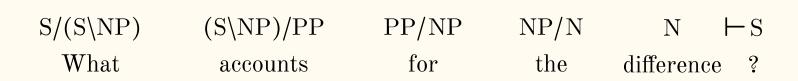
Proof net structure for neural Lambek categorial parsing

Aditya Bhargava and Gerald Penn Department of Computer Science University of Toronto

Introduction

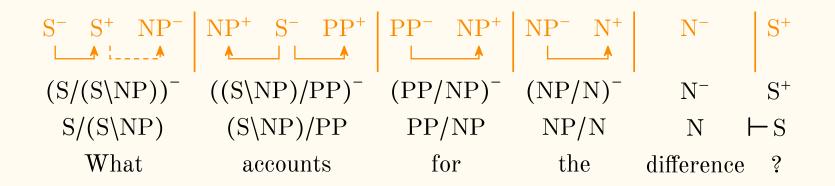

• Lambek categorial grammar (LCG): formalism related to CCG

$$\frac{\Delta \vdash X/Y \quad \Gamma \vdash Y}{\Delta, \Gamma \vdash X} /_{e} \qquad \frac{\Gamma \vdash Y \quad \Delta \vdash X \setminus Y}{\Gamma, \Delta \vdash X} \setminus_{e} \\
\frac{\Gamma, Y \vdash X}{\Gamma \vdash X/Y} /_{i} \qquad \frac{Y, \Gamma \vdash X}{\Gamma \vdash X \setminus Y} \setminus_{i}$$

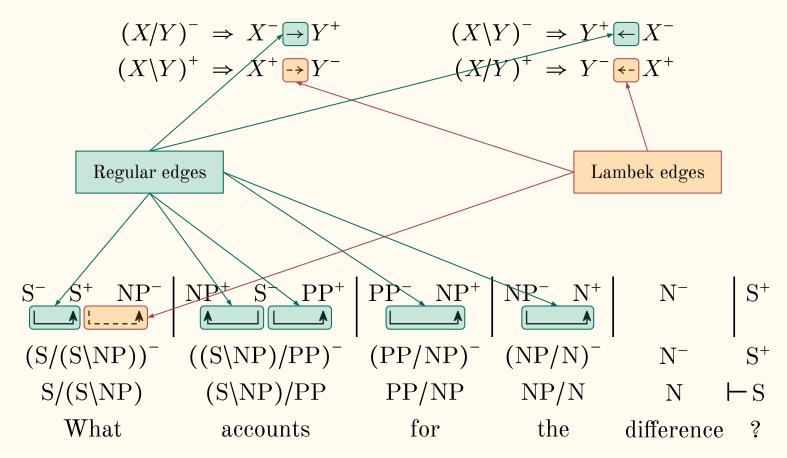
$$\overline{X \vdash X}$$
 axiom

- No existing statistical LCG parsers
- LCG rules \subseteq linear logic
- Proof nets: graphical representation of linear logic proofs
 - $\circ \quad {\rm Abstract\ over\ irrelevant\ aspects}$
 - \circ "Equivalent" proofs will have the same proof net
- We use term graphs, an enhanced type of proof net (Fowler, 2009, 2016)

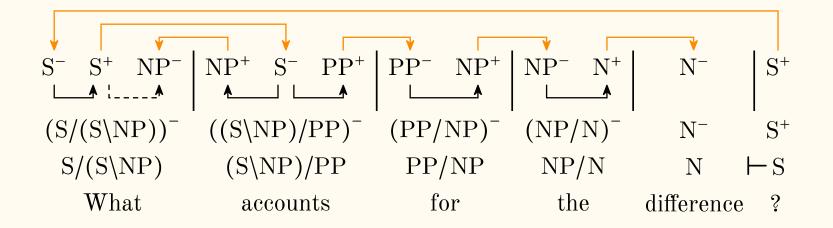
• Input: lexical category list (antecedent), target category (consequent)



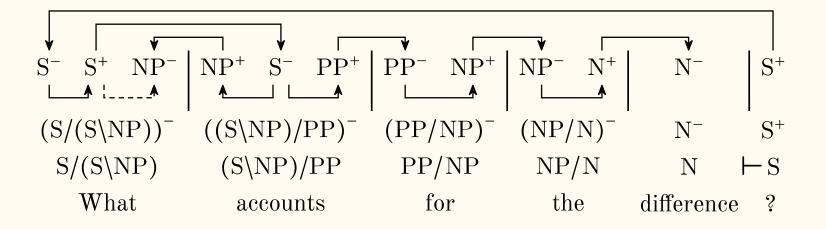
• Add polarities


- Lexical categories negative
- Target category positive

• Decompose categories into polarized atoms

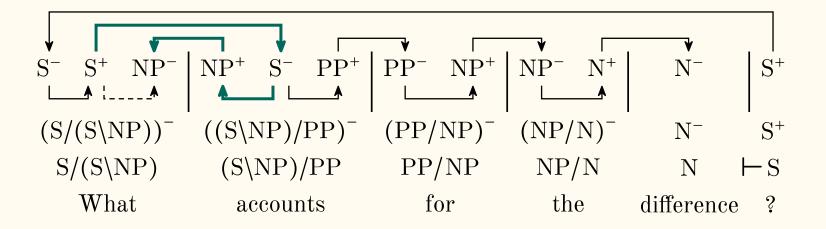

$$(X/Y)^{-} \Rightarrow X^{-} \rightarrow Y^{+} \qquad (X\backslash Y)^{-} \Rightarrow Y^{+} \leftarrow X^{-} (X\backslash Y)^{+} \Rightarrow X^{+} \rightarrow Y^{-} \qquad (X/Y)^{+} \Rightarrow Y^{-} \leftarrow X^{+}$$

• Decompose categories into polarized atoms


• Link positive atoms to negative atoms of same atomic category

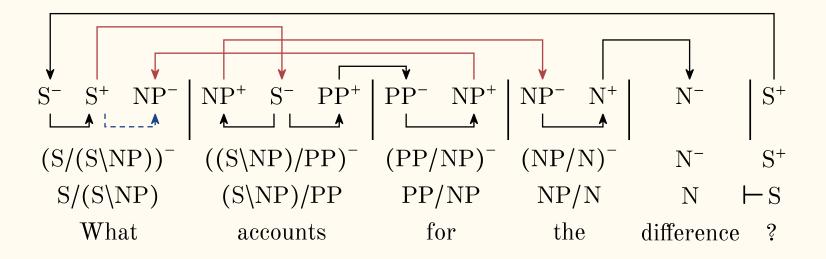
Term graph validity conditions

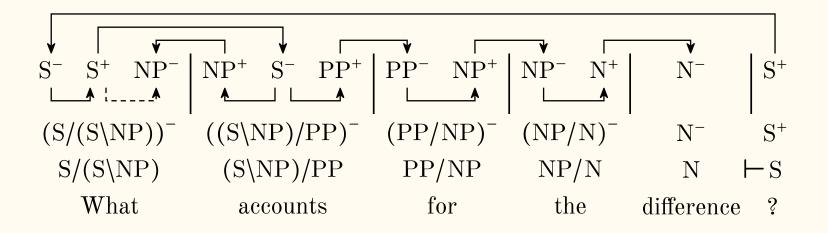
T1. Linkage must be half-planar


- No crossing edges in half-plane above vertices
- T2. No regular cycles
 - Links included as regular edges
- T3. Each Lambek edge must have regular path between its vertices

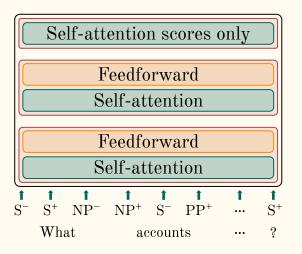
Term graph validity conditions

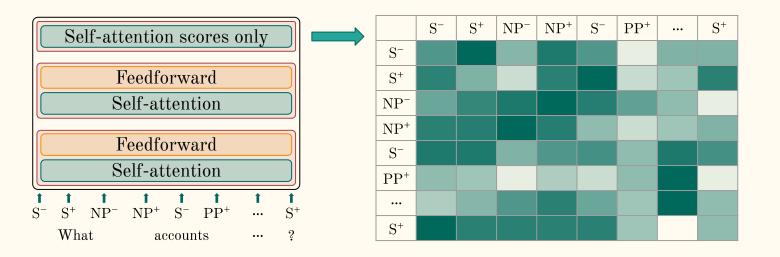
T1. Linkage must be half-planar

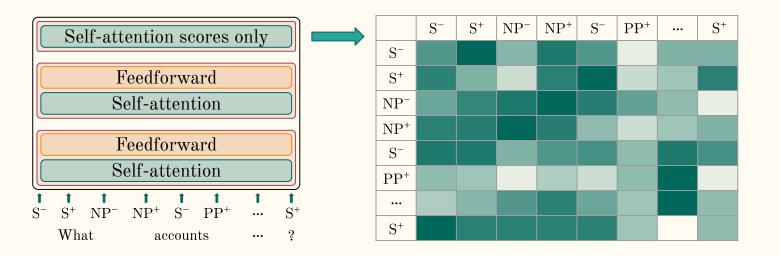

- No crossing edges in half-plane above vertices
- T2. No regular cycles
 - Links included as regular edges
- T3. Each Lambek edge must have regular path between its vertices

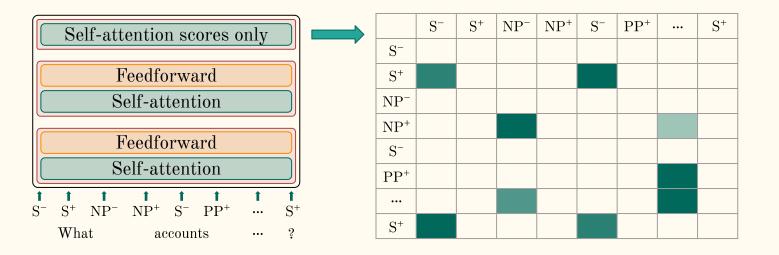

Term graph validity conditions

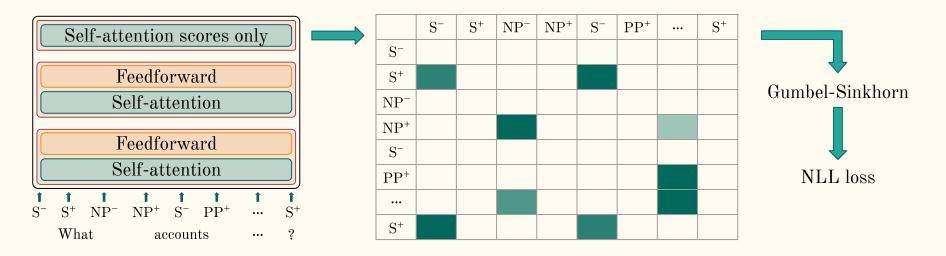
T1. Linkage must be half-planar

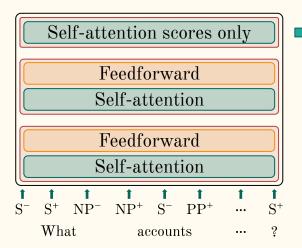

- No crossing edges in half-plane above vertices
- T2. No regular cycles
 - Links included as regular edges
- T3. Each Lambek edge must have regular path between its vertices


- Compact representation
 - \circ Dependency-like structure
 - No spurious ambiguity
- Here, we assume lexical and target categories are given
 - \circ ~ Task is then to predict correct linkage
 - Failing that, linkage should still yield valid term graph

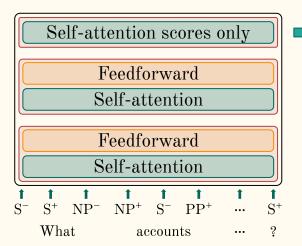

- Input: words and corresponding lexical categories (decomposed to atoms)
- Output: valid linkage
- Base model similar to Transformer encoder


- Input: words and corresponding lexical categories (decomposed to atoms)
- Output: valid linkage
- Base model similar to Transformer encoder
 - \circ Top layer omits softmax onwards, leaving raw attention scores

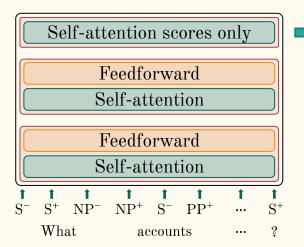

- Input: words and corresponding lexical categories (decomposed to atoms)
- Output: valid linkage
- Base model similar to Transformer encoder
 - \circ Top layer omits softmax onwards, leaving raw attention scores
 - \circ ~ Keep only links from positive to negative atoms of same type


- Input: words and corresponding lexical categories (decomposed to atoms)
- Output: valid linkage
- Base model similar to Transformer encoder
 - \circ Top layer omits softmax onwards, leaving raw attention scores
 - \circ ~ Keep only links from positive to negative atoms of same type

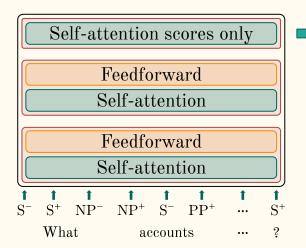
- Input: words and corresponding lexical categories (decomposed to atoms)
- Output: valid linkage
- Base model similar to Transformer encoder
 - \circ ~ Top layer omits softmax onwards, leaving raw attention scores
 - \circ Keep only links from positive to negative atoms of same category
 - Scores run through Gumbel-Sinkhorn yield doubly-stochastic matrix
 - Negative log likelihood loss



• Disallow intra-word links


	S^-	S^+	NP^{-}	$\rm NP^+$	S^-	PP^+	 S^+
S^{-}							
S^+							
$\rm NP^-$							
NP^+							
S^-							
PP^+							
S^+							

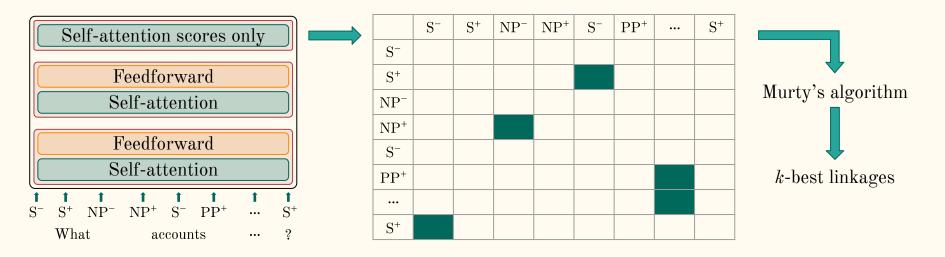
- Disallow intra-word links
 - \circ $\;$ In this example, S links are settled


	S^-	S^+	NP^{-}	NP^+	S^-	PP^+	 S^+
S^-							
S^+							
NP^{-}							
NP^+							
S^-							
PP^+							
S^+							

- Disallow intra-word links
 - \circ $\;$ In this example, S links are settled
- Disallow necessarily non-planar links

->		S^-	S^+	$\rm NP^-$	NP^+	S^-	PP^+	 S^+
	S^-							
	S^+							
	$\rm NP^-$							
	$\rm NP^+$							
	S^-							
	PP^+							
	S^+							

- Disallow intra-word links
 - \circ $\;$ In this example, S links are settled
- Disallow necessarily non-planar links
 - \circ ~ In this example, settles everything else


->		S^-	S^+	NP^{-}	NP^+	S^-	PP^+	 S^+
	S^-							
	S^+							
	$\rm NP^-$							
	NP^+							
	S^{-}							
	PP^+							
	S^+							

- Disallow intra-word links
 - \circ In this example, S links are settled
- Disallow necessarily non-planar links
 - \circ ~ In this example, settles everything else
- Regular and Lambek edges into attention queries and keys
 - Similar to message passing along regular and Lambek edges
- Penalize attention scores to encourage planarity
 - \circ Imagine each attention score is an edge score
 - Penalize edge score according to scores assigned to crossing edges

Enhancements to inference

• No need for Gumbel-Sinkhorn during inference

- Use maximum bipartite matching algorithms to get highest-scoring linkage
- \circ Murty's algorithm for k-best linkages

Novel loss functions

- Term graph validity conditions as loss functions
- T1 (half-planarity): penalize crossing links in proportion to their model scores
- T2 & T3: penalize edges that contribute to condition violations
 - Key: transitive closure of candidate graph (linkage scores, regular & Lambek edges)
 - Computable differentiably
 - \circ Select source and destination vertices of interest to penalize violations
- Loss terms are functions of model output only
 - Enables training without ground-truth derivations

$Ground-truth\ experiments^*$

- Three conditions
 - 1. Base model with NLL loss
 - 2. Enhanced model with NLL loss
 - 3. Enhanced model with NLL loss + losses derived from term graph conditions
- Three measures
 - $\circ \quad Link \ accuracy$
 - Sentence accuracy
 - \circ Coverage
- k = 1 and k = 512
- Corpus: LCGbank

$Ground-truth\ experiments^*$

• Three conditions

- 1. Base model with NLL loss
- 2. Enhanced model with NLL loss
- 3. Enhanced model with NLL loss + losses derived from term graph conditions

• Three measures

- Link accuracy
- Sentence accuracy
- \circ Coverage
- k = 1 and k = 512
- Corpus: LCGbank

		k = 1		k = 512			
Condition	Link Acc	Sent Acc	Coverage	Link Acc	Sent Acc	Coverage	
Base	97.7	86.2	97.3	97.9	87.7	99.8	
Enhanced model	97.9	87.4	98.4	98.0	88.2	99.9	
Enhanced model $+$ losses	97.9	87.2	98.7	98.0	87.8	99.9	

*See paper for training details such as hyperparameters, etc.

$Ground\mbox{-truth-free experiments}^*$

- Enhanced model with losses derived from term graph conditions only

 (No NLL loss)
- Ablation on various pieces of model/loss
- Coverage is reported measure
 - \circ No way to distinguish correct derivation

Ground-truth-free experiments*

- Enhanced model with losses derived from term graph conditions only

 (No NLL loss)
- Ablation on various pieces of model/loss
- Coverage is reported measure
 - \circ No way to distinguish correct derivation

Condition	k = 1	k = 512
Enhanced model $+$ losses	91.2	96.2
—T1 loss	84.5	95.1
-T2 loss	72.9	92.9
-T3 loss	70.6	93.8
—Regular/Lambek edges	89.0	95.9
—Intraword link filter	81.1	91.0
—Nonplanar link filter	73.9	85.6
$-\mathrm{R/L}\ \mathrm{edges}$ — planar attention	74.9	90.7
—planar attention — T1 loss	19.2	44.7

$Ground\mbox{-truth-free experiments}^*$

- Enhanced model with losses derived from term graph conditions only

 (No NLL loss)
- Ablation on various pieces of model/loss
- Coverage is reported measure
 - \circ No way to distinguish correct derivation

	Condition	k = 1	k = 512
	Enhanced model + losses	91.2	96.2
	—T1 loss	84.5	95.1
	-T2 loss	72.9	92.9
	-T3 loss	70.6	93.8
	-Regular/Lambek edges	89.0	95.9
	—Intraword link filter	81.1	91.0
All planarity	—Nonplanar link filter	73.9	85.6
information removed	$-{ m R/L}$ edges — planar attention	74.9	90.7
	—planar attention — T1 loss	19.2	44.7

*See paper for training details such as hyperparameters, etc.

Summary & future work

- Incorporating term graph structure can increase parser accuracy and coverage
- Term graph conditions allow specification of novel loss terms
 - \circ Enable training high-coverage without ground-truth derivations
 - Potential applications to unsupervised & semi-supervised parsing
- Parser is differentiable function of inputs, i.e., supertags
 - $\circ \quad \ \ {\rm Potential \ for \ improving \ joint \ supertagger/parser}$

Proof net structure for neural Lambek categorial parsing

Aditya Bhargava and Gerald Penn Department of Computer Science University of Toronto

