Subcategorial considerations in statistical categorial parsing

Aditya Bhargava

Syntactic structure in NLP

Meaning is what we want

When was the dog-wolf genetic split?

between 27,000 and 40,000 years ago

"Text Bob, 'How to recognize speech?"

"Texting Bob, 'How to wreck a nice beach"

I would like eight pizzas, please

मुझे दो पिज्जा चाहिए

Meaning is what we want	
When was the dog-wolf genetic split?	between 27,000 and 40,000 years ago
"Text Bob, 'How to recognize speech?"	"Texting Bob, 'How to wreck a nice beach'"
I would like eight pizzas, please	मुझे दो पिज्जा चाहिए

How can syntax help?

Syntax: a vehicle for semantics

Book a train from Toronto to Montréal

vs.

Book a train from Montréal to Toronto

Categorial grammars (CGs)

- CG categories can "be thought of as a shorthand for the semantics" (Ades and Steedman, 1982)
- Rules have semantic correspondences as well
 - E.g., CCG composition: **B**= $\lambda abc.a(bc)$
- CG derivations carry semantics

CG lexical categories vs. parts of speech

Ν	\mathbf{CC}	\mathbf{PRP}
	$^{ m CD}$	RB
N/N	DT	RBR
NP_{nb}/N	$\mathbf{E}\mathbf{X}$	RBS
(NP NP)/NP	$\mathbf{F}\mathbf{W}$	RP
	IN	SYM
((S NP) (S NP))/NP	JJ	ТО
Conj	JJR	UH
	JJS	VB
NP	\mathbf{LS}	VBD
PP/NP	MD	VBG
	NN	VBN
$(S\NP)\(S\NP)$	NNS	VBP
((S NP) (S NP)) / ((S NP) (S NP))	NNP	VBZ
$(((S\NP)\(S\NP))\((S\NP)))/(P)$	NNPS	WDT
$\left(\left(\left(O\left(1\mathbf{N}\right)\right)\left(\left(O\left(1\mathbf{N}\right)\right)\right)\left(\left(O\left(1\mathbf{N}\right)\right)\left(\left(O\left(1\mathbf{N}\right)\right)\right)\right)\right)$	PDT	WP
	POS	WP\$
	PRP	WRB

CG lexical categories vs. parts of speech

Ν	$\mathbf{C}\mathbf{C}$	\mathbf{PRP}
	CD	RB
N/N	DT	RBR
$\mathrm{NP}_{\mathrm{nb}}/\mathrm{N}$	$\mathbf{E}\mathbf{X}$	RBS
$(NP \setminus NP) / NP$	$\mathbf{F}\mathbf{W}$	RP
	IN	SYM
((S NP) (S NP))/NP	JJ	ТО
Conj	JJR	UH
· · · · · · · · · · · · · · · · · · ·	JJS	VB
NP	LS	VBD
PP/NP	MD	VBG
	NN	VBN
(S NP) (S NP)	NNS	VBP
((S NP) (S NP)) / ((S NP) (S NP))	NNP	VBZ
$(((S\NP)\(S\NP))\((S\NP)))/NP$	NNPS	WDT
	PDT	WP
	POS	WP\$
	PRP	WRB

Statistical LCG & CCG parsing

- LCG parsing: non-statistical only
 - No corpus until LCGbank (Fowler, 2016)
 - Relevance of category structure in proof nets (Roorda, 1991; Penn, 2004; Fowler, 2010)
- CCG parsing: lacking in consideration of category structure
 - Early work in the context of statistical methods for other formalisms (e.g., Hockenmaier, 2001; Clark, 2002)
 - \circ Still-influential statistical CCG parser (Clark and Curran, 2007)

Subcategorial information in CG lexical categories is useful for statistical parsing

Subcategorial information in CG lexical categories is useful for statistical parsing

1. Supertagging with CCG primitives

Subcategorial information in CG lexical categories is useful for statistical parsing

- 1. Supertagging with CCG primitives
- 2. Proof net structure for neural LCG parsing

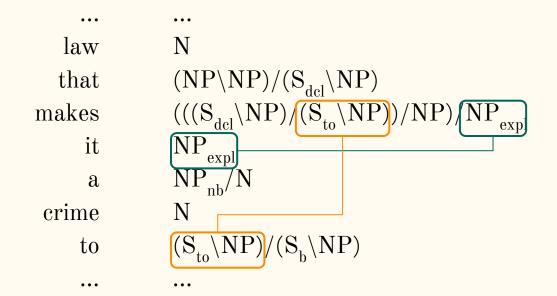
Subcategorial information in CG lexical categories is useful for statistical parsing

- 1. Supertagging with CCG primitives
- 2. Proof net structure for neural LCG parsing
- 3. Decomposed scoring of CCG dependencies

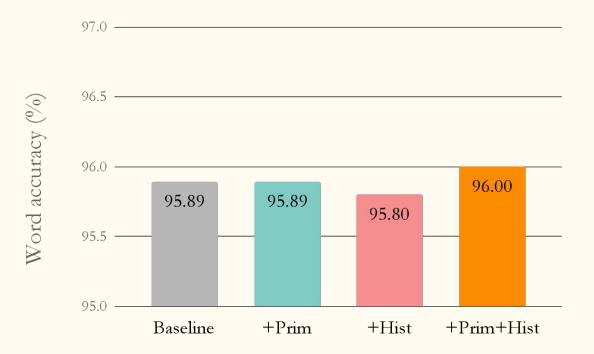
Contributions

- Subcategorial supertagging improves:
 - Supertagging accuracy
 - \circ Parser F_1
 - Parser coverage
- Subcategories allow for more effective use of prediction history
- Enables OOV category prediction

- 1. Supertagging with CCG primitives
- 2. Proof net structure for neural LCG parsing
- 3. Decomposed scoring of CCG dependencies

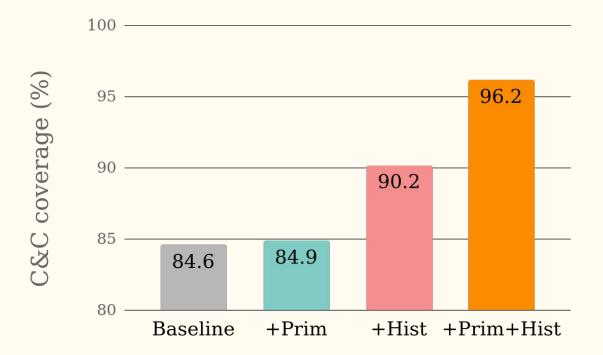

Category internals are useful for supertagging

•••	•••
law	Ν
that	$(\mathrm{NP}\backslash\mathrm{NP})/(\mathrm{S}_{\mathrm{dcl}}\backslash\mathrm{NP})$
makes	$(((S_{dcl} \setminus NP)/(S_{to} \setminus NP))/NP)/NP_{expl})$
it	NP _{expl}
a	NP_{nb}/N
crime	Ν
to	$(S_{to} \backslash NP) / (S_{b} \backslash NP)$
•••	


Category internals are useful for supertagging

•••	•••
law	Ν
that	$(NP \setminus NP) / (S_{dcl} \setminus NP)$
makes	$(((S_{dcl} \setminus NP)/(S_{to} \setminus NP))/NP)/(NP_{exp})$
it	NP _{expl}
a	NP _{nb} /N
crime	Ν
to	$(S_{to} \backslash NP) / (S_{b} \backslash NP)$

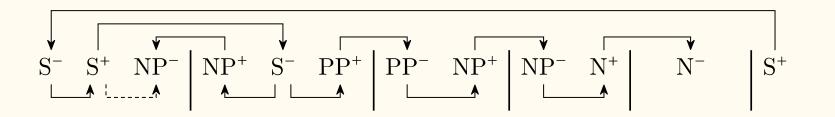
Category internals are useful for supertagging


Supertagging word accuracy

C&C parser F₁

C&C parser coverage

Contributions


- First statistical LCG parser
- Proof net parsing with lexical decomposition
- Novel loss functions and structural constraints
 - $\circ\quad \text{Increase parser performance}$
 - \circ $\;$ Enable training without ground truth $\;$

- 1. Supertagging with CCG primitives
- 2. Proof net structure for neural LCG parsing
- 3. Decomposed scoring of CCG dependencies

LCG proof nets

LCG parsing with proof nets: validity conditions

- T1. Linkage must be half-planar
 - No crossing edges in half-plane above vertices
- T2. No regular cycles (solid edges)
- T3. Each Lambek edge must have regular path between its vertices $_{(\rm dashed\ edges)}$

LCG parsing with proof nets: validity conditions

- T1. Linkage must be half-planar
 - No crossing edges in half-plane above vertices
- T2. No regular cycles (solid edges)
- T3. Each Lambek edge must have regular path between its vertices (dashed edges)

Each condition can be expressed as a differentiable function of the graph—no ground truth linkages needed

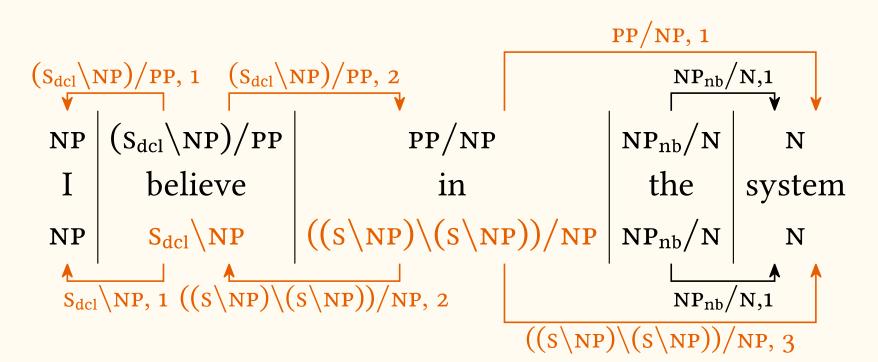
Parsing performance

Condition	Link Acc	Sent Acc	Coverage
Base	97.7	86.2	97.3
Enhanced model	97.9	87.4	98.4
Enhanced model $+$ losses	97.9	87.2	98.7

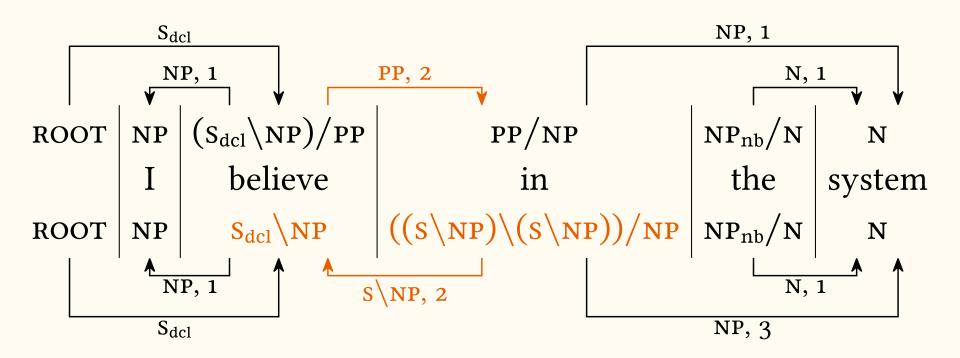
Training without ground truth

Condition	Link Acc
Enhanced model + losses	91.2
—T1 loss	84.5
-T2 loss	72.9
-T3 loss	70.6
—Link filter	73.9
—planar attention — T1 loss	19.2

Training without ground truth


Condition	Link Acc	
Enhanced model + losses	91.2	
—T1 loss	84.5	All planarity
-T2 loss	72.9	/ information
-T3 loss	70.6	/ removed
—Link filter	73.9	/
—planar attention — T1 loss	19.2	

Contributions


- Decomposed scoring fixes cases of error amplification
- Systematic human validation of statistical parsing scoring method
 - \circ Expert judges find in favour of decomposed scoring (overall)
 - \circ $\;$ Raises questions about the validity of aggregated parser scores $\;$

- 1. Supertagging with CCG primitives
- 2. Proof net structure for neural LCG parsing
- 3. Decomposed scoring of CCG dependencies

CCG dependency evaluation

Decomposed scoring

Expert judgements

- Intrinsic task: direct comparison of scoring methods
 - \circ $\;$ Strong agreement among judges in favour of decomposed scoring
- Extrinsic task: pairwise rank inversions
 - \circ $\;$ Overall agreement among judges in favour of decomposed scoring, but...
 - \circ $\;$ High disagreement: 50% ties in pilot study; 24% ties in main study

Future directions

End-to-end categorial parsing

- End-to-end systems pass training signals from output back to original input
 - \circ $\;$ Would be helpful for parsing errors to propagate back to supertagging decisions
- Recent "end-to-end" parsers aren't truly end-to-end (Kasai et al., 2018; Kogkalidis et al., 2020)
 - \circ $\;$ Better described as "joint" or "multi-task"
- Tighter coupling between subcategorial supertagger and parser

Mildly context-sensitive proof nets

- LCG is weakly CF-equivalent
- Phenomena in some languages are known to be trans-CF (Bresnan et al., 1982; Huybregts, 1984; Shieber, 1985)
- Development of proof nets for CCG (Buch, 2009)
- Encoding of proof net conditions for MCS extension of LCG (Komatsu, 2021)

Low-data/unsupervised categorial parsing

- Recent unsupervised parsers have relatively *ad hoc* structure (Drozdov et al., 2019)
 - $\circ \quad {\rm Advantages \ of \ formalism-driven \ structure \ unexplored}$
- Novel loss functions suggest a path to structured learning from unlabelled data
 - $\circ \quad {\rm Structural\ constraints\ may\ help\ lower\ data\ requirements}$

Subcategorial considerations in statistical categorial parsing

Aditya Bhargava

