity. Points which are nearly-collinear in the image

can be assumed co-planar in 3D. We emphasize this point since linear and parallel lines are

more common in nature than planar surfaces.

Rothwell et al. [161–163] made an interesting suggestion why an internal representation

based on planes might be useful for object recognition. They proposed the “polyhedral cage”
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metaphor, where a 3D object is surrounded by a virtual polyhedron. The vertices of this polyhe-

dron need not be attached to the surface. The only important requirement is that these vertices

can be computed from images of the surface. Once the vertices are identified in an image, we

can compute invariants and query a database (geometric hashing [111]). Unfortunately, a the-

orem of Burns et al. [19] states that there does not exist a function that is view-invariant for all

possible point sets of any particular size. This theorem holds for perspective and orthographic

projections. However, the fact that there are no invariants for general point sets does not imply

that invariants do not exist for special point configurations. The most studied condition where

view-invariants exist is co-planarity [154, 162]. Invariants can be written for four co-planar

points under orthographic projection and five co-planar points under perspective projection.

Note that planarity constraints become meaningful only for four or more points, since three

points are trivially co-planar. To be valuable, a polyhedral cage should have some faces with

at least four vertices. On such faces affine invariants can be defined. Perspective invariants can

be defined on the butterfly configuration of six points on two intersecting planes [162].

2.3 Formulations of planarity constraints

In this section we review the algebraic structure of networks of intersecting planar curves in

the ideal noiseless case. There are several ways to describe this structure. Our formulation is

similar to Rothwell et al. [161, 163] and Bouguet et al. [14].

Consider a surface on which N planar curves Γ1, . . . ,ΓN , lying on N planes π1, . . . , πN ,

are marked. Each curve Γi is just a set of points on a common plane πi, and does not need to

be continuous (our curves here are just a collection of co-planar points). For now assume an

image is taken under orthographic projection, and k intersection points (xij , yij) between the

projections of the curves Γi and Γj onto the image are identified. The setting is illustrated in

figure 2.2. Our input is the intersection points, together with their association to the intersecting

curves. The goal is to recover the planes and compute the depth along the curves. Note that
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two curves may not intersect in the image or they may intersect several times. For simplicity

we omit the intersection multiplicity index. If two curves share a straight line segment, we pick

its two endpoints as intersection points. When more than two curves intersect at a point, we

consider them as pairs in a cyclic order.

Assuming the planes do not contain the projection direction (an edge-on plane provides no

information and should be ignored), we can parameterize plane πi as

zi(x, y) = aix+ biy + di . (2.1)

A 2D intersection point in the image corresponds to a 3D intersection on the surface, which

allows us to eliminate the unknown depths:

zi(xij , yij)− zj(xij , yij) =

(ai − aj)xij + (bi − bj)yij + (di − dj) = 0 .

(2.2)

The last equation has another geometric interpretation. Planes πi and πj intersect at a 3D line

whose projection onto the image is the image line Lij defined by

(ai − aj)x+ (bi − bj)y + (di − dj) = 0 . (2.3)

Equation (2.2) simply means that (xij , yij) is on Lij . Collecting equations (2.2) for all visible

intersection points results in a homogeneous linear system:

Av = 0 , (2.4)

where v = (a1, . . . , aN , b1, . . . , bN , d1, . . . , dN)
T is a vector collecting the planes’ parame-

ters and A is a sparse matrix whose rows contain xij ,−xij , yij,−yij , 1,−1 at the appropriate

columns. Any vector v defines surface curves {Γi} by the back-projection of the image curves

onto their planes.
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image 3D

πi

πj

Γi

ΓjLij

xij, yij

Figure 2.2: Intersecting planar curves in 3D and their projection.

Sugihara already noticed that the problem has similar structure under perspective projec-

tion. In fact, the original formulation of Falk [42] was for the perspective case. Following

standard conventions, the relation between image coordinates x, y to world coordinates X, Y

in perspective projection with focal length f is x = fX/Z, y = fY/Z . A plane πi which does

not pass through the camera center is parameterized by

aiX + biY + ciZ(X, Y ) =

(aix/f + biy/f + ci)Z(X, Y ) = 1 .

(2.5)

The intersections between pairs of curves yield homogenous linear equations analogous to (2.2)

1/Zi(xij , yij)− 1/Zj(xij , yij) =

(ai − aj)xij/f + (bi − bj)yij/f + (ci − cj) = 0 .

(2.6)

In the perspective case we divide by f the entries xij , yij in the matrix A, which we denote

as Af . Collecting equations (2.6) for all visible intersection points results in a homogeneous



CHAPTER 2. PLANARITY 20

linear system analogous to (2.4):

Afvf = 0 . (2.7)

Solutions to 2.7 can be substituted in 2.5 to give the depths Z(X, Y ) = 1
aix/f+biy/f+ci

. The

orthographic and perspective system are similar, except that in the perspective case the solution

is for inverse-depths.

It is sometimes possible to reduce the number of variables in the systems (2.4) and (2.7).

For instance, it might be known that some planes are parallel to the ground plane, parallel to

each other (e.g. in structured light), or intersect at a single point [14]. It might also be possible

to estimate the normal of a plane by finding its vanishing line in the image [144, 175, 182]. In

our analysis here we consider the most general case of 3N variables.

Under orthographic projection, the vector v of true planes is a solution to (2.4) and hence

in the null space of A, which we denote Null(A). However, Null(A) also contains trivial

solutions, which place all curves in the same arbitrary plane. Observe that (2.2) has a basic

trivial subspace of solutions spanned by

v1 =
(1N ,02N )T√

N
,v2 =

(0N ,1N ,0N )T√
N

,v3 =
(02N ,1N )T√

N
, (2.8)

where we use the notation ck to denote a k-vector whose entries are all c. For any non-flat solu-

tion v to (2.4) there is a 4D subspace of ambiguous solutions, since any linear combination of

v,v1,v2,v3 is also a solution to (2.4). This is known as Generalized Bas-Relief (GBR) ambigu-

ity (the ordinary bas-relief ambiguity in an old depth-compression sculpting technique [207]).

The intuitive interpretation of the GBR is that “adding a plane” to all points on the surface,

or multiplying the depths by a constant, preserve co-planarity relationships and is invisible to

the observer. A similar ambiguity occurs in the perspective case, and called Generalized Per-

spective Bas-Relief (GPBR). The GBR ambiguity was already known to Sugihara, although

the terms GBR and GPBR became common later [7, 109]. This ambiguity is common to sev-

eral uncalibrated depth cues, such as shadows, photometric stereo, and affine structure from



CHAPTER 2. PLANARITY 21

motion from two views [102]. Interestingly, in human perception studies of pictorial relief,

Koenderink et al. [106] found that variations in 3D perception of the same picture by different

observers can be attributed to the orthographic GBR ambiguity.

The GBR and GPBR are special affine and projective transformations of 3D space. A GBR

transformation can be written as

⎛
⎜⎜⎜⎜⎝
x′

y′

z′

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
1 0 0

0 1 0

a b c

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
x

y

z

⎞
⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝
0

0

d

⎞
⎟⎟⎟⎟⎠ , (2.9)

for some a, b, c, d. Similarly, the GPBR can be written in homogeneous coordinates as

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

X ′

Y ′

Z ′

W ′

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

a b c d

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

X

Y

Z

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2.10)

Note that the GPBR scales points along their line of sight to the center of projection. The

movement of points along their line of sight is unnoticed in the projected image. This is

analogous to the operation of the orthographic GBR, which moves points in the direction of

the z-axis.

To understand how the GPBR operates on planes, consider a 3D point (X0, Y0, Z0)
T on

some plane a1X + b1Y + c1Z = 1. The homogeneous coordinates of this point can be writ-

ten as (X0, Y0, Z0, 1)
T = (X0, Y0, Z0, a1X0 + b1Y0 + c1Z0)

T . Applying the GPBR transforma-
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tion (2.10) we get

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

X ′

Y ′

Z ′

W ′

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

a b c d

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

X0

Y0

Z0

a1X0 + b1Y0 + c1Z0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

X0

Y0

Z0

(a + a1d)X0 + (b+ b1d)Y0 + (c+ c1d)Z0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(2.11)

If W ′ �= 0, the point (X ′, Y ′, Z ′,W ′)T is on the plane

(a+ a1d)X + (b+ b1d)Y + (c+ c1d)Z = 1 . (2.12)

Thus, under a GPBR transformation, a vector v = (a1, . . . , aN , b1, . . . , bN , d1, . . . , dN)
T of

planes’ parameters is transformed to a
√
Nv1 + b

√
Nv2 + c

√
Nv3 + dv.

It is worth pointing out that there are several alternative formulations of co-planarity con-

straints. These formulations are mathematically equivalent to ours in the noiseless case, and

should produce similar results on small line drawings of polyhedra. However, they are not

equivalent computationally in structured light scenarios in terms of size and sparsity of the

matrices involved.

• The original formulation by Sugihara [183] had all the variables

(a1, . . . , aN , b1, . . . , bN , d1, . . . , dN , z1, . . . , zk) in the linear system. In a structured light

scenario we might have k = O(N 2) intersection points, while only 3N parameters are

required to represent the planes. This could be a problem for large N if we use dense

solvers.
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• Lipson and Shpitalni [119] formed co-planarity constraints by plane-fitting. We can

use this idea (in a different way than theirs) to derive linear constraints on the depths

z = (z1, .., zm)
T of m co-planar points as follows. For co-planar points there exist a, b, d

such that ⎡
⎢⎢⎢⎢⎣
x1 y1 1

...
...

...

xm ym 1

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝
a

b

d

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

z1
...

zm

⎞
⎟⎟⎟⎟⎠ = z . (2.13)

Let

P =

⎡
⎢⎢⎢⎢⎣
x1 y1 1

...
...

...

xm ym 1

⎤
⎥⎥⎥⎥⎦ . (2.14)

Then

P+z =

⎛
⎜⎜⎜⎜⎝
a

b

d

⎞
⎟⎟⎟⎟⎠ , (2.15)

(I−PP+)z = 0, (2.16)

where P+ is the pseudo-inverse of P. If we construct Si = (I − PiP
+
i ), where Pi

contains the points of each planar face, then we can pad these matrices with zeros such

that the matrix S =

⎡
⎢⎢⎣
S1

...

SN

⎤
⎥⎥⎦ represents all the co-planarity constraints, i.e. Sz = 0, where

z = (z1, .., zk)
T . In this form, not only the size of the matrix S can be O(k× k), but also

S can be denser than our matrix A.

• Sparr [180] and Heyden [72] proposed sparse constraints on the depths of co-planar

points using barycentric representations. For each planar face we can choose three non-

collinear points (x1, y1), (x2, y2), (x3, y3) as a basis. Any other point on that face with
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image coordinates (x4, y4) can be represented as

(
x4

y4

)
=

(
x1

y1

)
+ α

((
x2

y2

)
−
(
x1

y1

))
+ β

((
x3

y3

)
−
(
x1

y1

))
(2.17)

This can be rearranged as

c1

(
x1

y1

)
+ c2

(
x2

y2

)
+ c3

(
x3

y3

)
+ c4

(
x4

y4

)
=

(
0

0

)

c1 + c2 + c3 + c4 = 0.

(2.18)

The barycentric representation is invariant to affine transformations and the GBR in par-

ticular. When the face is lifted from the image plane to 3D by some GBR transformation,

the linear constraint c1z1+c2z2+c3z3+c4z4 = 0 still holds. The constraints for all points

over all planes can be collected into a matrix S, so that Sz = 0 as before. Crapo [34]

obtained a similar matrix S, where instead of solving (2.17) numerically for α and β,

his matrix entries are expressed using determinants. Although S has the same order of

nonzero elements as A, it is possibly of size O(k × k).

• Interestingly, the question whether a line drawing can be realized as a non-flat 3D poly-

hedron is connected to mechanical rigidity of networks of planar faces connected by

hinges. A linear system derived from kinematic considerations was proposed by Ros and

Thomas [158, 159]. In their system, the variables are the infinitesimal angular veloci-

ties of the hinges that would lift the network from the image plane into a non-flat 3D

configuration. While this scheme is similar to the previous ones for polyhedra, it relies

on straight segments in the line drawing. However, in structured light we might have a

single intersection point between two curves in the image, so no hinge can be formed.
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A Linear Escape from Flatland

3.1 Introduction

In this chapter we revisit the problem of recovering 3D shape from the projection of 3D planar

curves. This problem is strongly motivated by perception studies, and has applications in

single-view modeling and uncalibrated structured light. As we saw in the previous chapter,

systems of intersecting planar curves lead to linear systems of equations. Here we take a closer

look at the non-trivial solutions of such systems.

Previous work on linear systems from planar curves was divided between work on pla-

nar faces and planar cross sections. Planar faces of polyhedral objects were studied by Sugi-

hara [183] and many others. Linear systems arising from planar cross sections have been exam-

ined in structured light [14] and Straight Homogeneous Generalized Cylinders (SHGC) [196].

Note that the planar cross sections of an SHGC need not necessarily be visible in the image. In

some cases they could be estimated from the silhouette [192]. We stress that the same analysis

applies to scenes having both types of planar curves. This point has also been emphasized in

independent work [53, 54, 89–91] that followed our paper [41].

The algorithm we propose looks for a solution that minimizes the algebraic error of the

linear system, under the constraint that a geometrically meaningful measure of non-planarity

25
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is held constant. This formulation has two advantages. First, it is less sensitive to noise than a

direct least-squares solution. Second, our cost function is invariant to changes in focal length.

Thus, given a system of intersecting curves with little amount of noise, our method can deter-

mine whether it is possible that all curves are actually planar in a non-trivial 3D configuration.

We also show examples where the same method produces plausible surfaces from the projec-

tion of parallel (non-intersecting) planar cross sections.

3.2 Non-trivial solutions in noiseless systems

Before getting into solving the system Av = 0 (2.4) we consider whether multiple linearly-

independent solutions are possible. Ideally our system would have a 4D solution space: three

dimensions are due to the GBR ambiguity and the fourth comes from the true shape. One may

wonder whether systems with more independent non-trivial solutions exist. The dimension

clearly depends on the observed pattern of intersections. For instance, disjoint components of

curves leave some degrees of freedom. If the image is of a triangular mesh, we can place any

of its vertices freely in depth. Rothwell and Stern [161] demonstrated polyhedra with more

than four degrees of freedom but relatively few intersections. However, for highly-connected

networks of curves the system will typically be over-determined. For example, in a structured

light scenario we may have O(N 2) equations in 3N unknowns. Although extremely rare, there

exist highly-connected systems with O(N 2) intersections that have a subspace of non-trivial

solutions whose dimension is greater than one, as shown in figure 3.1.

Next we show how to artificially construct systems with O(N 2) intersection points that

have a 2-dimensional non-trivial subspace. This question is not completely trivial. One cannot

manipulate the entries of the matrix A arbitrarily to lower the rank of the matrix, because the

matrix has a special structure: on each row we have xij ,−xij , yij,−yij, 1,−1. However, it can

be easily achieved with a geometric construction. Let {π1
i },{π2

i } be any two sets of N planes

in general position. For each set of planes, we can intersect pairs of planes in 3D and find the
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Figure 3.1: Multiple interpretations. In the left drawing, each “L” shaped curve is assumed to
be planar. The drawing can be interpreted as a cube or as having doubly-ruled faces. In this
particular example, there is a 7-dimensional solution subspace, since each vertex of the cube
can be placed arbitrarily in depth.

projection of the intersection lines in the image, as defined by (2.3). Denote by {L1
ij},{L2

ij}
these image lines for each set of planes. Set (xij , yij) to be the intersection point of L1

ij and

L2
ij . By construction, the two sets of planes {π1

i },{π2
i } are solutions to the system defined by

this choice of (xij , yij). Having a 3-dimensional non-trivial subspace is much more accidental,

since for each intersection the lines L1
ij ,L

2
ij ,L

3
ij must intersect at a point (or two lines coincide).

3.3 Solving noisy systems

We now turn to solving the system in practice. Sugihara [183] already noticed what he called

the superstrictness problem: the linear system is typically over-determined and has no exact

non-trivial solution in presence of noise. There are two general ways to deal with this problem.

The first approach assumes that the curves are exactly planar in the world and therefore

the measured positions in the image of the intersection points need to be corrected. Several

methods fall into this category. Sugihara and Imai [183] look for a subset of the equations such

that if we drop these equations, the system has a solution even if the positions of the inter-

section points are slightly perturbed (generically reconstructible system). This approach does

not spread the error evenly [160]. Shimshoni and Ponce [173] derived a linear programming

relaxation. Their method provides a necessary but not sufficient condition for non-trivial 3D



CHAPTER 3. A LINEAR ESCAPE FROM FLATLAND 28

realization of the curves. Ros and Thomas [160] proposed a nonlinear optimization algorithm

based on a special parameterization of all exact solutions. The parameterization is derived

from a resolvable sequence, which is an ordering of the vertices and faces such that there is

always a way to place the vertices and faces one by one in 3D without contradicting previous

placements. However, as they discuss, there are systems for which a resolvable sequence does

not exist. Heyden [72] examined modifying the matrix of the system using SVD on any incon-

sistent subset of equations. While his method is not guaranteed to work for all systems, it was

probably the first purely numerical method for the superstrictness problem.

The second general approach to the superstrictness problem assumes the positions of the

intersection points are correct (A is fixed), and accepts the compromise that the curves will

not be exactly planar in 3D. Since curves that are exactly planar are uncommon in nature, we

may consider planarity as a simplifying assumption that could be violated. A clear advantage

of this approach is that numerical linear algebra methods can be applied. In contrast, the

approach of correcting the line drawing is more combinatorial in nature and generally is a

hard problem. Previous work along this line include Grimstead and Martin [62, 198], Sturm

and Maybank [182], Bouguet et al. [14], and Ros and Thomas [159]. Our work follows this

direction.

3.3.1 The trivial subspace

We begin our investigation with a closer look at the trivial subspace. It might be that the vectors

v1,v2,v3 from equation (2.8) do not span the full algebraic subspace of flat solutions. This

happens when there is a curve whose intersection points are along a straight line (in particular

a curve with less than three intersections), as illustrated in figure 3.2. Assuming the planes are

not edge-on implies that a straight curve in the image is straight in 3D. Note that Zero Gaussian

Curvature (ZGC) surfaces [195] are a special case of surfaces that contain lines.

To characterize the complete space of flat solutions we need a measure of surface flatness.

A natural approach is to pick a set of points on the surface, fit a plane with linear regression, and
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straight
curve

Figure 3.2: A trivial solution can embed all curves into the same geometric plane while as-
signing the straight line a different plane. Since all the intersection points are on the same
geometric plane, there are no gaps between the curves at the intersection points.

measure the residual error. The error will be zero whenever all points are coplanar. Although

we don’t know the depths at the points, we can express these depths as a linear function of v.

Let (xi, yi) be a set of k representative points on the curves (e.g. the intersection points). Let

Z be a matrix that reverse-projects the points onto their planes. The rows of Z contain xi, yi, 1

at the appropriate columns, so that Zv = (z1, . . . , zk)
T , where (z1, . . . , zk)

T are the depths

of the planes at the points (xi, yi) according to equation (2.1). The geometry is illustrated in

figure 3.3, where for simplicity it shows the intersections of lines in 2D instead of planes in

3D. Define the matrix C by

P =

⎡
⎢⎢⎢⎢⎣
x1 y1 1

...
...

...

xk yk 1

⎤
⎥⎥⎥⎥⎦ ,

C =
(
I−PP+

)
Z/

√
k =

(
Z−P

(
P+Z

))
/
√
k ,

(3.1)

where P+ is the pseudo-inverse of P. Then ‖Cv‖2 is the averaged squared norm of the devi-

ation in the z direction of the points (xi, yi, zi) from the best fitting plane obtained by plane-

fitting linear regression. The residual of this regression is the solution to the least-squares
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Lines Intersection points Observed intersections

Algebraic error Reprojection error
Regression line Distance to regression line

x1 x2 x3

x

z

z = a1x+ d1

z = (x, 1)P+Zv

z = a2x+ d2

z = a3x+ d3

Γ1

Γ2

Γ3

Figure 3.3: System of three intersecting lines (Γ1,Γ2,Γ3) in 2D. The image is formed by

projection on the x-axis. Here Z =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1 0 0 1 0 0
0 x1 0 0 1 0
x2 0 0 1 0 0
0 0 x2 0 0 1
0 0 x3 0 0 1
0 x3 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦ , v =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1
a2
a3
d1
d2
d3

⎤
⎥⎥⎥⎥⎥⎥⎦ , P =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1 1
x1 1
x2 1
x2 1
x3 1
x3 1

⎤
⎥⎥⎥⎥⎥⎥⎦ .

problem

min
1

k

∥∥∥∥∥Zv −P

⎛
⎜⎜⎜⎜⎝
a

b

d

⎞
⎟⎟⎟⎟⎠
∥∥∥∥∥
2

, (3.2)

which is achieved by (a, b, d)T = P+Zv. Therefore, the residual in equation (3.2) equals

1
k
‖(Z−PP+Z)v‖2 = ‖Cv‖2.

We define the trivial subspace to be the null space of C. All vectors in the trivial subspace

correspond to coplanar points (xi, yi, zi), including cases with straight curves as in figure 3.2.

There are three degrees of freedom in choosing this plane, but the dimension of Null(C) could
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Space of solutions Av = 0

Trivial subspace Cv = 0

Basic trivial
subspace solutions

v1,v2,v3

Systems with lines
have additional
trivial solutions

(figure 3.2)

Non-trivial solutions Cv �= 0

Additional non-
trivial solutions

Under-constrained systems
(e.g. triangular mesh)

Over-constrained sys-
tems (e.g. figure 3.1)

True surface
(1D ambiguity)

Figure 3.4: Categories of solutions to noiseless linear systems of intersecting planar curves.
A solution to the systemAv = 0 can be a linear combination of trivial and non-trivial solutions.
A system should have at least a four-dimensional solution space (GBR ambiguity). Additional
linearly-independent solutions are also possible.

be larger. A categorization of solutions in the noiseless case is shown in figure 3.4.

The trivial subspace has degrees of freedom which could be set with additional information

(e.g. depth of some known points). In absence of additional information, under orthography

one may get a convincing qualitative shape by picking a solution which is orthogonal to the

trivial subspace (under perspective this might place observed points behind the camera). This

choice is natural since while the planar solutions are common to any set of curves, the non-

trivial component is specific to the observed curves, i.e. to the specific problem data. Related

ideas appear in [14,161]. Interestingly, solutions orthogonal to 1N occur in diverse applications

such as graph Laplacians or graph drawing [65,107]. Next we provide some statistical support

for this choice.

Assume a set of random planes is viewed orthographically from a random direction, or

simply that the planes have random uniform orientations. What is then the distribution of

the basic trivial component? Recall that v1,v2,v3 in equation (2.8) are an orthonormal basis
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Figure 3.5: Histograms of (3.4) for random planes (106 trials). Left: N = 10 planes, mean =
0.297, std = 0.108. Right: N = 50, mean = 0.132, std = 0.05.

vectors for the basic trivial subspace. The relative magnitude of the basic trivial component is

∥∥ (vTv1,v
Tv2,v

Tv3

) ∥∥
‖v‖ . (3.3)

Since absolute depth is lost in orthographic view, we may set vTv3 =
1√
N

∑
di = 0. An upper

bound on (3.3) is
‖(∑ ai,

∑
bi)‖√

N‖(a1, . . . , aN , b1, . . . , bN)‖
. (3.4)

When the orientations of the planes are uniformly distributed, the directions of the unscaled

normals are (nx
i , n

y
i ,−nz

i ), where nx
i , n

y
i , n

z
i ∼ N (0, 1). In the form of (2.1), ai ∼ nx

i /n
z
i ,

bi ∼ ny
i /n

z
i . The coefficients of the planes are Cauchy distributed. The sum of Cauchy vari-

ables is also distributed Cauchy, has a mode at zero but its mean is undefined. Therefore, we

cannot apply the central limit theorem (CLT) to the absolute magnitude of the trivial compo-

nent, 1√
N

∑
ai or 1√

N

∑
bi, and expect that as N → ∞ their distributions will converge to the

normal distribution. However, the relative magnitude of the basic trivial component in (3.3) is

always bounded by 1. The empiric histogram of (3.4) is shown in figure 3.5. From this empiric

distribution we conclude that under the assumption of large number of uniformly distributed

plane normals, it is probable that the magnitudes of vTv1 and vTv2 are small relative to the

magnitude of v.
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3.3.2 Proposed method for orthographic systems

In the presence of noise the trivial (planar) solutions are still exact, but in general there are

no additional exact solutions. Geometrically this means there may be depth gaps between the

planes at (xij , yij). This is shown in figure 3.3 as the algebraic error. A standard approach is to

minimize the norm of the residuals of (2.4), i.e. looking for a vector v such that ‖Av‖ is small.

However, when the points are nearly planar ‖Av‖ is small for any set of curves. Thus, we

want at the same time to keep the points (xi, yi, zi) away from a common plane. The condition

‖Cv‖ = 1 holds the points away from their best fitting plane.

Recall that Null(C) is made of the trivial solutions that can be fit with a single plane.

From (3.1,3.2), Cv = 0 implies Zv = P(a, b, d)T for some plane parameters a, b, d. Hence,

zi(xij , yij) = zj(xij , yij) = axij + byij + d. By definition, that means Av = 0. Therefore,

Null(C) ⊆ Null(A), even when A is noisy. We may assume for now that v is orthogonal to

Null(C), since any component of v in the trivial subspace does not affect ‖Av‖. The trivial

component can be added later if additional information is provided. We pose (2.4) as

argmin
v

‖Av‖ s.t. ‖Cv‖ = 1 , v ⊥ Null(C) . (3.5)

To solve (3.5), let C = UD̃ṼT be the SVD of C. Define V and D by removing the

columns of Ṽ and rows of D̃ that correspond to singular values smaller than ε. The removed

columns of Ṽ span the trivial subspace, which is at least three-dimensional. The columns of

V form a basis for the orthogonal complement of the trivial subspace. Writing v = VD−1w,

and using the fact that U is orthogonal, the problem becomes

argmin
w

‖AVD−1w‖ s.t. ‖UDVTv‖ = ‖w‖ = 1 . (3.6)

The procedure is summarized in algorithm 1. In this algorithm, w essentially picks a solution

in the V basis. The matrix D−1 weights the columns of V so that vectors closer to a flat
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solution get higher cost. The singular value associated with w is the minimum value of (3.5).

For a system with a little amount of noise, we expect its value to be close to zero, unless the

true surface is a trivial solution.

Algorithm 1 Solving a system of intersecting planar curves.
1: Form the matrices A,Z,P from the intersection points.
2: Set C = (Z−P (P+Z)) /

√
k.

3: Compute the SVD C = UD̃ṼT .
4: Form V and D by removing the columns of Ṽ and rows of D̃ that correspond to singular

values smaller than ε.
5: Compute the SVD of AVD−1, and let w be the last right singular vector.
6: Return v = VD−1w.

3.3.3 Perspective systems

In the previous chapter we met the orthographic system Av = 0 (2.4) and the perspective

system Afvf = 0 (2.7). Sugihara [183] observed that the orthographic system has an exact

non-trivial solution if and only if the perspective system with the same intersection points has

an exact solution. His result implies that given a noiseless systems of curves, one can test

whether it is possible that the curves are indeed planar in a non-trivial configuration, without

knowing the focal length of the camera. It is always enough to check whether a solution exists

assuming orthographic projection. We extend this result to noisy systems by showing that the

error level measured in our formulation for noisy systems is independent of the focal length.

Note that in general, the singular values of the matrixAf from (2.7) are not invariant to changes

of f .

In the perspective case we divide by f the entries xij , yij, xi, yi in the matrices A,Z,P,

which we denote as Af ,Zf ,Pf , and compute Cf similar to (3.1). As in the orthographic case,

the matrix Cf performs a plane-fit. Instead of fitting a plane to the 3D points (Xi, Yi, Zi), it

is algebraically more convenient to define Cf such that it measures deviation from planarity

for the transformed points (Xi

Zi
= xi

f
, Yi

Zi
= yi

f
, 1
Zi
). Note that if the transformed points are on a

plane aXi

Zi
+ b Yi

Zi
+ c = 1

Zi
, then the 3D points are on the plane aXi+ bYi+ cZi = 1. With these
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definitions we can solve

argmin
vf

‖Afvf‖ s.t. ‖Cfvf‖ = 1 . (3.7)

We show below that for any focal length f , the smallest singular values obtained from solving

equation (3.7) are the same, and equal those of the orthographic system. With any solution

vector v = (a1, . . . , aN , b1, . . . , bN , d1, . . . , dN)
T to the orthographic system we can associate

a solution vf to the perspective system

vf = (fa1, . . . , faN , fb1, . . . , fbN , d1, . . . , dN)
T . (3.8)

By direct computation we get Afvf = Av, Zfvf = Zv, PfP
+
f = PP+, and Cfvf = Cv.

Thus, the minimal singular values of the systems (3.5) and (3.7) are the same. Note that if v is

perpendicular to the basic trivial subspace, then so is vf . However, if v is perpendicular to the

numerical null space of C, there is no guarantee that vf will be orthogonal to the numerical

null space of Cf . Nevertheless, since Null(Cf) ⊆ Null(Af), it is always possible to project

out the trivial components in vf without affecting the cost value. However, our argument for

picking a solution orthogonal to the trivial subspace is less justified for perspective projection,

since it may place some visible points behind the camera (violate the cheirality constraints). In

some situations the solution must contain a trivial component.

3.3.4 Results

Demonstrations of the method to uncalibrated structured light are shown in figures 2.1 and 3.6.

The curves were extracted from a video sequence of projected laser strips controlled by hand.

Curves whose intersection points were nearly linear were pruned, because some of these curves

are not nearly linear in 3D. The surfaces shown were computed using the orthographic model.

Surface interpolation between the curves was done by Matlab, which interpolates over a trian-
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Table 3.1: The five smallest singular values of AVD−1.

Fig. 2.1 Fig. 3.6 Fig. 3.7 Fig. 3.8 Fig. 3.10 Fig. 3.10
without noise (A,J) with noise (C,K)

0.8630 1.3247 1.2936 0.3672 2.9201e-011 35.8137
2.0788 3.8083 3.3439 1.2055 43.3110 43.8159
2.5905 5.7032 4.8551 1.6912 51.2596 52.5848
4.0279 7.0677 7.6960 4.1249 52.1086 53.7654
6.2370 9.9011 9.9925 4.7813 56.0042 58.0213

gulation.

We also applied the method for single-view modeling [182]. The user creates a 3D model

from a photograph by drawing line segments and linking them to planar faces. Results are

shown in figures 3.7 and 3.8. Though many faces had to be defined to fix all degrees of freedom

in these examples, we used nothing but grouping of segments to planes to infer the 3D shape.

Table 3.1 lists the smallest singular values of the matrix AVD−1 for various figures. For

ideal noiseless systems, the smallest singular value should be zero. Generally, a large gap

separating the smallest singular value from the rest indicates that the last singular vector is

likely to be close to the true set of planes (up to a GBR ambiguity).

3.3.5 Comparison to previous work

Structured light is a popular scanning method, especially in controlled environments. One in-

convenience of fully-calibrated structured light is that any projected strip has to be calibrated

with respect to the camera. This makes it difficult to move the camera or light freely to achieve

optimal scanning of the object. Hence, it is desirable to minimize the amount of calibration.

The method we presented is fully uncalibrated. It proposes a shape assuming orthogonality to

the trivial subspace. As we argued and demonstrated, this assumption produces a reasonable

qualitative shape for randomly oriented planes. Otherwise, some known points, or orthogo-

nality constraints, have to be used to achieve a metric reconstruction. The minimal additional
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Figure 3.6: Surface reconstruction from 78 curves and 1053 intersection points. The axis of
the head is not perpendicular to the table due to a non-zero trivial component in the collection
of true planes.
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Figure 3.7: Top row: input image and manually drawn curves (54 planar faces). Bottom row:
shaded and texture-mapped computed surface from different viewpoints.
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Figure 3.8: Image, curves, shaded and texture-mapped surface.
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information needed is much less than what is required for calibrating every light strip. Solving

a system of intersecting planes with additional calibration information yields a joint-calibration

of all the planes together.

Several previous works have been attempting to do uncalibrated structured light. Chen, Gao

and Chen [26] assume the projected planes form an orthogonal grid. Caspi and Werman [21]

assume the planes belong to two pencils. In the setting of Bouguet et al. [14] it was assumed

that all planes intersect at a known point (the light source) so each plane had only two degrees

of freedom. Our formulation is more general than the previously used models for uncalibrated

structured light. It does not restrict the planes in any way and thereby allows scanning any

visible part of the surface.

In this subsection we derive the algorithm of Bouguet et al. [14] in a different way (their

formulation makes the solution exactly orthogonal to the basic trivial subspace only when an

exact solution exists), and compare it to ours. To avoid the zero solution (v0 = 03N ) to (2.4),

write

argmin
v

‖Av‖ s.t. ‖v‖ = 1, v ⊥ Span{v1,v2,v3} . (3.9)

Essentially, one is looking for the fourth smallest right singular vector of A. To enforce the

solution to be orthogonal to the basic trivial subspace (both in the noisy and noiseless cases),

we write v = Bu, where B is a matrix whose columns form an orthonormal basis to the
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orthogonal complement of v1,v2,v3 defined by (2.8). A possible closed-form choice is

B =

⎡
⎢⎢⎢⎢⎣
E 0 0

0 E 0

0 0 E

⎤
⎥⎥⎥⎥⎦
3N×(3N−3)

, α = − 1√
N(1 +

√
N)

,

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1√
N

− 1√
N

· · · − 1√
N

1 + α α · · · α

α 1 + α · · · α

...
...

. . .
...

α α · · · 1 + α

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×(N−1)

(3.10)

(a less symmetric choice for E is the Helmert matrix). B has orthonormal columns since

for each column Ei we have ‖Ei‖2 = 1
N

+ (N − 2)α2 + (1 + α)2 = 1, and for i �= j

Ei ·Ej =
1
N
+2α(1+α) + (N − 3)α2 = 0. In addition, Ei · 1N = − 1√

N
+1+ (N − 1)α = 0.

Using this basis, the problem becomes

argmin
u

‖ABu‖ s.t. ‖Bu‖ = ‖u‖ = 1 . (3.11)

Let AB = UDVT be the SVD of AB. u is the last column of V and v = Bu is the desired

solution. We can verify that except for the columns associated with the intersection points of

the first curve, the other columns of AB are sparse and contain the same elements as A. Entries

of the form αxij − αxij vanish, and entries of the form (1 + α)xij − αxij leave the original

elements of A. Since only the last singular vector is used, there might be iterative methods that

can handle very large sparse systems faster than the complete computation of the SVD.

Comparing (3.6) to (3.11), the matrix VD−1 is replaced with B. The methods differ in two

aspects. First, excluding only the basic trivial subspace yields a flat solution when a straight

line is present. Secondly, omitting D−1 is prone to nearly-flat solutions. These solutions

place all curves, except a small number, near a single plane. Almost all intersection points
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(A) (B) (C) (D)

Figure 3.9: (A) 25 synthetic cross sections of a radial sine. The 351 intersection points are
perturbed (red dots). (B) Our solution. (C) Last singular vector of the simple SVD method.
This is a nearly-flat solution (note the bottom-right curve). (D) Second-last singular vector
of the simple method. Although resembling the solution, it must be perpendicular to the last
singular vector (C).

contribute nearly zero to the total error, and the error at the small number of intersection points

of curves far from this plane might be relatively negligible. Note also that unlike the condition

‖Cv‖ = 1, the condition ‖v‖ = 1 has no geometric meaning. In fact, it mixes units of slope

(ai, bi) and depth (di). Thus, changing the measurements units can potentially alter the singular

values of the matrix (although the effect might be unnoticeable if the error in the system is

small).

Figures 3.9 and 3.10 compare both methods on synthetic randomly oriented cross sections

of a radial sine. The positions of the intersection points were perturbed and shown by red

dots. Both methods succeed solving these examples without the perturbations. However, the

perturbations were enough to break down the simple SVD method while our method succeeded.

Figure 3.11 demonstrates our method when straight curves are present.

3.3.6 Ways to improve accuracy

While the method we presented could be good enough for visualization purposes, for other

applications, notably 3D scanning by structured light, it might be desired to obtain the high-

est possible accuracy. In this section we outline several ways to improve the accuracy of our
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(B) (C) (A) 

(I) (H) (G) 

(E) (F) (D) 

(J) (L) (K) 

Figure 3.10: (A) 100 synthetic cross sections of a radial sine. These curves intersect at 4475
points. (B) A second view of the curves overlaid on the 3D surface. (C) The red dots denote
a random perturbation of the intersection points. (D) The output of the simple SVD method
when run on the noiseless input (A). (E)-(I) The last five singular vectors produced by the
simple SVD method when run on the noisy input (C). (J) The output of our method when run
on the noiseless input (A). (K)-(L) The last two singular vectors produced by our method when
run on the noisy input (C).
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Figure 3.11: Left: adding four straight segments to figure 3.1 resolved the ambiguity. Right:
computed surface by our method. The Last four singular vectors of the simple SVD method are
flat, and the shape appears only at the fifth (note that our method thresholds by ε the singular
vectors of C, not A).

method. We did not experiment with these enhancements since our focus was on the mathemat-

ical formulation. These practical enhancements should be considered for real implementations

depending on the level of control one has on the scanning environment.

Our experience with our method has been that it is more stable than the simple linear

method, in the sense that we never observed a case where it broke down and the simple linear

method didn’t, but observed the other way around (see figure 3.9). However, sometimes both

of them break down. The common cause for breakdowns are curves having nearly-linear inter-

section points in the image which are not linear in 3D. The simplest solution is to drop these

curves. However, if the curves are linear in 3D dropping them means throwing away some

information.

Another way to improve the stability and accuracy is to surround the object with planar

plates at various orientations, as illustrated in figure 3.12. This will help to prevent the image

curves from being straight lines. An additional advantage of such a setup is that the image

intersection points of curves on these planar plates can be computed more accurately. Since

the image curves on planar plates are straight lines, one can do line fitting and intersect these

lines with subpixel accuracy.

It is also possible to improve the numerical stability of the system by using restricted sets

of planes. For instance, Bouguet et al. [14] used planes that intersect at a point. Caspi and

Werman [21] used pencils of planes that have a common line. Sagawa et al. [165] used two
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Figure 3.12: Surrounding the object with planes can improve the localization of intersection
points.
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pencils (horizontal and vertical strips) and report improved stability compared to systems of

arbitrary planes. It should be kept in mind that due to possible concavities on the surface, using

a single pencil of planes might not be enough to illuminate all the areas on the surface that are

visible to the camera. However, it is possible to use multiple pencils while still keeping the

number of variables small.

A different error model for noisy systems is to assume that the observed intersection points

in the image are contaminated by i.i.d. isotropic Gaussian noise. The maximum likelihood

estimation is achieved by minimizing the sum of squared distances between the observed in-

tersection points (xij , yij) to the image-projection of the intersection lines Lij (2.3) of the

estimated planes (see figure 3.13). For orthographic projection the expression is

∑
ij

((ai − aj)xij + (bi − bj)yij + (di − dj))
2

(ai − aj)2 + (bi − bj)2
s.t. v ⊥ Null(C) , (3.12)

and for perspective projection the expression is

∑
ij

((ai − aj)xij/f + (bi − bj)yij/f + (ci − cj))
2

(ai − aj)2 + (bi − bj)2
s.t. v ⊥ Null(Cf) . (3.13)

In (3.12), the numerators are the same as (2.2). The fractions are homogenous in the vari-

ables vector v (scale invariant). Note that (3.12) is invariant to addition of basic trivial com-

ponent vectors v1,v2,v3, which on their own yield the undefined value 0/0. Optimization

along the lines of (3.12) was proposed by Kawasaki and Furukawa [91] without the condition

v ⊥ Null(C). Without this condition, the optimization procedure is free to add unbounded

trivial components, and converge towards 0/0 which is numerically undesirable. There is a

large variety of numerical methods that can be applied to (3.12), some of them are specifically

designed to minimize homogeneous rational functions [29,86]. These numerical methods typ-

ically converge to a local minimum, depending on the initial guess. Fortunately, the linear

method usually provides a good starting point for nonlinear optimization.

When the system of curves is under-determined, or when a metric reconstruction is re-
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image 3D

πi

πj

Γi

Γj

Lij

xij , yij

Figure 3.13: In a noisy system, an observed intersection point may not lie on the projection of
the intersection line of the two 3D planes. We would like to minimize this distance.

quired, planarity constraints can be combined with additional depth cues. For example, Lipson

and Shpitalni [119, 198] maximized measures such as corner orthogonality and verticality of

line segments. Another example is Surfaces Of Revolution (SOR [31]), which are SHGC’s with

two additional constraints. Shimshoni and Ponce [173] and Shimodaira [172] used also shad-

ing. These works require nonlinear optimization, potentially in high dimension. In contrast,

Sugihara [183] already proposed to simplify the search by first solving the linear constraints

to obtain a low-dimensional linear subspace that contains the solution, and then searching for

scale and trivial subspace coefficients (e.g. search in a 4D space) to optimize additional ob-

jectives. The benefit of this approach is that the non-linear search is confined to a very low

dimension. If we ignore the global depth ambiguity (v3), the 3D space of GBR ambiguities

can even be sampled densely enough to get close to the solution of nonlinear cost functions (a

parallel brute-force search might be the method of choice for the brain). In practice, it is some-

times helpful to expand the search space with additional singular vectors of C that correspond

to small singular values. Optimization in a subspace has been demonstrated for several nonlin-
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ear cost functions. Sugihara applied this idea to shape from shading and shape from texture of

over-constrained polyhedra. Liu et al. [121] used nonlinear search in a low dimension to opti-

mize the minimum standard deviation of angles (MSDA). Kawasaki and Furukawa [89] used

the low-dimensional space to optimize orthogonality constraints in structured light. Since our

method captures the trivial subspace in a more geometrically meaningful way than previous

methods, it can contribute in that direction as well.

3.4 Parallel planar curves

In the previous sections we discussed systems of planar curves with many intersection points.

Next we look at the complimentary case of parallel cross sections, where standard shape from

texture algorithms cannot be applied. Consider the topographic maps in figure 3.14. In this

problem one has to set the order and distances (in z) between the planes. Notice the strong

depth perception in absence of elevation values.

It seems that in general humans are better at perceiving over-constrained polyhedra than

arbitrarily oriented planar cross sections (e.g. figure 3.9 (A)). Although the problem of in-

terpreting parallel planar curves is very under-constrained, there are examples where humans

have strong 3D perception. Todd and Reichel [188] showed an example where humans per-

ceive parallel cross sections better than randomly oriented cross sections with plenty of inter-

section points. Whether humans are able to perceive a 3D shape from its parallel cross sections

varies with the shape and the orientation of the cross sections. In particular, topographic maps

will not always pop-out naturally to the correct shape of the terrain. The same shape sliced

at different orientations can generate different percepts (or the perception of curves on a flat

surface). Therefore, we are not particularly interested here in Euclidian reconstruction of to-

pographic maps with fixed depth gaps between adjacent curves, but in suggesting plausible

smooth shapes using a mechanism similar to the case of intersecting planar curves.

To reduce the parallel case to the case of intersecting curves we use a simple shape prior,
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Figure 3.14: 3D shape estimation from parallel planar curves (topographic maps).
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Figure 3.15: Reconstruction of topographic maps by piecewise planarity using a grid of 10×10
cells. Each window is made of 2×2 cells. The sampled red dots are considered as approximate
intersection points between the planar cross sections to the planar cell windows.

namely assume that the surface is roughly planar over local patches. The construction is shown

in figure 3.15. We overlay a coarse rectangular grid over the image region, and group neigh-

boring 2× 2 cells into a set of W partially overlapping windows. The windows serve as virtual

facets. We sample a set of points (xi, yi) along the curves. These points are treated as the image

of the intersection points between the planar curves and the virtual planar facets.

Although in general the planes will not intersect at the sampled points, we may still strive to

minimize the distances. Rather than parameterizing the facets explicitly, for each window we

measure the distances between the curves to the best fitting plane at the sampled points. This

is done by constructing a matrix Ci as in (3.1) for each window (normalized by the number of

points in each window). To enforce the curves to be parallel, we can either set ai = bi = 0 and



CHAPTER 3. A LINEAR ESCAPE FROM FLATLAND 51

solve for v = (d1, . . . , dN)
T , or alternatively add a penalty for the variance

‖Rv‖2 = λ (Var(ai) + Var(bi)) , (3.14)

R =

√
λ

N

⎡
⎢⎣IN − 1

N
1N×N 0N×N 0N×N

0N×N IN − 1
N
1N×N 0N×N

⎤
⎥⎦ .

The choice of λ depends on our confidence that the planes are parallel. The optimization

problems becomes (semicolons denote vertical matrix concatenation):

argmin
v

∥∥[R; 1√
W
C1; · · · ; 1√

W
CW

]
v
∥∥ s.t. ‖Cv‖ = 1 . (3.15)

This problem is solved as in (3.6). As before, the solution is up to GBR ambiguity. Examples

are shown in figure 3.14, where we used a grid of 10 × 10 cells, and each window is made of

2× 2 cells.

The method proposed has several limitations. First, it depends on the size of the win-

dows that roughly approximate the surface. When they are too small the surface can be over-

smoothed, as shown in figure 3.16. Although these shapes do not seem as smooth as the true

surface, they are actually smoother according to our measure.

Another technical limitation of our formulation is that we cannot group all sampled points

to the same plane, since minimizing ‖Cv‖ s.t. ‖Cv‖ = 1 is meaningless. It is interesting

to note that several unresolved examples in the literature could be solved by arranging the

cross sections as close as possible to a single principle plane while keeping the shape non-flat.

Computationally this means finding the singular vector of the matrix
[
R;C

]
that corresponds

to the smallest singular value greater than ε. Figure 3.17 demonstrates this singular vector

on examples from Stevens [181], Todd and Reichel [188], and two synthetic examples with

random gaps between parallel planes and nearly-parallel planes.
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Figure 3.16: Clockwise: synthetic cross sections of a radial sine and last three singular vectors,
solved by piecewise planarity on a grid of 10 × 10 cells. These solutions over-smooth the
surface where a single plane fit (figure 3.17(C)) is appropriate for this shape.
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(A) 

(B)

(C)

(D) 

Figure 3.17: Shapes determined by a single plane fit. (A) Waves from Stevens [181]. (B) Radial
sine from Todd and Reichel [188]. (C) Sine with non-uniform cuts (same as figure 3.16).
(D) Sine with perturbed parallel cuts (intersection points were not used). λ = 104 for (A,B,C)
and λ = 103 for (D).
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3.5 Conclusions

In this chapter we presented a unified analysis of shape from planar curves. We generalized

the linear method of Bouguet et al. to deal with arbitrary planes, improved its robustness,

and demonstrated its applicability to single view modeling and fully uncalibrated structured

light. As the cases of polyhedra, SHGC’s, ZGC’s and uncalibrated structured light were treated

independently in the literature, it is valuable that the same approach can deal with all of them.

A difficult issue we weren’t dealing with is assigning curves to planar faces automatically,

which is a perceptual organization and grouping problem. One may try heuristics such as

grouping parallel lines to a planar face, yet often multiple interpretations are possible.

We also experimented with parallel planar curves where we assumed the curves intersect

implicit planar facets. While the case of intersecting planar curves is now well understood,

the case of parallel cross sections is more challenging and may require the combination of

additional depth cues or prior knowledge. The method we proposed can be used to extract a

low dimensional subspace in which additional non-linear search can be performed.



Chapter 4

SDP Heuristics for Surface

Reconstruction Ambiguities

4.1 Introduction

An important problem in surface reconstruction is the handling of situations in which there are

not enough constraints to uniquely determine the surface shape. In these under-constrained

situations there are multiple interpretations of the surface that are consistent with the available

constraints. The ambiguities can be continuous, such as unknown depth, or discrete, such as

in/out reversal. In this chapter we deal with constraints that have discrete ambiguities. Such

constraints are common to many surface reconstruction problems. They arise in areas such

as shape from texture, shape from shading, photometric stereo, shape from defocus, and local

structure from motion [194].

Our main interest is resolving the inherent ambiguities in shape from texture. Textured

surfaces, such as the vase shown in figure 4.1, produce a strong 3D perception. Surface normals

can be estimated from the texture up to two-fold ambiguity. The interpretation of such images

poses two interconnected challenges. First, one has to choose which of the possible normals

is the correct one. Second, one has to integrate the normals to a plausible surface, which

55
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Figure 4.1: A synthetically textured surface.

preferably should be smooth. Note that it is important that surface smoothness is taken into

account in between the texture elements, as explained in figure 4.2.

The problem of smooth surface integration under ambiguous constraints is computationally

hard. In particular, it does not meet the conditions needed for graph-cut algorithms to pro-

duce optimal solutions [25]. We show it can be approximated with semidefinite programming

(SDP). Zhu and Shi [218] used SDP to solve in/out reversal ambiguities of surface patches in

shape from shading. We show that a similar mathematical formulation applies to other surface

reconstruction problems.

The general approach starts by representing the surface as a spline, i.e. the shape is con-

trolled by a set of continuous variables. Additional discrete variables are used to form the am-

biguous constraints. A quadratic cost function measuring surface smoothness and constraint

satisfaction is defined. The continuous variables are eliminated, leading to a quadratic cost

function in the discrete variables only. An SDP relaxation embeds the discrete variables in

a continuous high dimensional space. Finally, a rounding step sets the discrete variables and

proposes a 3D shape.
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Figure 4.2: An example where it is important to integrate the smoothness over the en-
tire surface. Consider a spherical surface (or more generally, an ellipsoidal surface) that
can be convex or concave. Suppose we can infer the ambiguous normals from texture at
the four positions of the circles shown above. These (non-unit) normals are of the form
(±a, 0, 1)t, (0,±b, 1)t, and the norm of the difference between each normal to its nearest neigh-
bor is ‖(±a, 0, 1)t − (0,±b, 1)t‖ =

√
a2 + b2. If our cost function only compares each normal

to its two nearest-neighbor normals, then any assignment to the possible flips has the same
score. Thus, for this specific configuration, relying on nearest neighbors of the normals is not
helpful, and surface smoothness has to be taken into account in between the texture elements.
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The problems we deal with are larger than those considered by Zhu and Shi, and the stan-

dard Goemans-Williamson random hyperplane rounding technique [59] will usually produce

sub-optimal results. We describe several heuristics that may improve the quality of the solu-

tions.

4.2 Problem formulation

We show below that several surface reconstruction problems can be written in the form

argmin
v,d

‖Av −Bd‖2 , (4.1)

where A and B are matrices, d∈{−1, 1}n is a vector of discrete decision variables, and v∈IRm

is a vector of continuous parameters that controls the surface. We represent the surface as a

spline, i.e. a linear combination of basis functions

z(x, y) =
m∑
i=1

bi(x, y)vi . (4.2)

The specific bases we use are described in Appendix A. Controlling the surface by a relatively

low dimensional vector of parameters v reduces the computational load and prevents over-

fitting noisy constraints. Next we discuss several specific problems that can be formulated in

this form. Algorithms for solving (4.1) will be discussed in section 4.3.

4.2.1 Shape from two-fold ambiguous normals

Traditional shape from texture deals with estimating surface normals from the distortion of

texture under projection. Under orthographic projection, normal estimates usually have a two-

fold tilt ambiguity, because the projections of local planar patches with normals (p, q, 1) and

(−p,−q, 1) are identical. We address the problem of estimating the shape of a surface given

a large number of ambiguous normal estimates, as demonstrated in figure 4.3. In this work
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we use the simplest way to recover the normals, which is from the distortion of known texture

elements. Humans are probably relying on density changes to estimate the normals. In both

ways the estimation of normals is up to two-fold ambiguity.

For sparse texture the problem is under-constrained, since the surface can be integrated for

any choices of the normals. In addition, under orthographic projection there is one global in/out

reversal ambiguity, and a continuous ambiguity in absolute depth. However, if we make the

assumption that the surface is smooth, we can identify the more probable shapes of the surface.

In related work, Forsyth [48, 49] proposed alternating between optimizing surface smoothness

and selecting the normals. We show in section 4.3 that by using a quadratic smoothness term

the problem can be converted into an entirely discrete optimization problem.

Denote the partial derivatives of the surface by p = dz
dx

, q = dz
dy

. The texture observed at

a specific image point, say (xi, yi), provides two choices for the surface derivatives, namely

(pi, qi)di, with di = ±1. By differentiating (4.2) with respect to x and y, we can express the

derivatives of the spline surface in terms of the vector v. This provides two known row vectors

api and aqi such that

(0, . . . , 0, pi, 0, . . . , 0)d = api · v , (0, . . . , 0, qi, 0, . . . , 0)d = aqi · v , (4.3)

where d is an n-vector formed from the sign bits di.

To regularize the surface we use a quadratic smoothness term. The smoothness term can be

expressed in terms of the spline parameters using a matrix E such that ‖Ev‖2 is the smoothness

energy (see Appendix A for more details). The smoothness energy is weighted with a regu-

larization parameter λ that balances between the smoothness energy and the constraint error.

Together, these terms can be written in the form of (4.1),

argmin
v,d

∥∥∥∥
⎡
⎢⎣
√
λE

A′

⎤
⎥⎦

︸ ︷︷ ︸
A

v −

⎡
⎢⎣ 0

B′

⎤
⎥⎦

︸ ︷︷ ︸
B

d

∥∥∥∥2 . (4.4)
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Figure 4.3: Top to bottom: surfaces textured with squares, input images, parallelograms ex-
tracted from the images and the computed surfaces.
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Here A′ and B′ are matrices formed from the constraints in (4.3), with each constraint in (4.3)

appearing as a single row in A′v = B′d.

4.2.2 Two-light photometric stereo

In standard photometric stereo of a Lambertian surface, at least three light sources at known

positions are used to determine the surface normals. For a given light source, the image bright-

ness at a point constrains the corresponding surface normal to a circle on the unit sphere. Two

light sources may limit the normal to two possibilities, which are the intersections of the two

circles. A third light is usually enough to disambiguate the normal. A two-fold ambiguity

remains when a point is in shadow with respect to one of the lights [70], or in degenerate con-

figurations, when all the light directions are located on a great circle on the unit sphere. Under

a crude approximation, this happens with the sun as the light source during the daily rotation

of the earth (assuming the earth’s axis of rotation is perpendicular to the direction to the sun.

This assumption is inaccurate).

In special cases, two lights are sufficient. This occurs when the two circles on the unit

sphere touch at a point, or when one of the intersection points of the two circles is on the oc-

cluded hemisphere. Onn and Bruckstein [141] studied photometric stereo of Lambertian sur-

faces using two lights. Their method uses the points that are uniquely determined by two lights

to divide the image into regions. Inside each region integrability is used to choose between

the two possibilities of the normal. However, detecting the boundaries of these regions on a

discrete grid is susceptible to errors, especially when the surface has discontinuous derivatives.

Our formulation for two-light photometric stereo avoids region detection and adds a surface

smoothness prior. We assume knowledge of points (x, y) where we have two choices for the

surface derivatives, (p1, q1) or (p2, q2). Onn and Bruckstein [141] derived the formulas for the

possible derivatives in the Lambertian case. For other shading models these choices may be

determined experimentally. However, more complicated shading models might require more

images, since the corresponding two curves on the unit sphere might intersect more than twice.
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We don’t deal with these cases here.

The two choices for the surface derivatives at point (x, y) can be expressed as functions of

a sign bit dxy = ±1

⎛
⎜⎝p

q

⎞
⎟⎠ =

⎛
⎜⎝psum

qsum

⎞
⎟⎠+

⎛
⎜⎝pdiff

qdiff

⎞
⎟⎠dxy ,

⎛
⎜⎝psum

qsum

⎞
⎟⎠ =

1

2

⎛
⎜⎝p1 + p2

q1 + q2

⎞
⎟⎠ ,

⎛
⎜⎝pdiff

qdiff

⎞
⎟⎠ =

1

2

⎛
⎜⎝p1 − p2

q1 − q2

⎞
⎟⎠ .

(4.5)

As in the previous subsection, the spline derivatives can be written as p = ap · v, q = aq · v.

Collecting the equations for all points and adding the smoothness term we arrive at

argmin
v,d′

∥∥∥∥
⎡
⎢⎣
√
λE

A′

⎤
⎥⎦v−

⎡
⎢⎣ 0

B′

⎤
⎥⎦d′−

⎛
⎜⎝ 0

b′

⎞
⎟⎠∥∥∥∥2 = argmin

v,d′

∥∥∥∥
⎡
⎢⎣
√
λE

A′

⎤
⎥⎦v−

⎡
⎢⎣ 0 0

B′ b′

⎤
⎥⎦
⎛
⎜⎝d′

1

⎞
⎟⎠∥∥∥∥2 .

(4.6)

Here the nonzero entries of the matrix B′ are made of pdiff , qdiff , and the vector b′ is made of

psum , qsum according to (4.5). A standard transformation to bring (4.6) to the form of (4.1) is to

solve for d =

⎛
⎜⎝d′

1

⎞
⎟⎠. Note that the cost of a pair (v,d) in (4.1) equals the cost of (−v,−d).

Thus, if after solving (4.6) the last coordinate of d is −1, we need to negate the solution.

4.2.3 Segments of known length

Assume a collection of segments of known 3D length (or pairs of features with known 3D

distances) is detected on a smooth surface, as shown in figure 4.4. Given an orthographic view,

each segment can have a front/back reversal. Similar problems were considered by Naito and

Rosenfeld [133] and Koenderink and van Doorn [104].
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Figure 4.4: Top row: setup of 112 matchsticks on a surface. Middle left: the input image. Bot-
tom left: line segments that were extracted from the input image. Bottom right: the computed
surface using a spline with 50 basis functions.
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The depth difference of the segment’s endpoints is constrained by

zi − zj = dij

√
l2 − r2ij = Δijdij , (4.7)

where dij = ±1, l is the 3D length of the segment and rij is the observed length in the image.

l, rij (and hence Δij) are assumed to be known. By (4.2), the depth zi at a point (xi, yi) is a

linear combination of the spline bases at that point. That is, zi can be expressed as ai ·v, where

ai is a known row vector, and similarly for zj . Each depth constraint can be written as

(ai − aj)v = (0, . . . , 0,Δij, 0, . . . , 0)d . (4.8)

Collecting these equations over all constraints and adding the smoothness term can be written

as in (4.4).

4.3 SDP rounding heuristics

We now turn into solving problems of the form (4.1). For any vector d, the optimal v is

v = A+Bd , (4.9)

where A+ is the pseudo-inverse of A. Plugging v back into equation (4.1) we get

‖(AA+B−B)d‖2 = C •X , where C = (AA+B −B)t(AA+B−B) = Bt(I−AA+)B,

X = ddt, and • is the inner product of matrices (C •X =
∑

CijXij). Therefore, the problem

is reduced into a combinatorial optimization problem of finding the discrete vector d∈{−1, 1}n

which minimizes C • (ddt). Once d is found, v is given by (4.9) and the 3D shape is given

by (4.2).

Unfortunately, the general problem is NP-hard and difficult to approximate [2]. Semidefi-

nite programming is widely used to find approximate solutions for problems of this kind. The
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standard SDP relaxation requires the matrix X to be symmetric positive semidefinite (instead

of rank one) with ones on the main diagonal (since d2
i = 1), i.e. solving

argmin
X

C •X s.t. Xii = 1 , X 
 0 . (4.10)

The SDP problem (4.10) is convex and can be solved in polynomial time using an SDP solver.

A discrete vector d is obtained from the continuous solution matrix X in a rounding phase.

The Goemans-Williamson random hyperplane rounding scheme [59] uses the Cholesky factor-

ization of the matrix X, X = RRt. Let ui denote the i-th row of R. Since Xii = ui · ut
i = 1,

the rows of R can be viewed as an embedding of the decision variables into the unit sphere in

IRn (this embedding is not unique). Rounding is done by picking a random hyperplane with

normal N and setting di = sign(ui ·N).

For matrices C arising from the max-cut problem with nonnegative edge weights, this

scheme provides a strong, provable expected approximation ratio of at least 0.878. More-

over, several derandomization schemes achieve this approximation ratio with deterministic al-

gorithms [10]. However, this approximation ratio does not apply to our problem for several

reasons. First, their analysis in deriving the 0.878 approximation ratio is not directly applica-

ble for general quadratic cost functions. Secondly, we are interested in the shape of the surface,

not the number of correctly classified sign bits. A small number of misclassifications may have

large influence on the shape or may not be visible at all (e.g. when p, q are both close to 0).

Note that it is possible to have different solutions with very different shapes but similar objec-

tive values. It is also possible that the correct surface is not the minimal solution (e.g. when the

correct surface is not smooth, or when there are insufficient or noisy constraints). This depends

on the specific instance of the problem.

In our setting, due to the fact that the 0.878 approximation ratio does not apply directly,

simple random hyperplane rounding typically requires a large number of iterations. We apply

a series of heuristics for improvement and solution refinement:
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1. Instead of picking plane normals from a uniform distribution on the sphere, we use the

principle singular vectors of R (that correspond to largest singular values). For example,

if we had to choose a single plane, a good choice for the normal would be the principle

singular vector. Such “inertial” splitting methods have been previously used for other

embeddings [22, 46], but to our best knowledge not for the SDP embedding. To widen

the choices of planes, we randomly pick normals as a weighted linear combination of the

singular vectors that correspond to the k-largest singular values, i.e.

N =
∑

siλiwi , (4.11)

where si∼N (0, 1) and wi is the singular vector corresponding to the singular value λi.

Finding these singular vectors can be done efficiently by power-iteration methods.

2. Instead of making the decision based on a single normal, we randomly select a pair of

normals N1,N2 according to (4.11), and perform a circular sweep for normals in the

plane spanned by N1,N2. To do this, we project the points embedded in IRn on this

plane (the first plane we check is the one spanned by the two principle singular vectors).

Then we perform a circular sweep in this plane, as described in [18]. Basically, the sweep

rotates a line through the origin that separates the points into two groups, and picks the

partition with the lowest cost. We noticed that these angular sweeps can be made more

efficient than described in [18]. Note that the cost of splitting n points in IRn based on

a single random normal is O(n2). However, once the points have been projected on a

plane and an initial cut has been computed (in O(n2)), we can update the cost of the cut

in O(n) by careful bookkeeping similar to the Kernighan-Lin (K-L) algorithm [93]. As

the line is rotated past a point, the only terms that need to be moved to the other side of

the cut are the n − 1 pairwise terms that involve that point (these terms are simply the

corresponding row of C except the diagonal element). Thus, we can check n consecutive

splittings also in O(n2), thereby reducing the amortized cost by a factor of n.
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Figure 4.5: Surface computed from a synthetic photometric stereo pair.

3. The k-best results from the circular sweep phase are refined with the K-L algorithm [45,

88, 93, 110]. This is a local search procedure that will clean up a small number of mis-

placed vertices. We terminate this algorithm early if no progress is made in 50 consecu-

tive iterations [88]. The lowest cost solution among these trials is returned.

4.4 Two-fold ambiguity results

Figure 4.3 demonstrates reconstruction from ambiguous normals. To simplify texture extrac-

tion we used square texture elements (see section 4.5 for derivation of normals from parallelo-

grams). The SDP solver we used is DSDP [9].

In figure 4.5 we computed a surface from a pair of synthetic images of a Lambertian surface

using two-light photometric stereo. The two possibilities for the surface normal are computed

on a 29 × 29 grid. Points having only a single possible normal and points in attached shadow

were removed. The system had 425 discrete variables. Our program made the correct decision

at each of these points. However, the average deviation from the true surface is 19% (note that

two corners are in shadow).

Results for segments of known length are shown in figures 4.4 and 4.6. In figure 4.4, the

image was taken from a distance of about 10m with a zoom lens to approximate orthographic

projection. As suggested by Naito and Rosenfeld [133], the 3D length of the segments is

estimated as the maximum over the 2D lengths of all segments in the image. Figure 4.6 shows
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1521 randomly oriented line segments tangent to a synthetic surface (top and bottom left). The

top-center plot shows the projection of the SDP embedding on the subspace of the first two

principle components. The splitting line is the lowest energy circular cut for this projection.

To check the appropriateness of the projection on a low-dimensional subspace we projected

the SDP embedding on the subspaces spanned by the first 1, 2, 3, . . . principle vectors. The

top-right plot is the squared-length of these projections, where the 1521 values are sorted. The

lowest curve is the distribution of magnitudes of the projection on the subspace of the first

principle vector; the second curve is the distribution of magnitudes for the projection on the

subspace of the first two principle vectors, etc. It is evident that the points were embedded

near a low dimensional subspace, and this is used for more efficient rounding. The solution

(bottom-center) was computed using 300 spline bases, 1000 circular sweeps on random planes

chosen by our algorithm, and K-L runs on the best 100 vectors. The output had 15 wrong flips,

and the average height deviation from the truth surface is 1%. In comparison, a run of the

Goemans-Williamson random hyperplane rounding (bottom right) with 104 trials produced 82

misclassifications, with 2.6% average height deviation (the reason we chose more random trials

is that each iteration of the Goemans-Williamson rounding is faster than our rounding scheme).

While these numbers depend very much on the particular instance, this example shows that the

SDP approach to discrete ambiguities can deal with much larger instances than demonstrated

by Forsyth [48].

4.5 Four-fold ambiguities

The previous sections looked at problems where each decision had two options. In this section

we demonstrate an extension to discrete ambiguities with four options. As a model, we look

at a shape from texture problem. Suppose a collection of similar triangles are scattered on a

smooth surface viewed orthographically. All triangles are scaled versions of a known triangle.

In addition, we assume that one edge on each triangle can be identified. For instance, if the
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Figure 4.6: Top left: segments of known and equal length on synthetic surface. Top cen-
ter: projection of the SDP embedding on the subspace of the first two principle components.
Misclassified points with respect to the ground truth are circled. Top right: plot of the squared-
length of the projections of the embedded points on the first principle subspaces (see text).
Bottom left: original surface. Bottom middle: output of the program. Bottom right: output
using random hyperplane rounding.
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texture elements are rectangles, as in figure 4.7, we can identify the diagonal. This information

leads to four-fold ambiguity since there are two ways to match the image segments with the

edges of the known triangle.

Algebraically, let (xi, yi, zi), i = 1, 2, 3, be the three vertices of a triangle in the image.

Denote dxij = xi − xj , dyij = yi − yj , dzij = zi − zj = p · dxij + q · dyij , where p, q are the

slopes of the triangle’s plane. Since the triangle is similar to the model triangle, the 3D length

ratios are known

r1 =
dx2

12 + dy212 + dz212
dx2

13 + dy213 + dz213
, r2 =

dx2
23 + dy223 + dz223

dx2
13 + dy213 + dz213

. (4.12)

This leads to two quadratic equations in p, q. Simple manipulations lead to a quadratic equation

in q2 that can be solved for the positive root (see Appendix B). Switching between r1,r2 gives

another solution. In the general case, the four solutions are of the form ±(p1, q1) and ±(p2, q2).

In the SDP literature, the max-k-cut problem was studied by Frieze and Jerrum [52] and

de Klerk, Pasechnik, and Warners [35]. While an ideal encoding requires two bits to encode

four possibilities, their encoding uses four bits: a single indicator bit set to 1 and the rest 0.

Since the matrix X has O(n2) entries, redundant encoding makes the SDP problem 4 times

larger, which is a significant factor for current SDP solvers. There is a natural encoding of

this problem with two sign bits for each constraint using average and offset vectors similar

to the sums and difference vectors of section 4.2.2. However, we found that if the two bits

are completely independent, the rounding phase becomes more difficult and results get worse.

Instead, our encoding uses two variables d1, d2 for each triangle that ideally would take the

values −1, 0, 1. We add the constraint d1 · d2 = 0 so that only one decision variable is active at

a time

p = d1p1 + d2p2 , q = d1q1 + d2q2 , d1 · d2 = 0 , d21 + d22 = 1 . (4.13)

By expressing p, q for each triangle using the spline parameters and adding the smoothness
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term, we arrive at a system of the form (4.1) in 2n discrete variables. The SDP relaxation is

modified to

argmin
X

C •X s.t. X2i−1,2i−1 +X2i,2i = 1 , X2i−1,2i = 0 , X 
 0 . (4.14)

After solving the SDP problem (4.14) for X, Cholesky factorization X = RRt embeds the

decision variables into a sphere in IR2n. Let ui denote the i-th row of R, so that Xij = ui · ut
j .

For each decision there are two orthogonal vectors, u2i−1,u2i, such that ‖u2i−1‖2 + ‖u2i‖2 = 1.

The rounding phase has to decide which of the two vectors is active, and round the active vari-

able to either 1 or −1. In the ideal case, the vectors associated with the inactive variables would

concentrate near the origin. While concentration can be observed, deciding which variable is

active by picking the longer vector of each pair is not powerful enough. Instead, we execute

the following heuristics:

1. A column of the matrix X is the inner product between a row vector ui of R to the

other rows. In the ideal case, the columns for inactive variables should be all zeros. We

multiply ui by αi, the magnitude of the i-th column of X. This has the effect of moving

vectors orthogonal to the rest, or close to 0, towards the origin. In addition, the largest

singular vectors of αiui, that are used for projection on a plane for the circular sweep in

(4.11), become less affected by the vectors of the inactive variables when these vectors

are moved towards the origin.

2. The vectors αiui are projected on a plane as in (4.11), and a line is swept circularly. For

each pair of indices 2i − 1 and 2i, the point on the plane with the largest projection on

the sweep line is considered active, and the sign of the projection is the rounded value

(events in this circular sweep occur at angles where the projections of the points on the

sweep line are equal in absolute value). We repeat this step for different planes and store

the best circular cut for each plane.

3. For every variable, we estimate the probability pi it is inactive as the percentage of best
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cuts where it was inactive. Clearly, p2i−1 + p2i = 1. We modify the diagonal of the

matrix C to reflect this knowledge by setting Cii = Cii + μpi (μ is a tuning parameter).

The SDP is solved a second time with the modified matrix C. Due to the constraint

X2i−1,2i−1+X2i,2i = 1, vectors which are believed to be inactive are pushed towards the

origin.

4. We repeat steps 1,2 with the modified C, keep the best solutions and run the K-L al-

gorithm as a final step. The modification of the K-L algorithm to four possibilities is

straightforward [214].

The method is demonstrated in figures 4.7 and 4.8. In figure 4.7, a collection of 415 similar

rectangles at random orientations is overlaid on a 3D surface. Our program uses triangles made

of the diagonal and two sides of each rectangle. Only the proportions of the model triangle are

assumed known. The circular sweep in the plane of the first two principle components makes

148 errors in the first round (out of 830). After modifying the C matrix it makes 114 errors in

the second round. Note that a large number of inactive variables are concentrated close to the

origin and cannot be distinguished in this figure. The final computed surface (bottom middle)

makes 80 errors. The average height difference between the original and computed surfaces is

5%. Wiggles in the computed surface arise because only 300 basis are used. Similar wiggles

occur with a spline that uses the ground truth decision vector (bottom right). In this example,

the cost function of the computed surface is lower than the cost of the ground truth spline.

4.6 Conclusions

Several depth cues, such as texture, shading and defocus, are inherently ambiguous at the

local level. In this chapter we examined the integration of discrete constraints arising from

these ambiguities with continuous objectives like surface smoothness. Problems of this form

involve both continuous and discrete variables, and can be transformed into an entirely dis-

crete optimization problem which is computationally hard. Following the approach of Zhu
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Figure 4.7: Reconstruction from similar rectangles. Top left: the input image is made of similar
rectangles overlaid on a 3D surface. Top right: the circular cuts of the projections on the plane
of the two principle directions for the first and second SDP embeddings. Misclassified points
with respect to the ground truth are circled. Bottom left: original surface. Bottom middle:
output of the program. Bottom right: spline surface using the ground truth decision vector.
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Figure 4.8: Top left: a surface textured with rectangles in ratio 1:2. Top right: the input image.
Bottom left: parallelograms extracted from the input image. Bottom right: the computed
surface.
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and Shi [218], we presented a method to obtain an approximate solution using an SDP relax-

ation. We improved the rounding phase using a combination of heuristics, namely projection

on planes in the subspace of the largest principle components, efficient circular sweep, and the

K-L algorithm. These general heuristics were shown to be useful in our setting, and are po-

tentially useful for other SDP applications as well. We conclude by briefly mentioning several

possible extensions and alternative methods.

Our focus has been on developing a framework for solving problems of the form (4.1) that

involve ambiguous discrete constraints. In practice, after binary decisions are made, the surface

can be re-integrated using more robust integration methods. While the use of smoothness was

demonstrated to resolve certain shapes, for many surfaces smoothness alone is insufficient

and additional unambiguous constraints are required. A natural extension to the approach

presented here would be to replace the spline with a shape basis, e.g. for particular shapes

such as faces [3]. The general form of (4.1) allows for many other variations, such as adding

linear constraints (e.g. specifying depths or normals at specific points [217]), or using shading

information to disambiguate some normals [208].

Our formulation for shape from texture was under the assumption of orthographic projec-

tion. This assumption is reasonable, because texture elements are often seen through narrow

angles. Two-fold ambiguities exist also in perspective projection. For example, suppose we

observe an ellipse in the image which is the perspective projection of a slanted circle. If the

camera is calibrated, it is possible to recover the normal to the circle’s plane up to two-fold am-

biguity [85]. Gårding [56] showed that to a first-order approximation, this two-fold ambiguity

is a reflection of the normal around the line of sight. He also examined the global ambiguity

of the surface that happens when all the normals are flipped around their line of sight. This

ambiguity is analogous to the global reflection ambiguity in orthographic projection. Unlike

the orthographic case, in perspective the two corresponding shapes will usually have different

smoothness. The problem of integrating a smooth surface under perspective ambiguities seems

to us more involved than the corresponding orthographic problem.
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The main limitation of the proposed SDP scheme is its scalability. There are several ways

to extend it to larger instances. First, there are large-scale SDP methods [131, 140]. Second,

methods like CirCut [18] can be used to obtain high-quality cuts much faster than solving full

SDP problems. The difference is that these methods depend on an initial guess. Third, it is

possible to achieve scalability for the shape from texture problem, which is our main interest,

using a hierarchical scheme, where the shape is solved up to in/out reversal over sub-windows.

The solutions over these sub-windows can be glued together using the method of Zhu and

Shi [218]. Fourth, it is possible to formulate the shape from texture problem using all the tilt

angle constraints with coarsely sampled slant angle constraints. Recall from table 1.1 that tilt

angles provide homogeneous linear constraints. These constraints do not differentiate between

the two possibilities (p, q) and (−p,−q) for the surface partial derivatives that can be recovered

from the texture. Thus, a large number of tilt constraints could be added to the linear part of

the system (our matrix E), while the slant constraints could be sampled. Note that for a small

number of slant constraints, e.g. 25, an exhaustive search over the flips is feasible, possibly

with a final refinement step. However, for a moderate number of ambiguous constraints an

exhaustive search is infeasible.

An important property of the SDP approach is that there is no need for initialization. How-

ever, if a good starting vector d is available, it can be exploited by performing the rounding

phase on a linear combination of X and d · dt [155].

Compared to discrete minimization approaches such as belief propagation, our approach

is global, i.e. not based on local neighborhoods. Any discrete decision directly influences the

cost of the entire surface. For a problem such finding a surface from segments of known length,

knowledge of a label at a point could say little about a neighboring label. This property of the

problem makes it different from other problems with discrete constraints. For instance, in

segmentation problems there is often a strong correlation between nearby labels. A notable

easy problem with discrete constraints is the interpretation of “Legoland” surfaces from cubic

corners, which can be solved in linear time [97].
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While we looked at discrete optimization, there is a complementary family of continuous

optimization algorithms that could be applied. For the shape from texture problem, a continu-

ous optimization formulation similar to (4.4) is

argmin
v

∑[
((api · v)2 − p2i )

2 + ((aqi · v)2 − q2i )
2
]
+ λ‖Ev‖2 . (4.15)

Forsyth [49] examined a similar expression with a different smoothness term. Similar expres-

sions have also been encountered in graph drawing problems [55]. The problem (4.15) calls for

continuous optimization in terms of v. In chapter 6 we will discuss in more detail approaches

for the minimization of quartic expressions, including iterative methods with exact line search

and SDP relaxations. Broadly speaking, the discrete optimization approach has an advantage

when the number of ambiguous discrete constraints is small. In the extreme case of a very small

number of discrete constraints, an exhaustive search could be feasible, whereas iterative con-

tinuous optimization methods would not guarantee convergence to the global optimum. On the

other hand, if the number of spline basis vectors is much smaller than the number of ambiguous

discrete constraints, it might be more efficient to perform continuous optimization [205].

4.7 Appendix A: Our spline and smoothness term

In this section we describe in more detail the spline (4.2) and smoothness energy used in our

implementation. These were chosen mainly for the sake of simplicity, and other splines and

energies (e.g. thin-plate spline) could be used. To simplify notation assume the image is square.

We used tensor-product spline bases

bij(x, y) = bi(x)bj(y) , (4.16)
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where bi,bj are singular vectors associated with small singular values of the matrix

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 1 0 · · · 0

0 1 −2 1 · · · 0

...
. . . . . . . . .

...

0 · · · 1 −2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4.17)

For the smoothness energy we used the sum of squared second derivatives over the image. The

energy of a basis function of the form (4.16), with ‖bi‖ = ‖bj‖ = 1, is

e2ij = ‖Dbi‖2 + ‖Dbj‖2 ≈
∫∫ (

d2bij

dx2

)2

+

(
d2bij

dy2

)2

dx dy . (4.18)

Note that for tensor-product splines we need to integrate only one-dimensional functions. The

vectors Dbi are proportional to the left singular vectors of D and hence orthogonal. Since the

basis functions bi are orthogonal, as are Dbi, the smoothness of a spline governed by v can be

written as ‖Ev‖2, where E is a diagonal matrix made of the elements eij for each basis used.

The advantage of this approach over Fourier basis is that the basis vectors are not cyclic.

4.8 Appendix B: Normals computation for four-fold ambi-

guity

Consider a triangle with normal (−p,−q, 1). Assuming the origin of the coordinate systems is

at the centroid of the triangle, we can express its vertices as

P1 = (x1, y1, px1+qy1) , P2 = (x2, y2, px2+qy2) , P3 = (x3, y3, px3+qy3) . (4.19)

Denote xij = xi − xj , yij = yi − yj , Lij = x2
ij + y2ij , i.e. Lij are squared lengths of the sides of

the triangles in the image. The known squared ratios of the 3D lengths of the sides, r1 and r2,
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give the equations

⎧⎪⎪⎨
⎪⎪⎩

(x2−x1)2+(y2−y1)2+(z2−z1)2

(x3−x1)2+(y3−y1)2+(z3−z1)2
= L12+(px21+qy21)2

L13+(px31+qy31)2
= r1

(x2−x3)2+(y2−y3)2+(z2−z3)2

(x3−x1)2+(y3−y1)2+(z3−z1)2
= L23+(px23+qy23)2

L13+(px31+qy31)2
= r2 .

(4.20)

Arranging these equations as functions of p, q we can write

⎧⎪⎪⎨
⎪⎪⎩
A1p

2 + B1q
2 + C1pq +D1 = 0

A2p
2 + B2q

2 + C2pq +D2 = 0

(4.21)

Where

A1 = x2
21 − r1x

2
31, B1 = y221 − r1y

2
31, C1 = 2x21y21 − 2r1x31y31, D1 = L12 − r1L13,

A2 = x2
23 − r2x

2
31, B2 = y223 − r2y

2
31, C2 = 2x23y23 − 2r2x31y31, D2 = L23 − r2L13.

(4.22)

To solve these two quadratic equations, first eliminate p2 and express p in terms of q

q2(A2B1 − A1B2) + pq(A2C1 − A1C2) + (A2D1 − A1D2) = 0

p = q2(A2B1−A1B2)+(A2D1−A1D2)
q(A1C2−A2C1)

.
(4.23)

Eliminate the pq term from the two equations

p2(A1C2 −A2C1) + q2(B1C2 − B2C1) + (D1C2 −D2C1) = 0. (4.24)

Plug in p2 as a function of q2

(q2(A2B1 − A1B2) + (A2D1 − A1D2))
2

q2(A1C2 −A2C1)
+q2(B1C2−B2C1)+(D1C2−D2C1) = 0. (4.25)
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Let

E = A1C2 − A2C1, F = B1C2 −B2C1, G = D1C2 −D2C1,

H = A2B1 −A1B2, I = A2D1 − A1D2, t = q2.
(4.26)

We arrive at a quadratic equation in t, whose positive roots determine q and p

(tH + I)2 + tE(tF +G) = t2(H2 + EF ) + t(2HI + EG) + I2 = 0. (4.27)



Chapter 5

A Light Introduction to Shape from

Shading

5.1 The standard shape from shading model

In this chapter we cover background material on shape from shading (SFS) as a preparation for

chapter 6. Our goal here is not to provide a comprehensive literature review, but to highlight

the main conceptual issues. General SFS surveys can be found in [75, 80, 147, 149].

While curves and texture provide constraints on 3D shape, it is important to understand

that our picture of single-image 3D reconstruction would be incomplete without understand-

ing SFS. Shading is important for depth perception in the interior of shapes far from their

boundaries. When an image is reduced to a line drawing, the information on which side of an

edge is dark and which side is bright is lost. Since the same image curves could arise from

many different 3D shapes, shading information could reduce this ambiguity.

In computer vision, research on the SFS problem was pioneered by Horn [75], who for-

mulated the problem mathematically as a differential equation and proposed the characteristic

stripes method to solve it. The idea that shading is a cue for 3D perception is older. An histor-

ical account of related work prior to Horn is given in the last chapter of [75].

81
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Horn’s approach to SFS is to invert the physical process of image formation. The brightness

of each image pixel is the result of an interaction (BRDF) between the light source direction

and intensity, the surface orientation, the surface reflectance properties and the position and

orientation of the camera. If the parameters of the image formation process are known, it

might be possible to solve for the 3D shape of the surface.

The standard SFS model makes additional assumptions to simplify the problem. The sur-

face is assumed to be textureless with constant albedo which is known. There are no visible

regions of the surface which are in cast or attached shadow, and there is no inter-reflection of

light between points on the surface. The model assumes a single, distant and uniform light

source. The light source intensity and direction are assumed to be known. It assumes a distant

viewer which translates to orthographic (weak perspective) projection. The reflectance of the

surface is assumed to be Lambertian. This means that, due to the foreshortening effect, the

intensity at a pixel is proportional to the cosine of the angle between the light source and the

surface normal, independently of the viewing direction. Under these assumptions, the SFS

problem is to estimate a surface that satisfies the SFS equation at each point

I = ρ
λL ·N
‖N‖ = ρλ

−ap− bq + c√
1 + p2 + q2

. (5.1)

In equation (5.1), I is the image intensity at a point, ρ is the surface albedo, λ is the light source

intensity, L = (a, b, c) is a unit vector in the light source direction, N = (−p,−q, 1)T is the

surface normal, where p = dz
dx

and q = dz
dy

are the partial derivatives of the surface z(x, y).

It is sometimes assumed that the brightest point in the image corresponds to a normal

pointing in the light source direction, and hence its intensity is ρλ. When the image is scaled

by ρλ, for example by division by the intensity of the brightest point, the equation becomes

I =
L ·N
‖N‖ =

−ap− bq + c√
1 + p2 + q2

. (5.2)

This is the form that we will be using.
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In reality, whether or not the surface is Lambertian can be a function of scale. It could be

that a blurred image of a textured surface, or an image taken from far away, will be approxi-

mately Lambertian, while a material that is considered Lambertian will look textured in a very

high resolution image.

When there are several ideal light sources and all of them are visible in a region on a

Lambertian surface, λL is the linear sum of these light sources. Thus the assumption of a

single light source is not too restrictive.

The special case where L = (0, 0, 1), i.e. the illumination comes from the viewing direc-

tion, leads to the Eikonal equation. The Eikonal equation can be written as

1

I2
− 1 = p2 + q2 . (5.3)

In this case there cannot be visible attached or cast shadows in the image (unless an occlud-

ing surface is between the camera and the light source). Note that the SFS equation with

L = (0, 0, 1) is locally ambiguous, since there is an in/out reversal ambiguity for each local

patch of any solution surface.

Several works studied existence and uniqueness of solutions to the SFS problem. Horn et

al. and Brooks et al. [17, 76] demonstrated images for which there is no solution to the SFS

equation. Oliensis [137] proved the uniqueness of SFS solutions when boundary conditions and

other technical conditions are assumed. In absence of boundary conditions, the SFS problem

is ambiguous. For example, consider the four surfaces z = ±x2 ± y2 with L = (0, 0, 1). In

this case p = ±2x, q = ±2y, and therefore these four surfaces have exactly the same image.

Saxberg [167] proved (under additional assumptions) that there are up to four local solutions

near generic singular points (points whose normals are parallel to the direction of the light

source). Okatani and Deguchi [136] showed that the second derivatives of the surface can be

computed from image derivatives at singular points up to a discrete number of possibilities

(subject to additional conditions). They argued that the singular points are the only points
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where it is possible to compute the second derivatives of the surface directly from local image

derivatives. It should be noted that when the surface is not of class C 2 there might exist an

infinite number of solutions. For instance, Deift and Sylvester [36] studied the ambiguities in

the image of a Lambertian hemisphere. They showed that if the surface is C 2, the hemisphere

is a unique solution up to a reversal ambiguity. Otherwise, there is an infinite number of

solutions [108].

Also related to shading ambiguities is the GBR ambiguity, that we already encountered in

chapter 2. When a surface undergoes a GBR transformation, its intensities will change, but

for a small GBR transformation the change could be indistinguishable [7]. In summary, while

there are theoretic conditions where the solution to the SFS problem is unique or there is only

a discrete number of solutions, in practice the SFS problem is an ill-posed problem.

5.2 Classes of shape from shading methods

In this section, we review the main approaches for solving the SFS problem, without getting

into the technical details. The survey paper by Zhang et al. [147] classifies SFS methods

into four groups: minimization, propagation, local and linear. Most methods today are either

minimization or propagation methods. These methods can be sub-classified according to the

following criteria:

1. Surface representation. While so far we discussed surfaces of the form z(x, y), or

other linear surface representations, several SFS methods (e.g. [211]) solve for the nor-

mal parameters (p, q) with the integrability constraints py(x, y) = qx(x, y). This repre-

sentation doubles the number of parameters and requires a final surface integration step.

The possible benefit of this representation is that the algorithm can adjust the normals

independently while relaxing the integrability constraints. It is not clear whether one

representation is better than the other.

2. Boundary and initial conditions. Propagation and global minimization approaches
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depend heavily on boundary and initial conditions. The two main classes of propaga-

tion approaches are those that begin from known boundary conditions [1, 87, 164] and

those that begin from singular points [11, 96, 138, 200, 218]. Global minimization ap-

proaches are usually started from simple surfaces such as a plane, or from the intensity

image [149]. The reason why initialization from intensities might work is that for some

special surfaces, such as a sphere or a cylinder, the image of the surface when lit from

the viewer direction is proportional to the depth of the surface.

3. Regularization. Regularization terms are often added to suppress high derivatives in the

solution surface. Some propagation methods that start from known boundary conditions

do not include regularization terms at all. Regularization might also be implicit in a

scheme [1, 87]. In general, regularization makes a method more robust, but tends to

over-smooth the surface.

Historically, Horn’s characteristic stripes method was developed in full generality, before

he simplified the problem to the orthographic Lambertian model. In recent years there has

been renewed interest in lifting some of the assumptions of the simplified model. Methods

for solving the SFS problem under perspective projection are described in [145,150,186,216].

Note that some works on perspective SFS omit a cos4 α term, where α is the angle between

a viewing ray and the image plane. This term is mentioned, for example, in [117], and in

principle can be removed at the camera. The assumption that the light source is remote was

replaced with a proximal light source in [149]. The problem of estimating the light source

direction from an image was considered in several works, e.g. [75, 101, 177]. A very different

approach for dealing with unknown illumination was taken by Smith [178], who derived a PDE

with higher-order derivatives in which the light vector was eliminated. Smith was unable to

solve his PDE, and his approach was not continued.
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5.3 Human perception of shape from shading

Horn’s influential SFS model is an elegant mathematical simplification. However, its assump-

tion of Lambertian reflectance does not hold for many real-world objects. In contrast, it seems

that humans do not have a special problem to perceive the 3D shape of many real-world non-

Lambertian objects. In this section we review research on human shape perception from the

psychophysics literature. Shape perception literature is too broad to be covered here in detail.

Our focus here is on experiments that examine the assumptions of the standard SFS model. We

caution the reader that human perception is not yet understood at the computational level. It is

difficult to draw decisive conclusions from these experiments.

Note that humans cannot presume that the albedo is constant at every point. Research on

how humans infer lightness (perceived reflectance or albedo) has a long history, that is covered

in detail in Gilchrist’s book [58]. Many factors seem to be involved in this non-local process,

such as the intensity of the brightest point in the image, edge contrast, and even the perceived

3D structure of the scene. While we focus on images with constant albedo, it should be kept in

mind that the brain executes another process, which is not fully understood yet, to interpret the

raw brightness values of image pixels.

The perception literature considers shading as a weak depth cue that can be overridden

by stronger cues. For instance, Ramachandran [153] gave an example where stereo overrides

SFS perception, and another example where the same shaded image can be perceived in two

different ways if the bounding contours are changed. These examples also demonstrate that

SFS is a global process, since the same small image patches can be perceived differently in a

different global context.

It is believed that SFS analysis is an early process in the brain. Kleffner and Ramachan-

dran [98] showed that SFS can provide a basis for perceptual grouping of objects based on

their perceived 3D structure. They demonstrated pop-out of a shape surrounded by differently

shaded shapes. SFS can provide correspondences for motion analysis as well. Mamassian et

al. [128] looked for areas in the brain that are active as SFS tasks are being processed. They
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found activity in early processing areas, and suggested that SFS is mostly a bottom-to-top

process.

Several studies attempted to evaluate the accuracy of humans SFS perception. In a typical

setting, participants were shown a shaded shape on a screen and asked to orient the normal

vector at specific points on the surface. In a classical experiment by Koenderink et al. [105] it

was found that the normals could be integrated to a real surface. Repeated experiments with

the same subject on the same image correlated well. In a similar experiment [103], they no-

ticed some differences between subjects and even between different trials of the same subject.

They argue that these differences can be mostly attributed to scaling of the shape in depth. An-

other finding was that tilt estimate is more accurate than slant estimate. The slant was usually

underestimated.

Other studies checked whether humans are assuming surfaces are Lambertian. Todd and

Mingolla [75] experimented with ellipsoids rendered using Lambertian and non-Lambertian re-

flectance functions, highlights and cast-shadows. They found no difference in accuracy when

shiny displays are compared to Lambertian displays. There was no difference when the ellip-

soid had a cast shadow compared to the conditions when there was no shadow.

Langer and Bülthoff [112] studied human SFS perception under diffuse lighting (“cloudy

day”) condition. In this condition, the amount of light a point receives is proportional to its

visible fraction of the sky, and deep points are usually darker. Subjects were asked whether

points on a surface are in a valley or on a hill under both diffuse and point light source condi-

tions. Performance was well above chance, and the participants said they were unaware of the

lighting condition changing between trials.

There is evidence that the light source direction is somehow encoded in the human visual

system. Kleffner and Ramachandran [98] studied the perception of shaded half-hemispheres.

In one experiment, they showed two rows of balls, where the rows were illuminated from

opposite directions. One row was perceived as convex balls and the other as concave balls. It

was impossible to perceive all the balls as convex simultaneously. When inversion occurred, it
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occurred globally. They concluded that there is a built in assumption of a single light source.

They also argue that humans assume that light comes from above. When subjects were asked

to tilt their heads by 90◦, a convex/concave inversion occurred. They reasoned that the “light-

from-above” assumption is made in retinal (gaze) frame of coordinates without an adjustment

of the head direction. Later, Perona and Sun [127,184] found a bias to assume that light comes

from the top-left direction.

Boyaci and Maloney [15] demonstrated invariance of human SFS perception to monotone

(not necessarily linear) transformation of the brightness values. To illustrate, consider the

image in figure 5.1(A). In parts (B) and (C) the brightness values of this image were scaled to

the range [0,1] and raised to the powers of 0.5 and 2 respectively. Notice that the perceived

shapes outside the dark areas is very similar. The negative image in part (D) is not perceived

as an ellipsoid. This is in agreement with the single light source assumption, since there is no

“negative light” that will leave the shape intact, nor there is a single positive light source that

will generate this image from an ellipsoidal shape. Non-monotonic brightness transformations

alter the shape perception, as illustrated in parts (E) and (F).

5.4 Alternative shape from shading models

The presence of many non-Lambertian surfaces in the real world inspired further research on

modeling the SFS problem. In this section we review some alternative research to the standard

SFS model.

A natural candidate for study is the field of isophotes. Isophotes, or iso-intensity contours,

are curves of constant brightness in the image. There are several reasons to study isophotes.

Under the assumptions of the standard Lambertian model (section 5.1), the orientation θ of an

isophote is independent of the albedo ρ and the illumination strength λ

tan θ =
Iy
Ix

=
ρλd(L·N/‖N‖)

dy

ρλd(L·N/‖N‖)
dx

=

d(L·N/‖N‖)
dy

d(L·N/‖N‖)
dx

. (5.4)



CHAPTER 5. A LIGHT INTRODUCTION TO SHAPE FROM SHADING 89

(B) 

(D) 

(F) 

(C) 

(E) 

(A) 

Figure 5.1: Effect of intensity transformations on perceived shape. When the image of a Lam-
bertian ellipsoid (A) undergoes a monotonic transformation of its intensities, as shown in (B)
and (C), the 3D shape looks similar. A negative transformation (D) and non-monotonic trans-
formations (E) and (F) result in different perception.
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One motivation to study isophotes is that the brain has orientation-selective cells [142]. An-

other reason is that monotonous brightness transformations, of the sort shown in figure 5.1,

leave the field of isophotes intact. Isophote fields have been studied extensively and have many

interesting properties [16,47,166,206,209]. None of these works was able to drop the assump-

tion of known BRDF and propose an alternative way for complete 3D reconstruction directly

from the field of isophotes.

Nevertheless, several shading models that have been proposed end up being a parametric

transformation of the brightnesses of Lambertian images. These transformations are usually

monotonic. When the parameters of the transformation are known, it is possible to invert

the transformation and run a SFS algorithm on a Lambertian image. Some examples to such

models are given below.

1. The reflectance of a Lambertian surface under hemispherical uniform illumination, as-

suming constant albedo and no inter-reflections or self-shadows, is given by [75]

I =
L0

2

(
1 +

1√
1 + p2 + q2

)
, (5.5)

where L0 depends on the illumination strength and surface albedo. Note that the trans-

formed image 2I/L0 − 1 will look like a standard Lambertian image illuminated from

the viewer direction.

2. The direct reflection component from water under hemispherical uniform illumination is

governed by the Fresnel coefficient [187]. A complete model for the reflectance of water

should take into account the light coming from inside the water, shadows and inter-

reflections which we neglect here. The Fresnel coefficient is a monotonic non-linear

function of the angle between the observer and the surface normal. In contrast to the

Lambertian case, water achieve minimal brightness when the surface normal points to

the viewer, and maximal brightness at grazing angle. Thus, images of water are similar

to negative images of Lambertian surfaces.
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3. Images produced by a scanning electron microscope (SEM) are similar to reciprocal

images of Lambertian surfaces. According to the theoretical model by Shatas et al. [170],

the image intensity is proportional to 1
cos θ

, where θ is the angle between the surface

normal to the microscope’s primary beam. A similar empirical model is given by Ikeuchi

and Horn [75].

5.5 Conclusions

The SFS problem involves modeling the image formation process, numerical optimization,

and deciding among ambiguous solutions. In this chapter we took a closer look at Horn’s

Lambertian model. This model has always been considered as an idealized simplification, and

its assumptions were sometimes regarded as unrealistic. However, all the alternative models

that have been proposed so far might model particular scenes more accurately, but would be

less accurate in other circumstances. A photorealistic modeling of the image formation process

might be too complicated to invert. For instance, some models in computer graphics simulate

subsurface scattering [81]. Another issue is that we have many possible models to choose

from. Even worse, the scene might be composed of multiple objects that follow different

reflectance models. As explained in the previous section, several models can be reduced to

the Lambertian model after a suitable brightness transformation. Thus, it is possible that a

brightness normalization process has to take place before running a SFS algorithm. In the

next chapter we leave these modeling questions open, and move on to examine numerical

optimization and ambiguities of the standard SFS problem.



Chapter 6

Polynomial Shape from Shading

6.1 Introduction

The shape from shading (SFS) problem [75,147] is to recover the 3D shape of a surface from a

single image, whose intensities are related to angles between surface normals and light source

direction. SFS belongs to a wide class of problems in computer vision that involve embedding

points in Euclidean space based on distance or angle information. These problems have nat-

ural formulations as systems of polynomial equations. Both exact methods, such as Gröbner

basis and homotopy continuation, and convex relaxation techniques, have been applied to poly-

nomial systems arising from such diverse problems as structure from motion [8, 20, 83, 132],

camera calibration [43] and low-dimensional embedding [152, 204]. In this chapter we apply

similar techniques to the SFS problem, which traditionally was treated mostly as a general

nonlinear PDE that is notoriously difficult to optimize. While the polynomial formulation is

not new (e.g. [145]), only recently theory and software for polynomial systems became widely

available.

Throughout we will focus on the standard Lambertian model that was elaborated in sec-

tion 5.1, i.e. orthographic projection, a known distant light source, unit albedo, but no other

boundary conditions. Denote the unit light source vector by L = (a, b, c), and the surface

92
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normal by N = (−p,−q, 1)T . The Lambertian intensity at an unshadowed point is

I =
L ·N
‖N‖ =

−ap− bq + c√
1 + p2 + q2

∈ [0, 1]. (6.1)

Squaring and rearranging we get the quadratic equation

(1 + p2 + q2)I2 − (−ap− bq + c)2 = 0. (6.2)

To avoid solutions to L ·N/‖N‖ = −I we add the constraint

− ap− bq + c ≥ 0. (6.3)

The SFS problem is to find a surface z(x, y) with p = dz
dx

and q = dz
dy

that satisfies (6.2) and

(6.3) for each point in the image.

The polynomial form (6.2) has several advantages over the quotient form (6.1). First, small

polynomial systems can be completely solved. We demonstrate this in section 6.2, where we

show that all solutions to the SFS problem at vertices of an ideal, generic polyhedron can be

found by homotopy solvers for polynomial systems. Second, exact line searches are possible

in the polynomial form, but require expensive bisections in other forms. In section 6.3 we

demonstrate the effectiveness of exact line searches as part of an iterative method for SFS

on a grid. Third, semidefinite programming (SDP) relaxations for polynomial systems can

produce approximate solutions without requiring an initial guess. We derive an SDP relaxation

for SFS in section 6.4. In the absence of boundary conditions, the SFS problem is known

to be ambiguous [108]. In section 6.5 we propose a method for generating artificial shading

ambiguities as illustrated in figure 6.1.



CHAPTER 6. POLYNOMIAL SHAPE FROM SHADING 94

Figure 6.1: An exaggerated shading ambiguity illustrated by three images of one real object.
The object has a pre-computed shape, designed using techniques described in this chapter,
which was then realized by 3D-printing and illuminated with a directed light source (plus weak
ambient). Bottom: an oblique view of the object. Middle and top: a top view, with the essential
difference being that we moved the directed source to a different position. It is implausible that
a human viewing the top image would infer the correct surface.
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Figure 6.2: Triangulation around a vertex.

6.2 Exact SFS for polyhedra by homotopy

In this section we examine polyhedral SFS. The problem was first formulated by Horn [74].

Iterative procedures were proposed by Sugihara [183] and Lee and Kuo [116]. Penna [145]

dealt with perspective projection. Yang et al. [213] highlighted the possibility of multiple

solutions. Shimodaira [172] applied the DIRECT (dividing rectangles [82]) solver, which could

be the only previous work with a solution guarantee. However, space-partitioning techniques

tend to slow considerably as the dimension grows [179], require initial range estimation for the

variables, and multiple solutions were not considered.

Since the problem can be formulated as a polynomial system, it is natural to apply ho-

motopy solvers [179]. These solvers start with a structurally similar polynomial system for

which all complex solutions are known, and trace the solutions as the system is continuously

deformed to the desired polynomial system. Homotopy solvers guarantee “with probability 1”

finding all complex solutions without requiring an initial guess, they scale with problem di-

mension better than space-partitioning methods, and are parallelizable. Modern solvers can be

considered reliable, although rare breaking cases exist. See [179] for in-depth discussion and

comparison to Gröbner basis and resultants. Previous applications of parameter continuation

to SFS include real continuation [57], graduate decrease of smoothness [185] and continuation

through scale space [156]. Watson [203] mentions early work related to homotopy and SFS

that we were unable to find.
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Assume the surface is a triangular mesh, and consider a particular vertex v0 and its k

neighbors v1, . . . ,vk counter-clockwise as in figure 6.2. To simplify notation we shift the

coordinates so that v0 = (0, 0, 0). The normal to a triangle (v0,vi,vi+1) is proportional to

vi×vi+1 = (yizi+1− yi+1zi, xi+1zi −xizi+1, xiyi+1−xi+1yi). Dividing by the last coordinate

we get

− pi =
yizi+1 − yi+1zi
xiyi+1 − xi+1yi

, −qi =
xi+1zi − xizi+1

xiyi+1 − xi+1yi
. (6.4)

Substituting in (6.2) for every triangle, we get k quadratic equations in z1, . . . , zk (xi,yi are

known from the image). If the system is generic, there are at most 2k real solutions, which for

small k can be found by a homotopy solver.

After solving for the possible configurations around each (internal) vertex, we prune the

solutions. Configurations violating (6.3) or whose neighboring vertices have no compatible

configuration are discarded. Then we need to solve a constraint satisfaction problem (CSP) to

identify all consistent global solutions. Luckily, often an assignment of a configuration at a ver-

tex and its neighborhood determines uniquely the configurations of its neighbors and therefore

a simple assignment propagation and backtracking algorithm finds all global solutions.

Polyhedral SFS by homotopy is demonstrated in figure 6.3. The input contains 1143 trian-

gles. Their vertices were randomly jittered to ensure generic systems. We used the homotopy

solver HOM4PS-2.0 [118] to successfully find both solutions.

Note that theoretically it is also possible to solve for the light source, by writing the systems

of the neighbors of a triangle together and forming a system of quartic equations with the

condition a2 + b2 + c2 = 1. This is practical only if the number of neighbors is small.

Unfortunately, the method described is sensitive to noise. Even 1% of intensities perturba-

tion can lead to systems whose all solutions are complex. One might form the sum of squares

of (6.2), take the partial derivatives and find all stationary points. This leads to k cubic equa-

tions, with up to 3k solutions. Although solutions can be pruned, there still might be a large

number of candidates. Given that for noisy systems it is harder to determine which neighboring

configurations are compatible, the result is a much harder CSP.



CHAPTER 6. POLYNOMIAL SHAPE FROM SHADING 97

Figure 6.3: SFS of a polyhedron by homotopy. Left: synthetic Lambertian image with
L = (0, 0, 1) of triangulated vase [147]. Right: the two solutions found by the algorithm.
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The problem with noisy data should be no surprise. It is known that local SFS methods,

such as Pentland’s method [75] that assumes the surface is locally spherical, give unreliable

normal estimates in presence of noise. The polyhedral case is similar, since image intensities

information is available in a local neighborhood around each vertex. Furthermore, as the mesh

resolution increases, we expect the intensities around a vertex to become nearly uniform, and

hence the configuration around a vertex will inevitably become ambiguous. Note also that

there is evidence that humans find SFS of triangulated meshes difficult [176]. However, in

a controlled environment with a photometrically-calibrated camera, it might be possible to

minimize the effect of noise by averaging the image intensities over each planar face.

6.3 Iterative procedure

In this section we present two technical improvements to global iterative SFS methods. These

methods, e.g. [75, 147, 185], minimize the sum of squares of (6.2) over a grid. Denote by

z the heights of all grid points arranged as a column vector, and let pij = zi+1,j − zij ,

qij = zi,j+1 − zij be the discrete partial derivatives of the surface. To avoid specifying any

boundary conditions, for an M ×N image we solve for z on an extended (M + 1)× (N + 1)

grid (the (M + 1, N + 1) pixel is redundant). Then (6.2) becomes

[
z2i,j, z

2
i+1,j, z

2
i,j+1, zi,jzi+1,j, zi,jzi,j+1,

zi+1,jzi,j+1, zi,j, zi+1,j, zi,j+1, 1
] · uij = 0 ,

(6.5)

uij =
[
2I2ij, I

2
ij − a2, I2ij − b2, 2a(a+ b)− 2I2ij,

2b(a + b)− 2I2ij,−2ab,−2c(a + b), 2ac, 2bc, I2ij − c2
]T

.

(6.6)

Eq. (6.5) and (6.6) can be written in the form

rij = zTAijz+ eTijz+ hij = 0 , (6.7)
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with symmetric Aij . Let r(z) =
[
r11, . . . , rMN

]T
. The sum of squared errors is

F (z) = ‖r‖2 . (6.8)

The Jacobian matrix of r has the rows

Jij = 2zTAij + eTij , (6.9)

and the gradient is simply

∇F = 2JT r . (6.10)

Minimization of a general multivariate quartic is NP-hard [124, 151]. However, a useful

property of polynomials is that exact line search takes linear time. Substituting z = z0 + αd

in F (z), where z0 is the current point and d is any search direction, we get a univariate quartic

in α, whose global minimization involves solving a cubic equation in α. Experience in nu-

merical analysis suggests that exact line search often requires less function evaluations and a

smaller number of iterations than inexact line search procedures. In addition, the algorithm

is less likely to be trapped in a poor local minimum. Although very natural and easy to im-

plement, we are not aware of previous applications of exact line search to SFS, or embedding

problems like [204].

A smoothness term is often added to widen the basin of attraction for convergence and

suppress oscillations. The most common regularizer measures thin-plate energy, which inte-

grates the squared second derivatives of the surface. A problem with this regularizer is that

it will strive to flatten regions of varying intensities or edges where the surface cannot be flat.

In [63,77] it is proposed to down-weight the smoothness term by a measure of intensity change.

That smoothness term frees the surface to bend where intensity is varying, but does not enforce

folding explicitly. In addition, reducing the smoothness term allows surface oscillations, as

will be explained in section 6.5.
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Instead we define a new smoothness term that mitigates these problems. Consider two

neighboring pixels with normals (−p1,−q1, 1), (−p2,−q2, 1) and intensities I1,I2. The small-

est possible angle θ between these normals satisfies

cos(θ) = cos(arccos(I1)− arccos(I2))

= I1 · I2 +
√
1− I21 ·

√
1− I22 .

(6.11)

For nearby pixels on a smooth surface, and for pixels with large intensity difference, it is

reasonable to expect that the angle between the normals is close to the minimal possible θ, i.e.

cos(θ) ≈ p1p2 + q1q2 + 1√
1 + p21 + q21

√
1 + p22 + q22

. (6.12)

Plugging in the Lambertian assumption (6.1) and multiplying by the denominator we define

the smoothness term as another quartic in z

S(z) =
∑(

(p1p2 + q1q2 + 1)I1I2 − cos(θ)(−ap1 − bq1 + c)(−ap2 − bq2 + c)
)2

.

(6.13)

Our complete algorithm minimizes F (z) + λS(z) using conjugate gradient with exact line

search, and reduces λ gradually. The method is demonstrated in figures 6.4 and 6.5.

In the algorithm above we ignored the non-negativity constraint (6.3). It is possible to take

it into account by minimizing

∑(
(1 + p2 + q2)I2 − (−ap− bq + c)2 sign(−ap− bq + c)

)2
. (6.14)

The exact line search requires sorting α according to where the terms switch signs, and search-

ing for the minimum of the quartics in each intermediate interval. The coefficients of these

quartics can be accumulated as the line is traversed. This usually makes insignificant differ-

ence for images without shadows.



CHAPTER 6. POLYNOMIAL SHAPE FROM SHADING 101

Figure 6.4: SFS of the synthetic penny [147]. The source surface (upper-left), of size 128×128,
generates the input image (middle-left) with L = (0, 0, 1). Our iterative method, initialized
from a section of a sphere, produced the surface on the right. The computed surface generates
the lower-left image. While the 3D surfaces are different, the RMS of the images difference is
only 0.008, and the maximal absolute difference of intensities is 0.117.
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6.4 SDP relaxation

While iterative techniques with exact line search are effective, often there exist initial guesses

that lead to suboptimal local minima. This motivated us to look at the completely different ap-

proach of convex relaxations, which guarantee convergence to a global minimum of a related

problem. Convex relaxations have been recently applied to embedding problems from geo-

metric measurements of distances and angles. For instance, Biswas et al. [12, 13] applied SDP

relaxations to localization problems in sensor networks. We can think of the SFS problem as a

similar geometric embedding problem, where the goal is to embed the points in depth such that

the angles between the surface normals and the light source direction comply with the image

brightness values.

In this section we derive a Lasserre-type SDP relaxation to SFS. Comprehensive theoretical

background on the topic can be found in [114]. The basic idea is to introduce new variables

for products of variables (lifting) so that non-convex terms become linear. Additional positive-

semidefinite constraints are added to capture relationships between all variables and tighten

the approximation. Since full relaxations are very expensive, scalability is achieved via sparse

relaxation [125, 201]. The semidefinite constraints are defined on cliques, which in our case

are just unit triangles.

We begin by defining the notation for the independent variables of the problem. For

each point (i, j) we use an extended set of variables: xrst
ij ideally corresponds to a monomial

(zij)
r · (zi+1,j)

s · (zi,j+1)
t. Here, r,s,t are nonnegative integers, r+ s+ t ≤ 2d, and d is called

the relaxation order. In this notation xk00
ij ,x0k0

i−1,j and x00k
i,j−1 refer to the same variable corre-

sponding to (zi,j)
k, k = 1 refers to the surface height at point (i, j), and x000

ij is the constant 1.

These variables are arranged into moment matrices as follows.

Let (r1, s1, t1) = (0, 0, 0), (r2, s2, t2), . . . , (rD, sD, tD) be an enumeration of all r, s, t such

that r + s + t ≤ d and D =
(
d+3
3

)
= O(d3). For each image pixel, we would ideally like to
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represent the constraint that the following matrix

[
1,xr2s2t2

ij , . . . ,xrDsDtD
ij

]T
·
[
1,xr2s2t2

ij , . . . ,xrDsDtD
ij

]
(6.15)

is a positive semidefinite rank-one matrix. This condition is not convex in the problem vari-

ables. Instead, we use a convex relaxation. For each image pixel, a positive semidefinite

constraint is defined on a D ×D moment matrix whose elements are independent variables

[
Mij

]
m,n

= xrm+rn,sm+sn,tm+tn
ij ,

[
Mij

]
1,1

= 1 . (6.16)

Ideally, Mij would be equal to (6.15).

The SDP relaxation for non-shadowed pixels is

min
(∑

ij

trace(Mij) +G · ε
)

s.t. (6.17)

(a+ b)x100
ij − ax010

ij − bx001
i,j + c ≥ 0 (6.18)

− ε ≤ [xr+2,s,t
ij ,xr,s+2,t

ij ,xr,s,t+2
ij ,

xr+1,s+1,t
ij ,xr+1,s,t+1

ij ,xr,s+1,t+1
ij ,

xr+1,s,t
ij ,xr,s+1,t

ij ,xr,s,t+1
ij ,xr,s,t

ij

] · uij ≤ ε

(6.19)

∑
ij

x100
ij = 0 (6.20)

Mij 
 0,

[
Mij

]
1,1

= 1. (6.21)

In the system above, equation (6.18) is the constraint (6.3) written using discrete differences for

p, q. Equation (6.19) is derived by multiplying (6.5) with monomials (zij)r · (zi+1,j)
s · (zi,j+1)

t

for all nonnegative integers r, s, t such that r + s+ t ≤ 2d− 2. uij are vectors of constants

as in (6.6), and ε is a slack variable. Condition (6.20) fixes the global depth ambiguity in

orthographic projection. Equation (6.21) is the positive semidefinite constraint from (6.15).
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The objective (6.17) minimizes the sum of traces and G times the slack variable ε. G is the

total number of diagonal elements in all moment matrices, which is a constant for a specific

problem. Ideally, the matrices Mij should be rank-one. Trace minimization is a commonly

used approximation to rank minimization [44].

The resulting SDP problem is solved in polynomial time without an initial guess by a

SDP solver. Currently we extract the solution simply from x100
ij . Note that this extraction

procedure could fail in case there are multiple solution. Since the problem is convex, the

matrices Mij could be convex combinations of solutions. For example, when L = (0, 0, 1), a

combination between the solutions z(x, y) and −z(x, y) yields x100
ij = 0. A similar solution

extraction with a random perturbation is described in [201], and applied to PDEs with boundary

conditions [125]. Also note that Lasserre’s condition for convergence as d → ∞ in [113] does

not hold for our sparse relaxation. However, only small orders d are practical anyways. A

solution extraction scheme for dense relaxations is described in [69], but does not extend easily

to sparse relaxations with noisy input.

The iterative and SDP procedures are compared in figure 6.5 on real images of cloth (upper

two) and sugar (lower three). The intensities were linearly transformed to the range [0,1]. Since

the light source direction is unknown, we sampled 100 light directions using the spherical spiral

method [6], ran the iterative algorithm, and kept the best light for each image. Though more

expensive, this approach is more robust compared to estimating the light directly from the

images or adding the light as a parameter to the optimization. The initial state for the iterative

method was z = 0. The SDP results were obtained from low-resolution images (18×24) using

the same light sources and relaxation order d = 2. The SDP solver we used is DSDP5.8 [9],

interfaced with YALMIP [123]. For the iterative method, the RMS errors in reconstructing the

input images are all below 0.01. RMS errors for the SDP method are (top to bottom): 0.06,

0.07, 0.09, 0.07 and 0.14.
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Figure 6.5: Surface reconstruction by the iterative (left) and SDP (right) methods. In the
middle, the top two images are source images. The bottom images are renderings of the left
and right surfaces. At black points in the SDP solutions condition (6.18) equals zero.
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6.5 Generating SFS ambiguities

In this section we explore generating SFS ambiguities, i.e. substantially different surfaces that

have identical Lambertian images. Our main goal is to provide researches a better way to

study surface priors. Instead of defining a shape prior and running a SFS algorithm, a good

prior should first be able to pick the correct surface from its ambiguous counterparts. We

can also envision a future application in surface inspection, where by inspecting the space of

ambiguous shapes, possibly with few known anchor points, one can position the light source

so that ambiguous deviations are tolerable.

Previously, SFS ambiguities were encountered when SFS algorithms converged to the

wrong surface, or in mathematical analysis of simple shapes such as planes and spheres [38,

108]. A recent work by Kemelmacher-Shlizerman et al. [92] studied Mooney faces generated

by thresholding Lambertian images. They showed that different surfaces can have an identical

isophote (iso-intensity contour) and an identical binary image. Another related ambiguity is

the bas-relief [7, 207], which technically involves small changes in albedo.

SFS ambiguities can arise from micro-perturbations, e.g. placing a pyramid reflecting the

desired intensity at every pixel [5]. These surfaces are uncommon. On the other extreme,

smooth surfaces can also be ambiguous. For instance, a single-intensity image can arise from

a plane or a cone whose axis is aligned with the light direction. Moreover, such cones can

be reflected and stitched together, as shown in figure 6.6, creating a wavy surface. In general,

a uniform-intensity image comes from a ruled surface [108]. Note that these surfaces can be

very smooth. Furthermore, Freeman’s generic light source assumption [50] cannot distinguish

between a plane and such a cone.

For any surface whose image is clipped to just a patch, the SFS equations represent a PDE

without boundary conditions. The lack of these boundary conditions gives rise to ambiguities.

These ambiguities have been examined in the past for the continuous SFS equation [108]. We

show below these ambiguities exist in the discrete case using the implicit function theorem.
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Figure 6.6: Shading ambiguities of uniform-intensity images. Top: interlaced cone sections
with the same opening angle whose axes point in the light direction will generate a uniform in-
tensity image. Bottom: some eigenvectors of J for the flat surface z = 0 with L = ( 1√

2
, 0, 1√

2
).

Theorem 1 (Implicit function theorem) Suppose that G : IRm × IRn → IRn is continuous and

has continuous partial derivatives. Suppose that G(x0, y0) = 0 and det
[
dGi

dyj
(x0, y0)

]
n×n

�= 0.

Then there exists a neighborhood U ⊂ IRm of x0 and a function g : U → IRn such that

G(x, g(x)) = 0 ∀x ∈ U . Furthermore, g and its first partial derivatives are continuous

on U .

Consider a solution z0, i.e. F (z0) = 0 and r(z0) =
[
0, . . . , 0

]T
. We will apply the implicit

function theorem to the function r(z) : IR(M+1)(N+1) → IRMN . Note that the Jacobian matrix

J = dr
dz
(z0) in (6.9) isMN×(M+1)(N+1). Assume further that J has full column rank. Then

we can choose MN independent columns of J to form the “y” part in the implicit function the-

orem, and the rest of the columns will form the “x” part. The implicit function theorem implies

that there exists an (M + N + 1)-dimensional manifold of solutions in an ε-neighborhood of

z0. While the theorem guarantees solutions only in arbitrarily small neighborhoods, in many

cases the ambiguity can be very substantial (see figures 6.1,6.7 and 6.8).

Next we describe how to generate numerically an ambiguous surface z from a given surface
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Figure 6.7: Artificially generated shading ambiguity. Top left: initial cylindrical surface. Top
right: the null vector of J. Bottom: 3D-print of the computed surface (right) generating the
same image of a cylinder (left).
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Figure 6.8: Artificially generated shading ambiguities of a Lambertian sphere cut by a plane
(top left). The lower five surfaces, produced by our algorithm, generate very similar images
when illuminated by the same light source L = (0.25, 0.433, 0.866).



CHAPTER 6. POLYNOMIAL SHAPE FROM SHADING 110

solutions
manifold
F (z) = 0

step in direction v,
null vector of J

step orthogonal
to v

z0
z1

z0 + αv

Figure 6.9: Generating a solution z1 from a known solution z0.

z0 and a light source L. The idea is illustrated in figure 6.9. Starting from a solution z0

of the SFS equations, we take a large step that would change the image as little as possible.

Consider the second order approximationF (z0 + v) ≈ F (z0) +∇F (z0)
Tv + 1

2
vT∇2F (z0)v.

Note that F (z0) = 0, ∇F (z0) = 0. The Hessian at such a point is ∇2F (z0) = 2JTJ. Hence,

a desired direction v is a null vector of J. Taking the step z = z0 + αv, we get away from

the solutions manifold. Applying our iterative procedure of section (6.3) with the constraint

vT (z− (z0 + αv)) = 0 we get to a point z1 on the solutions manifold. This constraint ensures

that we won’t get close to z0. In our implementation, at each iteration we project the conjugate

gradient search directions d so that d · v = 0. A step size α is searched so that it is large and

yet returning to the manifold is still possible.

It remains to describe how to compute the null vectors of J. Note again that the matrix

J is MN × (M + 1)(N + 1) and therefore large, sparse, and has at least M + N + 1 null

vectors. This can be exploited in a divide-and-conquer scheme. We partition the image to four

roughly equal blocks I =

⎡
⎣ I1 I2

I3 I4

⎤
⎦, and compute bases B1,B2,B3,B4 for the null spaces of

J restricted to each block recursively (svd is used for small images). For a M
2
× N

2
subimage,

we form its restricted Jacobian on a (M
2
+1)× (N

2
+1) extended grid, making it rank-deficient.

Each column of the basis matrices B1,B2,B3,B4 has (M
2
+1)(N

2
+1) entries that correspond

to heights on the extended subimages. The bases B1,B2,B3,B4 overlap on the middle row
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and column of I . We stitch these bases together to form a basis B for the null space of J by

finding linear combinations of the null vectors that match on the overlapping pixels of I . Let

B̂1, B̂2 be the rows of B1,B2 that correspond to their overlapping pixels along the middle

column of I , and let

[
W1

W2

]
be the null space of

[
B̂1 −B̂2

]
. Then B1W1 combined with

B2W2 give a basis for the null space of J restricted to
[
I1 I2

]
. We combine B3,B4 and then

the upper and lower parts in a similar way. Finally, we orthogonalize the resulting null space

matrix B.

It is convenient to sort the null space by smoothness from low to high frequency. We build

a matrix C that measures smoothness by applying the filters
[
1,−2, 1

]
,
[
1,−2, 1

]T
,

[
1 −1

−1 1

]
at every pixel. Let V be the sorted right-singular vectors of CB. Then the matrix BV contains

the null vectors in sorted order. Some null vectors for a plane and a cylinder surfaces are shown

in figures 6.6 (bottom) and 6.7.

6.6 Conclusions

In this chapter we applied tools specifically designed for polynomial systems to the SFS prob-

lem, both for polyhedral and curved surfaces. Their main advantage is in not requiring bound-

ary conditions. In contrast, many propagation methods (e.g. [1,75,150]) rely on boundary con-

ditions. Other propagation methods (e.g. [216]) rely on the existence of singular points (where

N = L) in the image. While propagation approaches are fast and impressive reconstructions

have been demonstrated, these reliances on the existence of initial information are conceptually

unsatisfactory. In general, we cannot assume knowledge of curved boundaries, and wouldn’t

like the algorithm to completely break down when the singular points are occluded.

The SDP relaxation is a radically different approach to the SFS problem. It is interesting

because convergence to a global minimum of the relaxed problem is guaranteed, without de-

pending on the initial guess. However, the solution of the SDP relaxation does not lead directly

to a solution of the original SFS problem.
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Another method that does not depend on the initial guess is Pentland’s linear SFS [146].

The difference is that under the Lambertian model, the true surface has a positive error in linear

SFS, whereas the SDP relaxation satisfies equation (6.19) with zero slack. Of course, this does

not imply that the SDP relaxation will find the optimal solution, since there might be solutions

in the extended set of variables with lower smoothness or sum of matrix traces. On the other

hand, if an SDP relaxation without smoothness does not have a solution, possibly because we

added incompatible constraints, then we can conclude that some of our assumptions (e.g. light

source direction) were wrong. This is impossible to infer from linear SFS, since the true surface

has a positive error in the linear SFS model.

Additional depth constraints obtained from other depth cues or user interaction can be

added easily to the system. These may include inequality constraints (e.g. (6.3) or front/behind

relationships), which are difficult to incorporate into other methods.

While currently the results of the SFS relaxation are inferior to other SFS methods, it opens

an entirely new direction for future research. At present SDP solvers limit the method to

low-resolution images and low relaxation orders (note the possibility of variable relaxation

orders at different pixels). It is conceivable that the method will do better with large-scale SDP

solvers that will allow higher relaxation orders or incorporate smoothness terms over large

windows. Better exploitation of sparseness, parallelism, and tighter approximations of the full

SDP problem, may allow larger problems to be solved in the future. Other interesting directions

for future research include improving the solution extraction from the moment matrices, and

using the relaxation in a branch-and-bound scheme.

Ambiguities are a serious problem for all iterative SFS methods with no boundary condi-

tions, since the algorithm can start converging to one solution in one part of the image and

a conflicting solution in a remote part. For large and noisy images, this can occur even with

boundary conditions. Therefore, some prior information is needed to choose between solu-

tions. We proposed a new smoothness term for the iterative method, and used the sum of traces

of the moment matrices in the SDP method. These priors are sensible, but obviously not a
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complete answer.

As a first step towards dealing with shading ambiguities, we introduced a method for gen-

erating ambiguous surfaces that produce the same image. This complements previous work on

ambiguity of analytical surfaces, and observations about the convergence of some SFS algo-

rithms to ambiguous surfaces. The ability to visualize the family of ambiguous surfaces may

contribute to better understanding their extent.



Chapter 7

Conclusions

7.1 The big picture in low resolution

Single-image 3D surface reconstruction is a key problem in computer vision. While multi-

view methods can provide depth estimates at some points, single-view cues provide only par-

tial information and raise the problem of surface integration. The challenge in single-view

reconstruction is both to identify the cues in the image and to solve the resulting optimization

problems.

In this thesis we investigated optimization problems in single-image 3D reconstruction. We

examined various types of constraints and formulations for shape from planar curves, shape

from texture, and shape from shading. The constraints were categorized as linear, discrete

or quadratic. Although we studied each case in isolation, they can be combined together.

While there are numerous ways to perform the optimization, we recommend considering the

following possibilities:

• If there is a significant number of linear constraints, solve the linear constraints first to

obtain a low-dimensional linear subspace that contains (or close to) the solution.

• If the number of discrete-ambiguity constraints is small, do exhaustive search on them

or on a small sample.

114



CHAPTER 7. CONCLUSIONS 115

• If a reasonable starting guess is known (e.g. from a recognition module), form the prob-

lem as a quartic (or polynomial) minimization, and try an iterative solver with exact line

search.

• One way to get an initial guess is to form an SDP relaxation from the discrete ambiguity

constraints or the continuous quadratic constraints. In cases where multiple solutions are

possible, a suitable regularization term or a symmetry-breaking term should be included.

The relaxation can be used as an initial guess for an iterative procedure or local search

refinement.

7.2 Summary of contributions

The main contributions of the thesis are summarized below.

In chapter 3

• We presented a unified analysis for the problem of shape from planar curves, including

planar faces, planar cross sections, straight lines and parallel lines. The same scheme

applies to the analysis of polyhedra, single-view modeling, structured light, and SHGCs.

Previously these cases were treated separately and not in their full generality.

• We presented a characterization of the trivial subspace based on a geometric criterion.

Under this criterion, the cost function is the same for both orthographic and perspective

projections. It yields a more robust method compared to a direct least-squares solution.

We showed empirically that for randomly oriented planes it makes sense to pick a solu-

tion orthogonal to the basic trivial subspace.

In chapter 4

• We formulated the problem of inferring a smooth surface from texture cues as a discrete

decision problem.
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• We applied an SDP relaxation with various rounding heuristics to this problem. Although

the problem is NP-hard, very reasonable approximate solutions can be obtained, even for

instances with over 1,000 decision variables.

In chapter 6

• We applied polynomial-solving techniques to the SFS problem.

– By using a homotopy solver, we showed that exact solutions can be found at a vertex

of a generic polyhedron, and in generic cases this can be extended to a solution over

the entire polyhedron. However, the approach is sensitive to noise.

– We demonstrated the use of exact line search for the SFS problem. The technique

is widely known in the optimization community, yet hardly ever used in computer

vision. It easily applies to many other problems, such as single-view modeling from

planarity and orthogonality constraints.

– We implemented a sparse SDP relaxation for the SFS problem. While currently

the results are inferior to other SFS algorithms, this method does not depend on an

initial guess, and opens a new direction for future research.

• We proposed a method for generating artificial shading ambiguities. This method will

allow researchers to test surface priors on different surfaces that produce the same image.
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