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Syntactic structure in 
NLP
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Meaning is what we want
When was the dog-wolf genetic split?

“Text Bob, ‘How to recognize speech?’”

I would like eight pizzas, please

between 27,000 and 40,000 years ago

“Texting Bob, ‘How to wreck a nice beach’”

मुझे दो पा चाहए
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How can syntax help?
4



Syntax: a vehicle for semantics

Book a train from Toronto to Montréal

vs.

Book a train from Montréal to Toronto
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Categorial grammars (CGs)

● CG categories can “be thought of as a shorthand for the semantics” (Ades and 
Steedman, 1982)

● Rules have semantic correspondences as well
○ E.g., CCG composition: 𝐁=λ𝑎𝑏𝑐.𝑎(𝑏𝑐)

● CG derivations carry semantics
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CG lexical categories vs. parts of speech
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Statistical LCG & CCG parsing

● LCG parsing: non-statistical only
○ No corpus until LCGbank (Fowler, 2016)

○ Relevance of category structure in proof nets (Roorda, 1991; Penn, 2004; Fowler, 2010)

● CCG parsing: lacking in consideration of category structure
○ Early work in the context of statistical methods for other formalisms (e.g., Hockenmaier, 2001; Clark, 2002)

○ Still-influential statistical CCG parser (Clark and Curran, 2007)
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Thesis

Subcategorial information in CG lexical 
categories is useful for statistical parsing
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1. Supertagging with 
CCG primitives

2. Proof net structure 
for neural LCG 
parsing

3. Decomposed scoring 
of CCG 
dependencies
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Contributions

● Subcategorial supertagging improves:
○ Supertagging accuracy
○ Parser F1
○ Parser coverage

● Subcategories allow for more effective use of prediction 
history

● Enables OOV category prediction

1. Supertagging with 
CCG primitives

2. Proof net structure 
for neural LCG 
parsing

3. Decomposed scoring 
of CCG 
dependencies
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Category internals are useful for supertagging

…
law
that

makes
it
a

crime
to
...

...
N
(NP\NP)/(Sdcl\NP) 
(((Sdcl\NP)/(Sto\NP))/NP)/NPexpl
NPexpl
NPnb/N
N
(Sto\NP)/(Sb\NP)
...
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Supertagging word accuracy
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C&C parser F1
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C&C parser coverage
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Contributions

1. Supertagging with 
CCG primitives

2. Proof net structure 
for neural LCG 
parsing

3. Decomposed scoring 
of CCG 
dependencies

● First statistical LCG parser
● Proof net parsing with lexical decomposition
● Novel loss functions and structural constraints

○ Increase parser performance
○ Enable training without ground truth
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LCG proof nets
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LCG parsing with proof nets: validity conditions

T1. Linkage must be half-planar
● No crossing edges in half-plane above vertices

T2. No regular cycles (solid edges)

T3. Each Lambek edge must have regular path between its vertices
(dashed edges)
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Each condition can be expressed as a differentiable
function of the graph—no ground truth linkages needed

LCG parsing with proof nets: validity conditions

T1. Linkage must be half-planar
● No crossing edges in half-plane above vertices

T2. No regular cycles (solid edges)

T3. Each Lambek edge must have regular path between its vertices
(dashed edges)
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Parsing performance

Condition Link Acc Sent Acc Coverage
Base 97.7 86.2 97.3
Enhanced model 97.9 87.4 98.4
Enhanced model + losses 97.9 87.2 98.7
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Training without ground truth

Condition Link Acc
Enhanced model + losses 91.2
  −T1 loss 84.5
  −T2 loss 72.9
  −T3 loss 70.6
  −Link filter 73.9
    −planar attention − T1 loss 19.2
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Training without ground truth

Condition Link Acc
Enhanced model + losses 91.2
  −T1 loss 84.5
  −T2 loss 72.9
  −T3 loss 70.6
  −Link filter 73.9
    −planar attention − T1 loss 19.2

All planarity 
information 
removed
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Contributions

1. Supertagging with 
CCG primitives

2. Proof net structure 
for neural LCG 
parsing

3. Decomposed scoring 
of CCG 
dependencies

● Decomposed scoring fixes cases of error amplification
● Systematic human validation of statistical parsing scoring 

method
○ Expert judges find in favour of decomposed scoring (overall)
○ Raises questions about the validity of aggregated parser scores
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CCG dependency evaluation
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Decomposed scoring
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Expert judgements

● Intrinsic task: direct comparison of scoring methods
○ Strong agreement among judges in favour of decomposed scoring

● Extrinsic task: pairwise rank inversions
○ Overall agreement among judges in favour of decomposed scoring, but…
○ High disagreement: 50% ties in pilot study; 24% ties in main study
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Future directions
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End-to-end categorial parsing

● End-to-end systems pass training signals from output back to original input
○ Would be helpful for parsing errors to propagate back to supertagging decisions

● Recent “end-to-end” parsers aren’t truly end-to-end (Kasai et al., 2018; Kogkalidis et al., 
2020)

○ Better described as “joint” or “multi-task”
● Tighter coupling between subcategorial supertagger and parser
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Mildly context-sensitive proof nets

● LCG is weakly CF-equivalent
● Phenomena in some languages are known to be trans-CF (Bresnan et al., 1982; Huybregts, 

1984; Shieber, 1985)

● Development of proof nets for CCG (Buch, 2009)

● Encoding of proof net conditions for MCS extension of LCG (Komatsu, 2021)
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Low-data/unsupervised categorial parsing

● Recent unsupervised parsers have relatively ad hoc structure (Drozdov et al., 2019)

○ Advantages of formalism-driven structure unexplored
● Novel loss functions suggest a path to structured learning from unlabelled data

○ Structural constraints may help lower data requirements
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