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ABSTRACT

Spoken language understanding (SLU) is one of the main tasks of
a dialog system, aiming to identify semantic components in user utter-
ances. In this paper, we investigate the incorporation of context into
the SLU tasks of intent prediction and slot detection. Using a corpus
that contains session-level information, including the start and end
of a session and the sequence of utterances within it, we experiment
with the incorporation of information from previous intra-session
utterances into the SLU tasks on a given utterance. For slot detection,
we find that including features indicating the slots appearing in the
previous utterances gives no significant increase in performance. In
contrast, for intent prediction we find that a similar approach that
incorporates the intent of the previous utterance as a feature yields
relative error rate reductions of 6.7% on transcribed data and 8.7% on
automatically-recognized data. We also find similar gains when treat-
ing intent prediction of utterance sequences as a sequential tagging
problem via SVM-HMMs.

Index Terms— spoken language understanding, slot detection,
intent prediction, contextual models

1. INTRODUCTION

Spoken language understanding (SLU) is an important part of model-
ing human-computer dialogs, aiming at determining a user’s intents
from their utterances, known as intent prediction, as well as identify-
ing relevant actionable pieces of the utterance, known as slot detec-
tion [1]. For example, given the utterance “Show me Joss Whedon’s
latest movies”, the user’s intent is to see a list of content matching
the query, and “Joss Whedon” fills one slot (director) and “movies”
fills another (media type). Once the intents and slots are determined,
they are passed to the dialog manager which forms a query to the
back-end and determines the response given to the user.

Traditionally, both of these tasks are considered one utterance at
a time by the SLU process (due in part to the fact that gathering the
session data requires a live, deployed system, which is not available
when building the initial SLU models). Both intent prediction and
slot detection systems are given isolated utterances and asked to label
them with the appropriate information as the task requires. This runs
counter to the common means by which these utterances are gathered:
by initiating sessions with users and recording their speech (we can
see these sessions as crude human-computer conversations). Ulti-
mately, each utterance occurs within the context of a larger discourse
between a human and an automated agent. Fig. 1 exemplifies this,
showing a case where the user makes clear references to previous
utterances or the system’s responses to the same.

In this paper, we examine the effect of incorporating information
from previous intra-session utterances, to which we refer broadly
as context, into both intent prediction and slot detection. Context is
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Source Utterance

Transcribed tv shows like buffy the vampire
slayer

Recognized tv show with play buffy the
vampire slayer

Table 1. An example of noise due to ASR. In this case, it is difficult
to correctly determine the correct intent (“find similar content”) from
the recognized utterance alone.

an important viable source for new information, which is especially
important in the case of noisy automatically-recognized data. For
example, the true (transcribed) utterance in Table 1 contains the word
“like”, which would strongly indicate the “find similar content” intent,
but this word is lost during the automatic recognition process. This in-
herent noise in the ASR process makes any alternative hints extremely
valuable; in such situations the context may provide additional in-
formation that may help find the correct intent. Traditionally, it has
been the dialog manager’s role to handle the utterance in context, but
incorporating this information earlier (during SLU) can help avoid
cascaded errors further down the pipeline.

We investigate two different approaches for integrating context
into SLU for intent and slot determination: (i) modeling sessions as a
sequence for classification; and (ii) feature engineering. We perform
several experiments on both transcribed and automatically-recognized
utterances. Using conditional random fields for slot detection, we
find that incorporating features based on the appearance of slots in
previous utterances yields no significant benefit. In contrast, we are
able to increase the performance of intent prediction based on both
classification and sequential tagging systems. We demonstrate higher
reductions in error rate over automatically-recognized data, and find
that the classification and sequential tagging approaches perform
equally in this regard.

2. BACKGROUND

2.1. Intents and slots

Intents are global properties of utterances. Intents signify the goal of
the user and vary across domains, but ultimately, a dialog system must
at some point make a determination as to what a user wants given
an utterance. This is of particular relevance to command-and-control
systems, where each utterance signifies a command upon which
the system is to act. To provide an analogy grounded in software
development, intents map roughly to functions that are meant to be
called: if the intent is detected to be “find content”, call the relevant
find content function.

Intent prediction has traditionally been modeled as an utterance
classification task, mainly using local information about the utterance.
Early work with discriminative classification algorithms was con-
ducted on the AT&T HMIHY system, using for example boosting [2]



U Intent Transcribed Recognized

u1 get clip show me the [firefly]content−name
[trailer]type

show me the [firefly]content−name
[trailer]type

u2 find info who directed [it]content−name−ref who directed [it]content−name−ref

u3 find content what else has [he]director−ref done what else has [he]director−ref done

u4 play content play [the avengers]content−name plane [avatars]content−name

Fig. 1. An example session, including both transcribed and recognized versions of the utterances u1, . . . , u4. Each utterance has an associated
intent, while the slots are shown within each utterance. The slots are annotated on the transcribed data and transferred automatically to the ASR
version.

or max-margin classifiers [3]. Cox [4] proposed the use of general-
ized probabilistic descent (GPD), corrective training (CT), and linear
discriminant analysis (LDA).

Slots, on the other hand, exist within utterances. Slots are local
properties in the sense that they span individual words rather than
whole utterances. In the context of human-computer dialogs, and
in particular command and control, the words that fill slots tend
to be the only semantically loaded words in the utterance (i.e.,
the other words are function words). Slots represent actionable
content; continuing the software development analogy, slot values
map to values passed as function parameters: we would pass the
value “Joss Whedon” to the “director” parameter, for example as
find content(director=‘Joss Whedon’).

Slot detection in SLU has commonly been approached using
a classification method for filling frame slots given an application
domain. These approaches include, among others, generative mod-
els such as hidden Markov models [5], discriminative classification
methods [6, 7, 8], and probabilistic context-free grammars [9, 10].

2.2. Session modeling

In the dialog manager, belief-state update is a common method for
modeling context. One of the earliest statistical approaches to multi-
turn interpretation was the statistical discourse model by Miller et
al. [11] that introduced a mapping from the pre-discourse meaning
and the previous meaning (as determined after the previous user turn)
to the post-discourse meaning. Later on, Levin and Pieraccini [12]
proposed using Markov decision process (MDP) as a dialog model.
However, MDPs assume that dialog states are observable, so they do
not account for any uncertainty in the dialog history or the user state.
The application of partially-observable Markov decision processes
(POMDP) was suggested for dialog modeling [13] to handle uncer-
tainty. Thomson [14] used dynamic Bayesian networks and separated
the belief estimation based on observations till the current time from
the estimation of the optimum action.

In this paper, similar to dialog modeling, we focus on leveraging
context, but at the level of SLU modeling. Considering context at the
SLU level is important for several reasons:

• As the SLU process occurs earlier in the dialog system’s ar-
chitecture, errors during SLU can be cascaded throughout the
rest of the system. Any improvements to the SLU will help
minimize overall system error.

• Not all conversational applications require dialog modeling;
in the traditional architecture, such cases would miss out on
contextual information.

• Similarly, other downstream applications can benefit from
improved SLU performance

• Where other dialog system components can be very tied to
specific application scenarios and subject to revision based
on changes in knowledge sources or user interface, general
contextual SLU can be insulated from such sensitivities.

3. METHOD

3.1. Session data

Our session data are internally collected from real-use scenarios of a
spoken dialog system. We focus here on the domain of audiovisual
media, including movies and television shows. The user is expected to
interact by voice with a system that can perform a variety of tasks in
relation to such media, including (among others) browsing, searching,
querying information, and playing.

In total, our corpus has a total of 27565 utterances split into 6390
sessions. There are 28 possible intents and 26 possible slot types. The
most frequent intents include find content, play content, find similar,
filter, and start over; top slot types include content name, content
type, genre, stars, and content description.

Our corpus consists of a series of utterances, where each utterance
belongs to a particular session. Each utterance is annotated with the
intent as well as slots occurring in the utterance. Our corpus contains
both transcribed (TRA) and speech-recognized (ASR) versions of
the utterance; since the intent is a global property of the utterance, it
applies trivially to both versions. We transfer the correct slots from
TRA to ASR using the word-by-word alignment of hypothesized
words to the reference transcriptions. Once the words are aligned,
labels are transferred from the reference to the hypothesized words.
Since some tokens may be lost in this step (for example, a slot-
initial word deleted in the ASR output), we normalize annotations
on the ASR side in order to obtain a well-formed set. Fig. 1 shows
an example session consisting of four utterances with both TRA and
ASR versions along with the intents and slots.

3.2. Learning approaches

The work in this paper employs three machine learning methods:
Support vector machines (SVMs) [15], in their most basic for-

mulation, are a binary classification method based on the intuition
of maximizing the margin around the classification boundary. SVMs
have seen extensive use for language tasks, owing to their simplicity
of use, ability to incorporate many features, and strong performance.
SVMs can also be extended for multi-class scenarios and can be used
with non-linear kernels. We use linear kernels as provided in the very
fast LIBLINEAR [16] package, which allows for multi-classification.

SVMs can also be applied to structural prediction. In particular,
we consider their application to the training of hidden Markov mod-



els (SVM-HMMs) [17]. In contrast to standard (generative) HMMs,
this method allows for the incorporation of numerous (potentially
long-range) features. SVM-HMMs solve the following optimization
problem:
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observation sequence i, yi = (yi1, . . . , y
i
j) is the correct tag (hidden

state) sequence corresponding to xi and ξi are the slack variables
for each input data point that measure the degree of misclassifica-
tion of the data xi and help if the problem is not linearly separable.
The candidate tag sequences y = (y1, . . . , yj) are generated using
the Viterbi algorithm. Φ is a feature function that returns a vector
consisting of two components: a feature vector constructed from the
observation state (as (1) a feature vector constructed from the ob-
servation state as specified by the user; and (2) a vector of binary
transition features, having one feature for each possible hidden-state
transition with all of them set to 0 except for the one corresponding
to the transition (yij−1, y

i
j) given to Φ. ∆ is a loss function equiva-

lent to the number of incorrect tags in the candidate sequence y. As
with regular SVMs, SVM-HMMs have been shown to work well on
language tasks [18, 19, 20, 21]. We use the SVMhmm package1.

Lastly, conditional random fields (CRFs) [22] are discrimina-
tive (conditionally-trained) graphical models that have been used
effectively for sequence labeling tasks, a standard example of which
is part-of-speech tagging. CRFs also allow the incorporation of many
more features than is possible with HMMs. Using similar notation as
with SVM-HMMs above, CRFs define the conditional probability of
y as:
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where φt(·) is the local potential function represented with maximum
cliques of the graph. The partition function Zw(x),
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where w is the weight vector and fk1 (yt, xt) and fk2 (yt, yt−1) are fea-
ture functions that encode topics (slots) of the current word and state
transitions in sequence at the current index t. We use the CRFSGD2

package [23] for our CRF implementation.

3.3. Incorporating contextual information

For both intent prediction and slot detection, we aim to incorporate
information from the previous utterance. In particular, for each task,
we aim to incorporate the values of that task on the previous utterance
in the session.

1http://www.cs.cornell.edu/people/tj/svm_light/
svm_hmm.html

2http://leon.bottou.org/projects/sgd
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Fig. 2. Slot detection as a sequential tagging problem with CRFs.
Hidden states are shown shaded.
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Fig. 3. Contextual intent prediction as a sequential tagging problem
with HMMs. Hidden states are shown shaded.

For slot detection, which we treat as a sequential tagging problem
as shown in Fig. 2, we apply CRFs. The baseline implementation uses
lexical features consisting of unigrams in a five-word window around
the current word. To incorporate contextual information, we add
binary features for all possible slot types that might have occurred in
the previous utterance. The features corresponding to slots occurring
in the previous utterance are set to 1 while all others are set to 0.

For intent prediction, we try two separate approaches. First, we
treat it as an utterance classification problem, with our baseline using
bag-of-n-gram features to train an SVM. In this case, we can add
context by adding additional features to indicate the intent of the
previous utterance. We have one new feature for each possible intent,
with the one corresponding to the intent of the previous utterance set
to 1 and all others set to 0. We also include a feature that indicates
that the given utterance is the first in the session, which handles the
case that there is no previous utterance.

Second, we can treat intent prediction as a sequential tagging
problem, as shown in Fig. 3. Each utterance is a candidate to be
tagged, with the utterances occurring in sequence as defined by the
session. We use SVM-HMMs in this case, as they allow for easier
processing of sparse feature vectors.

4. EXPERIMENTS

4.1. Setup

The data corpus described above in Section 3.1 is split into training,
development, and test sets comprising 80%, 10%, and 10% of the
full corpus respectively. The test set is held out and used only for
evaluation. We use the development set to tune hyperparameters, and
then merge it with the training set to train the final model used for
testing. We report the results on the held-out test set here.

For the slot detection (CRF) and intent prediction (SVM classifi-
cation) cases, we aim to incorporate information from the previous
utterance into the task on the current utterance. We aim to gauge
both the overall potential of incorporating information from previous
utterances as well as testing this idea in a real-world scenario. Consid-
ering first intent prediction, this leads us to test two alternative cases:
first we test the inclusion of the previous utterance’s intention with
the intent drawn directly from the corpus; this roughly represents an
upper bound on how much improvement we can hope to achieve by

http://www.cs.cornell.edu/people/tj/svm_light/svm_hmm.html
http://www.cs.cornell.edu/people/tj/svm_light/svm_hmm.html
http://leon.bottou.org/projects/sgd
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Fig. 4. Slot detection F1-score with context size, showing a statisti-
cally insignificant increase in performance for immediately previous
utterances and decreases in performance for larger context windows.

incorporating contextual information in this way.
Second, we test the more realistic case where the previous intent

is instead generated by an intent prediction model. This second case
requires that first a model is trained without any contextual features;
this model is then used to generate hypothesized intents that can be
used to train a new model. Note that this requires care to be taken in
terms of experimental architecture: the first, non-contextual model,
when trained on the training set, will obviously produce excellent
results when evaluated on the training set (which is required to pro-
duce the hypothesized intents for training the subsequent contextual
model). To produce realistic results, we generate the hypothesized
intents by splitting the training set into 10 folds. We then succes-
sively hold out one fold and train a (non-contextual) model on the
remaining folds, and then evaluate on the held-out fold. The results
are all merged together to produce hypothesized intents for training
the subsequent contextual model.

The same process is repeated with slot detection, but of course
with slots and slot detection models rather than intents and intent
prediction models. Note that this methodology emulates a real-world
two-stage model in which a first stage predicts (comparatively) naive
outputs, while the second stage incorporates the outputs for previous
utterances from the first stage.

Note that the SVM-HMM method for intent prediction does not
require the above considerations. In effect, it is most comparable to
the SVM experiments that use the predicted previous intent, as it does
not use the actual previous intent during test time at all, only its own
predicted intents.

4.2. Slot detection

Fig. 4 shows the results for slot detection. Here, we consider the
effect of including slot types appearing in the previous n intra-session
utterances. We evaluate the slot detection performance using the
F1-score, which is defined in terms of precision P and recall R as
F1 = 2PR

P+R
. Ultimately, while we see a small increase looking at

the previous two utterances, these are insignificant, and performance
decreases if we look further back than that.

4.3. Intent prediction

Table 2 shows the results for intent prediction, evaluated using ac-
curacy over all utterances in the test set, of the SVM with either
the lexical features only or the lexical features combined with the
previous intent features (for both oracle and actual previous intents).
As expected, we see a drop in accuracy on the ASR data compared to

TRA ASR

LEX 97.1 93.1
ORCLPREV 97.3 93.9
PREDPREV 97.3 93.7

Table 2. Utterance accuracies in percentages for intent prediction.
LEX indicates lexical features only; ORCLPREV indicates lexical
features plus the oracle (actual) intent of the previous utterance;
and PREDPREV indicates lexical features plus the predicted intent
of the previous utterance. TRA indicates the corpus of transcribed
utterances while ASR indicates the corpus of ASR outputs.

the TRA data due to the additional noise in and hypothetical nature
of the ASR outputs. As for the effect of incorporating the previous
intent, we see a 6.7% error rate reduction over the TRA baseline
and an 8.7% error rate reduction over the ASR baseline. Combining
these results with the fact that the predicted-intent accuracies are very
close to the oracle-intent accuracies, we can see that this approach of
incorporating the previous intent is indeed effective.

Lastly, we compare the simple additional-feature approach to the
more complex SVM-HMM modeling method. We find no statistical
significance between the SVM-HMM and the SVM with predicted
previous intents; so while the SVM-HMM provides an improvement
over using lexical features only, SVMs are a better choice due to their
lower modeling complexity and commensurate speed.

Furthermore, it’s important to note that the SVM-HMM result
is an unrealistic scenario, although for different reasons than the
oracle-intent scenario for the vanilla SVM. The SVM-HMM approach
uses the Viterbi algorithm, which looks through the whole session
(including “future” utterances) to determine the best overall intent
sequence. Obviously, during real-world use, we do not have access to
the full session, so even this result is an upper bound for the SVM-
HMM’s performance for this task.

Lastly, we note that the success of our approach to contextualizing
intent prediction makes sense in light of the effect of the previous
intent on the distribution of current intents. For example, 87% of
first utterances in a session are annotated as having the “find content”
intent, but this drops to 49% if the previous utterance was also a
“find content” utterance. Similarly, if the previous utterance was a
“play content” utterance, the most likely (32%) intent for the current
utterance is also “play content”. This very clearly demonstrates the
contextual sensitivity of the intent prediction task.

5. CONCLUSION

In this paper, we examined the effect of adding session context to the
SLU tasks of intent prediction and slot detection. Our simple feature
engineering–based approach involved adding features that indicated
the state (whether slot types or intent) of previous utterances; while
this approach yielded no significant improvement for CRF-based slot
detection, we found significant error rate reductions of 6.7% and 8.7%
for SVM-based intent prediction on transcribed and automatically-
recognized data, respectively. We found a similar increase when intent
prediction was modeled as a sequential tagging problem using SVM-
HMMs. These results indicate that incorporating context into the
SLU process rather than leaving it for the dialog manager is a viable
and effective option. Possible feature work includes experiments
using joint modeling of intent and slots to explore much higher-order
models.
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