
From FOND to Robust Probabilistic Planning:
Computing compact policies that bypass avoidable deadends

Alberto Camacho
Dept. of Computer Science

University of Toronto, Canada
acamacho@cs.toronto.edu

Christian Muise
MIT CSAIL

Massachusetts, USA
cjmuise@mit.edu

Sheila A. McIlraith
Dept. of Computer Science

University of Toronto, Canada
sheila@cs.toronto.edu

Abstract

We address the class of probabilistic planning problems
where the objective is to maximize the probability of reach-
ing a prescribed goal. The complexity of probabilistic plan-
ning problems makes it difficult to compute high quality so-
lutions for large instances, and existing algorithms either do
not scale, or do so at the expense of the solution quality. We
leverage core similarities between probabilistic and fully ob-
servable non-deterministic (FOND) planning to construct a
sound, offline probabilistic planner, ProbPRP, that exploits
algorithmic advances from state-of-the-art FOND planner,
PRP, to compute compact policies that are guaranteed to by-
pass avoidable deadends. We evaluate ProbPRP on a selection
of benchmarks used in past probabilistic planning competi-
tions. The results show that ProbPRP, in many cases, outper-
forms the state of the art, computing substantially more robust
policies and at times doing so orders of magnitude faster.

1 Introduction
Many of the actions agents execute in the world exhibit
some degree of nondeterminism in their outcomes and as
such many real-world automated planning problems neces-
sitate non-deterministic actions in their problem specifica-
tion. Two common approaches to planning in the face of un-
certainty in the outcome of actions are: fully observable non-
deterministic planning (FOND) (e.g., (Alford et al. 2014;
Mattmüller et al. 2010; Fu et al. 2011; Muise, McIlraith,
and Beck 2012)), which assumes fair non-determinism in
the effects of actions (Cimatti et al. 2003); and probabilistic
planning which generally assigns a probability distribution
over action outcomes (e.g., (Teichteil-Königsbuch 2012;
Kolobov et al. 2011; Keller and Eyerich 2012)).

Recent advances in FOND planning have resulted in
highly optimized planners that scale well, computing com-
pact policies offline that bypass avoidable deadends (e.g.,
(Muise, McIlraith, and Beck 2012)). Our interest is in ex-
ploiting the computational core shared by FOND and prob-
abilistic planning, as noted in (Hertle et al. 2014), to investi-
gate whether state-of-the-art FOND planning techniques can
be leveraged to produce an offline probabilistic planner that
also bypasses avoidable deadends, scales well, and produces
compact policies. We focus on what we will refer to as the

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

task of HighProb whose objective is to find policies that at-
tempt to maximize the probability of reaching a prescribed
goal (e.g., (Teichteil-Königsbuch, Kuter, and Infantes 2010).
We contrast this with MaxProb planners, which guarantee
finding the maximum probability plan (e.g., (Kolobov et al.
2011)). We assume goals are absorbing or final-state, as in
classical planning and as typically assumed for MaxProb.

To this end, we develop ProbPRP, an offline HighProb
planner that exploits algorithmic advances from state-of-the-
art FOND planner, PRP (Muise, McIlraith, and Beck 2012).
We compare ProbPRP with the state of the art in HighProb
planning, RFF (Teichteil-Königsbuch, Kuter, and Infantes
2010). The results show that ProbPRP, in many cases, out-
performs the state of the art, computing substantially more
robust policies at times doing so orders of magnitude faster.

2 Preliminaries
A probabilistic planning problem is a tuple P =
〈S, sI ,A, T, SG〉 where S is a finite set of states, sI ∈ S
is the initial state, SG ⊆ S is a set of goal states, and A is
a finite set of actions. For each action a ∈ A, and pair of
states s, s′ ∈ S, T (s, a, s′) is the probability that transition
(s, a, s′) occurs, i.e., that s′ results from applying a in s.

In a SAS+ representation of the problem, states are as-
signments to a finite set of variables V , each v ∈ V with do-
main Dv . We denote D+

v the extended domain that includes
the undefined status, ⊥, of v. A partial state (or simply, a
state) is an assignment to variables s : v ∈ V → D+

v . If
s(v) 6= ⊥, we say that v is defined for s. When every vari-
able is defined for s we say that s is a complete state. The
initial state s0 is a complete state, and the goal state s? is
a partial state. A state s entails a state s′, denoted s |= s′,
when s(v) = s′(v) for all v defined for s′. Actions a ∈ A
have the form a = 〈Prea,Eff a〉, where Prea is a state de-
scribing the condition that a state s needs to entail in order
for a to be applicable in s. Eff a = 〈Eff 1

a, . . . ,Eff n
a〉 is a

finite set of effects. Each effect Eff i
a is a set of the form

{〈cond1, v1, d1〉, . . . , 〈condk, vk, dk〉}, where for each j the
condition condj is a partial state, and vj ∈ V , dj ∈ Dvi . The
result of applying the action a in the partial state s |= Prea
with effect Eff i

a is the partial state Result(s,Eff i
a) = {v =

d | 〈cond, v, d〉 ∈ Eff i
a and s |= cond}. Finally, the pro-

gression of s with respect to action a and effect Eff i
a is the

updated state Prog(s, a,Eff i
a) = s⊕Result(s,Eff i

a). Here,
s⊕ s′ assigns s′(v) when v is defined for s′, and s(v) other-
wise.

Solutions to probabilistic planning problems are policies,
or mappings π : S → A from states into actions. In
goal-oriented probabilistic planning models such as Max-
Prob (e.g. (Kolobov et al. 2011)), solutions are policies that
lead the agent to a goal state with maximal probability. We
say a policy π is well-defined when π(s) is applicable in
s for all reachable states by π. A well-defined policy de-
fines sequences of state-action trajectories, or plans, P =
s0, a0, s1, a1 . . . sn where π(sk) = ak, and (sk, ak, sk+1)
is a transition. The likelihood of P is the product LP =
Πn−1

i=0 T (si, ai, si+1)
The model for probabilistic planning is related to Fully

Observable Non-Deterministic (FOND) planning. A FOND
problem is a tuple P = 〈S, sI ,A, T, SG〉, where S, sI ,A,
and SG are defined as in the probabilistic planning model.
However, for each action a ∈ A and state s ∈ S, the
result of applying a in s is one of the states in the set
F (s, a) ⊆ S without specifying transition probabilities. So-
lutions to FOND planning problems are policies, similar
to probabilistic problems. The so-called strong-cyclic solu-
tions are those that lead the agent to a goal state in the limit
(Cimatti et al. 2003).

3 Approach
We address the class of HighProb planning problems where
the objective is to maximize the probability of reaching a
goal state. We refer to this as the probability of success. So-
lutions with higher probability of success are preferred, and
optimal solutions are those that maximize it.

3.1 PRP Preliminaries
To the best of our knowledge, PRP (Muise, McIlraith, and
Beck 2012) is the state of the art in FOND planning. PRP
searches for weak plans that are gradually extended into ro-
bust policies (see Algorithm 1). Key components of PRP in-
clude compact representation of the policy in the form of
state-action pairs (p, a), and a mechanism to bypass avoid-
able deadends. The procedure GENPLANPAIRS processes
a non-goal state s in the Open list for which a policy is
undefined. This involves (i) computing a plan P for the
all-outcomes determinization of the problem, such that P
reaches the goal or a state handled by the policy, and (ii) aug-
menting the policy with the (partial) state-action pairs ob-
tained from the regression of P; When s is a deadend, PRO-
CESSDEADENDS computes a minimal partial state p such
that s |= p and every s′ |= p is a deadend. A set of forbid-
den state-action pairs (FSAPs) is computed by analyzing the
deadends with respect to all existing action outcomes. More
precisely, when one outcome of an action leads recogniz-
ably to a deadend in a particular state, the action is forbidden
from being used during search. In subsequent calls to Algo-
rithm 1, PRP resets the policy and the FSAPs restrict the
search for a weak plan. PRP is guaranteed to converge and
find a strong cyclic plan when all deadends in the problem,
if any, are avoidable.

Input: FOND planning task P = 〈V, s0, s?,A〉
Output: Partial policy π

InitPolicy();
while π changes do

Open← {s0} ;
Seen← {} ;
while Open 6= ∅ do

s =Open.pop();
if s 6|= s? ∧ s 6∈ Seen then

Seen.add(s);
if π(s) is undefined then

GenPlanPairs(〈V, s, s?,A〉, π);
if P (s) is defined then
〈p, a〉 = π(s);
for e ∈ Effa do

Open.add(Prog(s, a, e));

ProcessDeadends();
return π;

Algorithm 1: Generate Strong Cyclic Plan

Theorem 1 (Muise, McIlraith, and Beck 2012). PRP com-
putes a strong cyclic plan for FOND problems that do not
contain unavoidable deadends.

PRP’s state-action avoidance, and succinct state repre-
sentations are central to its superior performance. More re-
cently, PRP has additionally been extended to handle condi-
tional effects of actions (Muise, McIlraith, and Belle 2014).

3.2 From FOND to HighProb
The similarities between FOND and HighProb models, and
recent advances in FOND technology motivate the use of
state-of-the-art FOND technology to solve HighProb. It is
well-known that solutions to the FOND problem FOND(P)
that result from ignoring transition probabilities in a proba-
bilistic planning problem P are also solutions to P . More-
over, strong-cyclic solutions to FOND(P) are optimal High-
Prob solutions to P and vice-versa (cf. (Hertle et al. 2014)).

Lemma 1. Let P be a HighProb planning problem. If π is
a solution for FOND(P), then π is a solution for P .

Lemma 2. Let P be a HighProb planning problem. If π is
a strong cyclic solution for FOND(P), then π is an optimal
solution for P that reaches the goal with probability 1.

Lemma 3. A HighProb planning problem P has an op-
timal solution that reaches the goal with probability 1 iff
FOND(P) has a strong cyclic solution.

3.3 From PRP to ProbPRP
We exploit core similarities between the FOND and prob-
abilistic planning models, to extend the state-of-the-art
FOND planner, PRP (Muise, McIlraith, and Beck 2012),
into a HighProb probabilistic planner that we call ProbPRP.
ProbPRP benefits from the techniques present in PRP, in-
cluding the partial-state representation and FSAP deadend

avoidance that results in faster convergence rate and more
compact policies. In addition, ProbPRP implements new
features that result in better-quality HighProb solutions. We
detail these features below.

Bias Towards High-Likelihood Plans In PRP, the pol-
icy under construction is extended with plans that map un-
handled states in the Open list to either a goal state or to
a state that is already handled by the policy (i.e. for which
there exist a strong-cyclic plan). The partial-state representa-
tion facilitates state entailment, and ultimately benefits cre-
ation of smaller policies. Whereas smaller policies are pre-
ferred, subsequent plans to the goal may be unnecessarily
long – a property of the solutions that is not considered in
the FOND model. To mitigate for this, ProbPRP focuses the
search on high likelihood plans. This method has been used
in the past to search for plans in the determinization relax-
ation that minimize the risk of failing (Jimenez, Coles, and
Smith 2006). The rationale in ProbPRP is slightly differ-
ent. Intuitively, high-likelihood plans are potentially short
plans that contain most-probable outcomes of the actions.
ProbPRP biases the search towards short plans of high like-
lihood. Our tests revealed that searching for plans that max-
imize LP leads to policies with lower expected plan length.
In terms of implementation, ProbPRP modifies the search
process in GENPLANPAIRS, and uses heuristic search to find
minimum-cost plans (not necessarily optimal) with associ-
ated transition costs set to −log(T (si, ai, si+1)).

Final FSAP-Free Iteration The forbidden state-action
pair (FSAP) mechanism prunes the search by state-action
pairs that lead to a deadend with non-zero probability. The
FSAP mechanism proved to be effective in reducing the size
of the search space, but it can be too aggressive in domains
with unavoidable deadends where FSAPs still lead to plans
that reach the goal state with non-zero probability. Based
on this observation, ProbPRP performs a final FSAP-free it-
eration, where the policy with highest probability of success
found is used to initialize the policy on line 1 of Algorithm 1,
and the problem is solved with forbidden state-action pairs
and deadend detection disabled. This final pass optimisti-
cally closes every Open state in a best effort manner. The
returned policy handles a superset of the states that it han-
dled previously, thus improving the solution quality.

Safety Belt Mechanism The idea of a safety belt mech-
anism is to gradually disable a feature when it is detected
not to be contributing to the solver’s progress. The current
version of ProbPRP implements a safety belt for the strong-
cyclic detection (SCD) aspect of the planner which prunes
the simulated policy based on sufficient conditions. If the
SCD mechanism is consistently never used to detect states,
then the (potentially costly) SCD computation is gradually
disabled and used less over time.

Eliminating Non-Robust Plans When strong cyclic solu-
tions exist, the policy will never include non-robust plans.
Deletion of non-robust plans in PRP’s algorithm is delayed
until a deadend state in the Open list is processed. One
way to accelerate convergence is to detect during GEN-
PLANPAIRS search those plans that are easily determined

to be non-robust. In particular, when a weak plan non-
deterministically leads to a deadend, ProbPRP will find it,
compute the FSAPs, and start the search again.
Policy Optimization To reduce the number of state-action
pairs in the solution found by ProbPRP, a simulation checks
all the states reachable by the policy and discards the portion
of the policy that is no longer used in the solution.

Soundness and completeness of ProbPRP follows from
the soundness and completeness of PRP. Optimality follows
from Theorem 1 and the correspondence of solutions de-
tailed in Lemmas 1 – 3. It can be shown that the different
features implemented in ProbPRP do not affect the sound-
ness and completeness of the algorithm.
Theorem 2. For HighProb planning problems, the
ProbPRP algorithm is sound and complete in general, and
optimal for problems with no unavoidable deadends.
Corollary 1. If the solution to the HighProb planning prob-
lem P found by ProbPRP has probability of success lower
than 1, then P has unavoidable deadends.

ProbPRP benefits from the compact state representation
in PRP and its potential to find small policies. Moreover,
the solutions found by ProbPRP are computed offline, with
the advantage over online planners like RFF that no further
computation is needed during execution. In addition, it is
possible to estimate the quality of offline solutions prior to
execution – e.g. using Monte Carlo simulations as done in
ProbPRP– or even to compute it analytically.

4 Evaluation
We evaluate the performance of ProbPRP in a selection of
benchmark domains from past IPPC competitions. MaxRe-
ward problems were transformed into HighProb by ignoring
rewards and asking for solutions that maximize the prob-
ability of success. We used the client-server architecture
MDPSim (Asmuth, Littman, and Younes 2007) – used in
past IPPC editions – to simulate execution of the solutions,
and we average results over 100 runs per problem. All ex-
periments were conducted on a Linux server with an In-
tel Xeon W3550 CPU @3.07GHz, limiting each process to
2GB memory usage and 30 minutes run time. More detailed
results are shown and discussed in a technical report (Cama-
cho, Muise, and McIlraith 2016).

4.1 Benefits of ProbPRP’s Features
ProbPRP found HighProb solutions of improved quality
when compared to the strong-cyclic solutions found by PRP
in the naı̈ve FOND relaxation of those problems. More pre-
cisely, the bias towards exploration of high-likelihood plans
results in solutions with smaller expected plan length: in
the three largest instances of the Boxworld domain, it de-
creases from more than 1000 to nearly 160 actions. Inter-
estingly, the bias towards high-likelihood plans do not com-
promise the policy size and success rate, which remain simi-
lar in most problems. The final FSAP-free iteration is useful
when the probability of success of the best incumbent policy
found by ProbPRP is lower than 1. This is the case of prob-
lems with unavoidable deadends where, in the most bene-
ficial cases, the probability of success increases by 30%.

Figure 1: Success rate of the solutions found by ProbPRP
and RFF in the ex-blocksworld and schedule domains.

p01 p02 p03 p04 p05 p06 p07

Optimal 100% 62% 61% 60% 100% 98%∗ 100%∗

ProbPRP 100% 54% 60% 59% 100% 86% 100%

Table 1: Success rate of solutions to the ex-blocksworld.

The final FSAP-free iteration is equally useful when the core
search time in ProbPRP is limited. In the Schedule problems,
when the search time is limited to 5 seconds the success
rate increases from 10% (no FSAP-free round) to 72% (final
FSAP-free round) in the most beneficial case. Finally, the
Safety Belt mechanism gradually disables strong-cyclic de-
tection when is not being beneficial. In the biggest instances
of Boxworld, it reduces the run times from 160 to 3 seconds.

4.2 Comparison with RFF
We compared ProbPRP with the previous state of the art in
HighProb, RFF (Teichteil-Königsbuch, Kuter, and Infantes
2010). RFF constructs a policy envelope incrementally until
the probability of falling outside the envelope during execu-
tion is lower than ρ. In that case, RFF replans by construct-
ing another envelope rooted in the current state. We used the
configurations that manifested best global results. Namely,
ProbPRP was configured to use hadd heuristics, deadend de-
tection, and SCD safety belt. We configured RFF to search
in the most-probable outcome determinization with the Best
Goals strategy and ρ = 0.2. Remarkably, despite the fact
that RFF can replan and ProbPRP (an offline planner) can-
not, our planner demonstrates better performance and scala-
bility, and produces solutions of better quality as we explain
below.

Success Rate ProbPRP and RFF both succeed in find-
ing optimal solutions to the blocksworld, boxworld, and
triangle-tireworld problems, which have avoidable or no
deadends. A small exception occurs in RFF’s solutions to
the three largest instances of the blocksworld and boxworld
domains (p13-p15). In these, we detected looping behaviour
and RFF’s success rate is reduced to zero. In ex-blocksworld
(a domain with unavoidable deadends) both planners experi-
ence difficulty finding optimal policies. However, solutions
found by ProbPRP have, near consistently, greater success
rates (Figure 1). Although ProbPRP does not offer any guar-
antees on optimality, its solutions are nonetheless close to
the theoretical optimal probability of success. Table 1 shows

the percentage of successful runs of the solutions found by
Value Iteration and ProbPRP. Values marked with an aster-
isk (∗) refer to the best result obtained by any of the IPPC-
08 competitors. In the schedule domain (a domain with a
mix of (un)avoidable deadends) both planners have diffi-
culty scaling to large problems. The execution of ProbPRP
in the four largest problems times out before convergence.
Figure 1 shows the success rate when the final FSAP-free
round in these four largest problems gets 15 minutes; half of
the total search time allocated. An interesting phenomenon
occurs: ProbPRP finds smaller policies with better success
rates when the core search time is reduced to 5 seconds. With
the restricted search time, ProbPRP finds solutions with a
much smaller size (order of magnitude) and with consider-
ably higher success rates (respectively, 72%, 72%, 85%, and
0.6% for the four largest problems). We conjecture this be-
haviour exists because the incumbent policy found earlier in
the core search has a greater potential for high likelihood
plans in the final FSAP-free round. This motivates future re-
search in selecting more suitable policies for the final FSAP-
free round.

Quality of Solutions As depicted in Figure 2, ProbPRP’s
run time is comparable to RFF’s in some cases, but in many
others it is order(s) of magnitude better, while exhibiting
equal or better success rates. Anecdotically, by the time
that RFF completes the first envelope, ProbPRP can gen-
erally find a more robust offline solution. The policies com-
puted by ProbPRP are smaller than those computed by RFF
(sometimes orders of magnitude smaller), while maintaining
a similar expected plan length. This is most evident in do-
mains with avoidable deadends, such as triangle-tireworld,
where the FSAP mechanism bypasses the deadends effi-
ciently.

Robustness of the Algorithm We conducted two tests in
triangle-tireworld problems to evaluated the robustness of
our algorithm with respect to small perturbations in the tran-
sition probabilities. First, we decreased the probability of the
move action resulting in a flat tire from 50% to 45%. Sec-
ond, we kept this probability to 50% but varied the order in
which action effects are declared. RFF was very sensitive to
probability fluctuations, and the success rate of its solutions
decreased dramatically down to 1% or below for problems
4-10. ProbPRP was still able to find strong-cyclic solutions
with good performance.

5 Summary and Discussion
Probabilistic planning in the presence of avoidable and/or
unavoidable deadends is a challenging and important
task (Kolobov, Mausam, and Weld 2012). We introduced
ProbPRP, a planner that exploits key techniques from state-
of-the-art FOND planner, PRP, to compute offline solutions
to HighProb problems. ProbPRP is sound and complete in
general, and optimal for problems where the deadends are
avoidable.

HighProb solutions found by ProbPRP are often opti-
mal or close to optimal, and outperform the solutions found
by the incumbent state-of-the-art HighProb planner, RFF.

(a) Run Time Comparison (b) Policy Size Comparison (c) Avg. Plan Length Comparison

Figure 2: Solutions to probabilistic planning problems found by ProbPRP and RFF. Results averaged over 100 runs per problem.

ProbPRP’s solutions nicely balance policy size, compact-
ness, and the expected length of plans. Moreover, ProbPRP
demonstrates better scalability than RFF, and produces of-
fline solutions. Computing offline solutions makes it possi-
ble to estimate the probability of success prior to execution,
thus offering a better guarantee of the policy’s quality than
the solutions computed by online planners.

We are not alone in recognizing the computational core
that is shared by FOND and probabilistic planning (cf. (Her-
tle et al. 2014)). With this work, we have demonstrated the
merit of this correspondence by exploiting compact pol-
icy representations, relevance reasoning, and deadend avoid-
ance techniques developed within the FOND community,
and used these to advance the state of the art in probabilistic
planning. Moving forward, we aim to inspire new methods
for solving FOND problems using some of the insights from
probabilistic planning, such as sample-based search.

Acknowledgements
The authors gratefully acknowledge funding from the Nat-
ural Sciences and Engineering Research Council of Canada
(NSERC).

References
Alford, R.; Kuter, U.; Nau, D. S.; and Goldman, R. P. 2014.
Plan aggregation for strong cyclic planning in nondetermin-
istic domains. Artificial Intelligence 216:206–232.
Asmuth, J.; Littman, M.; and Younes, H. 2007. MDP-
Sim 2.2. PPDDL plan evaluator simulator. https://
github.com/hlsyounes/mdpsim.
Camacho, A.; Muise, C.; and McIlraith, S. A. 2016. Ap-
pendix: From fond to robust probabilistic planning. Tech-
nical Report CSRG-630, Department of Computer Science,
University of Toronto.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003.
Weak, strong, and strong cyclic planning via symbolic
model checking. Artificial Intelligence 147:35–84.
Fu, J.; Ng, V.; Bastani, F. B.; and Yen, I. L. 2011. Simple
and fast strong cyclic planning for fully-observable nonde-
terministic planning problems. Proc. of the 22nd Int’l Joint
Conference on Artificial Intelligence (IJCAI) 1949–1954.

Hertle, A.; Dornhege, C.; Keller, T.; Mattmller, R.; Ortlieb,
M.; and Nebel, B. 2014. An Experimental Comparison of
Classical, FOND and Probabilistic Planning. In Proc. of the
37th Int’l Conf. on Artificial Intelligence, 297–308.
Jimenez, S.; Coles, A.; and Smith, A. 2006. Planning in
probabilistic domains using a deterministic numeric plan-
ner. Proc. of the 25th Workshop of the UK Planning and
Scheduling Special Interest Group (PlanSIG).
Keller, T., and Eyerich, P. 2012. PROST: Probabilistic Plan-
ning Based on UCT. Proc. of the 22th Int’l Conference on
Automated Planning and Scheduling (ICAPS).
Kolobov, A.; Mausam; Weld, D. S.; and Geffner, H. 2011.
Heuristic Search for Generalized Stochastic Shortest path
MDPs. Proc. of the 21th Int’l Conference on Automated
Planning and Scheduling (ICAPS) 130–137.
Kolobov, A.; Mausam; and Weld, D. S. 2012. A theory of
goal-oriented MDPs with dead ends. In Proceedings of the
28th Conference on Uncertainty in Artificial Intelligence,
438–447.
Mattmüller, R.; Ortlieb, M.; Helmert, M.; and Bercher, P.
2010. Pattern database heuristics for fully observable non-
deterministic planning. In Proc. of the 20th Int’l Conference
on Automated Planning and Scheduling (ICAPS), 105–112.
Muise, C.; McIlraith, S. A.; and Beck, J. C. 2012. Improved
Non-deterministic Planning by Exploiting State Relevance.
In Proc. of the 22th Int’l Conference on Automated Planning
and Scheduling (ICAPS), 172–180.
Muise, C.; McIlraith, S. A.; and Belle, V. 2014. Non-
deterministic planning with conditional effects. In Proc.
of the 24th Int’l Conference on Automated Planning and
Scheduling (ICAPS), 370–374.
Teichteil-Königsbuch, F.; Kuter, U.; and Infantes, G. 2010.
Incremental plan aggregation for generating policies in
MDPs. In Proceedings of the 9th International Conference
on Autonomous Agents and Multiagent Systems: volume 1,
1231–1238.
Teichteil-Königsbuch, F. 2012. Stochastic Safest and Short-
est Path Problems. Proc. of the 26th AAAI Conference on
Artificial Intelligence (AAAI) 1825–1831.

