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Introduction

● Lambek categorial grammar (LCG): formalism related to CCG

● No existing statistical LCG parsers
● LCG rules ⊂ linear logic
● Proof nets: graphical representation of linear logic proofs

○ Abstract over irrelevant aspects
○ “Equivalent” proofs will have the same proof net

● We use term graphs, an enhanced type of proof net (Fowler, 2009, 2016)
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LCG term graphs
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● Input: lexical category list (antecedent), target category (consequent)



LCG term graphs

● Add polarities
○ Lexical categories negative
○ Target category positive
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LCG term graphs
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● Decompose categories into polarized atoms



LCG term graphs
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● Decompose categories into polarized atoms

Lambek edgesRegular edges



LCG term graphs

● Link positive atoms to negative atoms of same atomic category
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Term graph validity conditions

T1. Linkage must be half-planar
● No crossing edges in half-plane above vertices

T2. No regular cycles
● Links included as regular edges

T3. Each Lambek edge must have regular path between its vertices
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LCG term graphs

● Compact representation
○ Dependency-like structure
○ No spurious ambiguity

● Here, we assume lexical and target categories are given
○ Task is then to predict correct linkage

■ Failing that, linkage should still yield valid term graph
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Predicting linkages with self-attention networks

● Input: words and corresponding lexical categories (decomposed to atoms)
● Output: valid linkage
● Base model similar to Transformer encoder

12

Self-attention
Feedforward

Self-attention
Feedforward

Self-attention scores only



Predicting linkages with self-attention networks

● Input: words and corresponding lexical categories (decomposed to atoms)
● Output: valid linkage
● Base model similar to Transformer encoder

○ Top layer omits softmax onwards, leaving raw attention scores
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Predicting linkages with self-attention networks

● Input: words and corresponding lexical categories (decomposed to atoms)
● Output: valid linkage
● Base model similar to Transformer encoder

○ Top layer omits softmax onwards, leaving raw attention scores
○ Keep only links from positive to negative atoms of same category
○ Scores run through Gumbel-Sinkhorn yield doubly-stochastic matrix
○ Negative log likelihood loss
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Term graph–based model enhancements

● Disallow intra-word links
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Term graph–based model enhancements

● Disallow intra-word links
○ In this example, S links are settled
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Term graph–based model enhancements

● Disallow intra-word links
○ In this example, S links are settled

● Disallow necessarily non-planar links
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Term graph–based model enhancements
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Term graph–based model enhancements

● Disallow intra-word links
○ In this example, S links are settled

● Disallow necessarily non-planar links
○ In this example, settles everything else

● Regular and Lambek edges into attention queries and keys
○ Similar to message passing along regular and Lambek edges

● Penalize attention scores to encourage planarity
○ Imagine each attention score is an edge score
○ Penalize edge score according to scores assigned to crossing edges
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Enhancements to inference

● No need for Gumbel-Sinkhorn during inference
○ Use maximum bipartite matching algorithms to get highest-scoring linkage
○ Murty’s algorithm for k-best linkages
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Novel loss functions

● Term graph validity conditions as loss functions
● T1 (half-planarity): penalize crossing links in proportion to their model scores
● T2 & T3: penalize edges that contribute to condition violations

○ Key: transitive closure of candidate graph (linkage scores, regular & Lambek edges)
○ Computable differentiably
○ Select source and destination vertices of interest to penalize violations

● Loss terms are functions of model output only
○ Enables training without ground-truth derivations
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Ground-truth experiments*

● Three conditions
1. Base model with NLL loss
2. Enhanced model with NLL loss
3. Enhanced model with NLL loss + losses derived from term graph conditions

● Three measures
○ Link accuracy
○ Sentence accuracy
○ Coverage

● k = 1 and k = 512
● Corpus: LCGbank

24*See paper for training details such as hyperparameters, etc.
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k = 1 k = 512
Condition Link Acc Sent Acc Coverage Link Acc Sent Acc Coverage

Base 97.7 86.2 97.3 97.9 87.7 99.8
Enhanced model 97.9 87.4 98.4 98.0 88.2 99.9
Enhanced model + losses 97.9 87.2 98.7 98.0 87.8 99.9

*See paper for training details such as hyperparameters, etc.



Ground-truth–free experiments*

● Enhanced model with losses derived from term graph conditions only
○ (No NLL loss)

● Ablation on various pieces of model/loss
● Coverage is reported measure

○ No way to distinguish correct derivation
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Condition k = 1 k = 512
Enhanced model + losses 91.2 96.2
  −T1 loss 84.5 95.1
  −T2 loss 72.9 92.9
  −T3 loss 70.6 93.8
  −Regular/Lambek edges 89.0 95.9
  −Intraword link filter 81.1 91.0
    −Nonplanar link filter 73.9 85.6
      −R/L edges − planar attention 74.9 90.7
      −planar attention − T1 loss 19.2 44.7

*See paper for training details such as hyperparameters, etc.
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Condition k = 1 k = 512
Enhanced model + losses 91.2 96.2
  −T1 loss 84.5 95.1
  −T2 loss 72.9 92.9
  −T3 loss 70.6 93.8
  −Regular/Lambek edges 89.0 95.9
  −Intraword link filter 81.1 91.0
    −Nonplanar link filter 73.9 85.6
      −R/L edges − planar attention 74.9 90.7
      −planar attention − T1 loss 19.2 44.7

All planarity 
information 
removed

*See paper for training details such as hyperparameters, etc.



Summary & future work

● Incorporating term graph structure can increase parser accuracy and coverage
● Term graph conditions allow specification of novel loss terms

○ Enable training high-coverage without ground-truth derivations
○ Potential applications to unsupervised & semi-supervised parsing

● Parser is differentiable function of inputs, i.e., supertags
○ Potential for improving joint supertagger/parser
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