
Finite LTL Synthesis with Environment Assumptions and Quality Measures

Alberto Camacho
Department of Computer Science

University of Toronto, Canada
acamacho@cs.toronto.edu

Meghyn Bienvenu
CNRS, Univ. Montpellier, Inria

Montpellier, France
meghyn@lirmm.fr

Sheila A. McIlraith
Department of Computer Science

University of Toronto, Canada
sheila@cs.toronto.edu

Abstract

In this paper, we investigate the problem of synthesizing
strategies for linear temporal logic (LTL) specifications that
are interpreted over finite traces – a problem that is central
to the automated construction of controllers, robot programs,
and business processes. We study a natural variant of the finite
LTL synthesis problem in which strategy guarantees are pred-
icated on specified environment behavior. We further explore
a quantitative extension of LTL that supports specification of
quality measures, utilizing it to synthesize high-quality strate-
gies. We propose new notions of optimality and associated al-
gorithms that yield strategies that best satisfy specified qual-
ity measures. Our algorithms utilize an automata-game ap-
proach, positioning them well for future implementation via
existing state-of-the-art techniques.

1 Introduction
The problem of automatically synthesizing digital circuits
from logical specifications was first proposed by Church
(1957). In 1989, Pnueli and Rosner examined the problem of
synthesizing strategies for reactive systems, proposing Lin-
ear Temporal Logic (LTL) (Pnueli 1977) as the specification
language. In a nutshell, LTL is used to express temporally ex-
tended properties of infinite state sequences (called traces),
and the aim of LTL synthesis is to produce a winning strat-
egy, i.e. a function that assigns values to the state variables
under the control of the system at every time step, in such
a way that the induced infinite trace is guaranteed to satisfy
the given LTL formula, no matter how the environment sets
the remaining state variables.

In 2015, De Giacomo and Vardi introduced the problem
of LT L f synthesis in which the specification is described in
a variant of LTL interpreted over finite traces (De Giacomo
and Vardi 2013). Finite interpretations of LTL have long been
exploited to specify temporally extended goals and prefer-
ences in AI automated planning (e.g., (Bacchus and Kabanza
2000; Baier, Bacchus, and McIlraith 2009)). In contrast to
LTL synthesis, which produces programs that run in perpe-
tuity, LTLf synthesis is concerned with the generation of ter-
minating programs. Two natural and important application
domains are automated synthesis of business processes, in-

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cluding web services; and automated synthesis of robot con-
trollers, in cases where program termination is desired.

Despite recent work on LTLf synthesis, there is little writ-
ten on the nature and form of the LTLf specifications and
how this relates to the successful and nontrivial realization
of strategies for such specifications. LTLf synthesis is con-
ceived as a game between the environment and an agent.
The logical specification that defines the problem must not
only define the desired behavior that execution of the strat-
egy should manifest – what we might loosely think of as
the objective of the strategy, but must also define the con-
text, including any assumptions about the environment’s be-
havior upon which realization of the objective is predicated.
As we show in this work, if assumptions about environment
behavior are not appropriately taken into account, specifica-
tions can either be impossible to realize or can be realized
trivially by allowing the agent to violate assumptions upon
which guaranteed realization of the objective is predicated.

We further examine the problem of how to construct spec-
ifications where the realization of an objective comes with
a quality measure, and where strategies provide guarantees
with respect to these measures. The addition of quality mea-
sures is practically motivated. In some instances we may
have an objective that can be realized in a variety of ways
of differing quality (e.g., my automated travel assistant may
find a myriad of ways for me to get to KR2018 – some more
preferable than others!). Similarly, we may have multiple
objectives that are mutually unachievable and we may wish
to associate a quality measure with their individual realiza-
tion (e.g., I’d like my home robot to do the laundry, wash
dishes, and cook dinner before its battery dies, but dinner is
most critical, followed by dishes).

In this paper we explore finite LTL synthesis with envi-
ronment assumptions and quality guarantees. In doing so,
we uncover important observations regarding the form and
nature of LTLf synthesis specifications, how resulting strate-
gies are computed, and the nature of the guarantees we can
provide regarding the resulting strategies. In Section 3 we
examine the problem of LTLf synthesis with environment as-
sumptions, introducing the notion of constrained LTLf syn-
thesis in Section 4. In Section 5, we propose algorithms for
constrained LTLf synthesis, including a reduction to Deter-
ministic Büchi Automata games for the fragment of envi-
ronment constraints that are conjunctions of safe and co-

safe LTL formulae. In Section 6, we examine the problem
of augmenting constrained LTLf synthesis with quality mea-
sures. We adopt a specification language, LTLf[F], proposed
by (Almagor et al. 2017) and define a new notion of opti-
mal strategies. In Section 7, we provide algorithms for com-
puting high-quality strategies for constrained LTLf synthesis.
Section 8 summarizes our technical contributions. Omitted
proofs are provided in an arXiv paper with the same title.

2 Preliminaries
We recall the syntax and semantics of linear temporal logic
for both infinite and finite traces, as well as the basics of
finite state automata and the link between LTL and automata.

2.1 Linear Temporal Logic (LTL)
Given a set P of propositional variables, LTL formulae are
defined as follows:

ϕ B > | ⊥ | p | ¬ϕ | ϕ1 ∧ϕ2 | ϕ1 ∨ϕ2 | ϕ | ϕ1 Uϕ2 | ϕ1 Rϕ2

where p ∈ P. Here ¬, ∧, and ∨ are the usual Boolean con-
nectives, and (next), U (until), and R (release) are tem-
poral operators. The formula ϕ states that ϕ must hold in
the next timepoint, ϕ1 Uϕ2 stipulates that ϕ1 must hold until
ϕ2 becomes true, and ϕ1 Rϕ2 expresses that ϕ2 remain true
until and including the point in which ϕ1 is made true (or
forever if ϕ2 never becomes true). For concision, we do not
include logical implication (→), eventually (♦, ‘sometime in
the future’) and always (�, ‘at every point in the future’)
in the core syntax, but instead view them as abbreviations:
α→ β B ¬α ∨ β, ♦ϕ B >Uϕ and and �ϕ B ⊥Rϕ.

LTL formulae are traditionally interpreted over infinite
traces π, i.e., infinite words over the alphabet 2P. Intu-
itively, an infinite trace π describes an infinite sequence of
(time)steps, with the i-th symbol in π, written π(i), speci-
fying the propositional symbols that hold at step i. We use
π v π′ to indicate that π is a prefix of π′. We define what it
means for an infinite trace π to satisfy an LTL formula ϕ at
step i, denoted π |=i ϕ:
• π |=i >, π 6|=i ⊥, and π |=i p iff p ∈ π(i), for each p ∈ P;
• π |=i ¬ϕ iff π 6|=i ϕ;
• π |=i ϕ1 ∧ ϕ2 iff π |=i ϕ1 and π |=i ϕ2;
• π |=i ϕ1 ∨ ϕ2 iff π |=i ϕ1 or π |=i ϕ2;
• π |=i ϕ iff π |=i+1 ϕ;
• π |=i ϕ1 Uϕ2 iff there exists j ≥ i such that π |= j ϕ2, and

for each i ≤ k < j, π |=k ϕ1;
• π |=i ϕ1 Rϕ2 iff for all j ≥ i either π |= j ϕ2 or there exists

i ≤ k < j such that π |=k ϕ1.
A formula ϕ is satisfied in π, written π |= ϕ, if π |=1 ϕ.
Two formulas ϕ and ψ are equivalent if π |= ϕ iff π |=
ψ for all traces π. Observe that, in addition to the usual
Boolean equivalences, we have the following: ϕ1 Uϕ2 ≡

¬(¬ϕ1 R¬ϕ2) and ¬ ϕ ≡ ¬ϕ.
We consider two well-known syntactic fragments of LTL.

The safe fragment is defined as follows (Sistla 1994):

ϕ B > | ⊥ | p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ | ϕ1 Rϕ2

The complementary co-safe fragment is similarly defined,
using U in place of R . It is known that if ϕ is a safe formula

and π 6|= ϕ, then there is a finite bad prefix πb v π such that
π′ 6|= ϕ for every infinite trace π′ with πb v π

′. Similarly, if
ϕ is a co-safe formula and π |= ϕ, then there exists a finite
good prefix πg v π such that π′ |= ϕ for every infinite trace π′
with πg v π

′. This means that violation of safe formulae and
satisfaction of co-safe formulae can be shown by exhibiting
a suitable finite prefix (Kupferman and Vardi 2001).

In this paper, our main focus will be on a more recently
studied finite version of LTL, denoted LTLf (De Giacomo and
Vardi 2013), in which formulae are interpreted over finite
traces (finite words over 2P). We will reuse the notation π(i)
(i-th symbol) and introduce the notation |π| for the length
of π. LTLf has precisely the same syntax as LTL and the same
semantics for the propositional constructs, but it differs in its
interpretation of the temporal operators:
• π |=i ϕ iff |π| > i and π |=i+1 ϕ;
• π |=i ϕ1 Uϕ2 iff there exists i ≤ j ≤ |π| such that π |= j ϕ2,

and π |=k ϕ1, for each i ≤ k < j;
• π |=i ϕ1 Rϕ2 iff for all i ≤ j ≤ |π| either π |= j ϕ2 or there

exists i ≤ k < j such that π |=k ϕ1
We introduce the weak next operator () as an abbreviation:
ϕ B ϕ ∨ ¬ >. Thus, ϕ holds if ϕ holds in the next

time step or we have reached the end of the trace. Over finite
traces, ¬ ϕ . ¬ϕ, but we do have ¬ ϕ ≡ ¬ϕ.

As before, we say that ϕ is satisfied in π, written π |= ϕ,
if π |=1 ϕ. Note that we can unambiguously use the same
notation for LTL and LTLf so long as we specify whether the
considered trace is finite or infinite.

2.2 Finite State Automata
We recall that a non-deterministic finite-state automaton
(NFA) is a tuple A = 〈Σ,Q, δ,Q0, F〉, where Σ is a finite
alphabet of input symbols, Q is a finite set of states, Q0 ⊆ Q
is a set of initial states, F ⊆ Q is a set of accepting states,
and δ : Q × Σ → 2Q is the transition function. NFAs are
evaluated on finite words, i.e. elements of Σ∗. A run ofA on
a word w = θ1 · · · θn is a sequence q0 · · · qn of states, such
that q0 ∈ Q0, and qi+1 ∈ δ(qi, θi+1) for all 0 ≤ i < n. A run
q0 · · · qn is accepting if qn ∈ F , andA accepts w if some run
of A on w is accepting. The language of an automaton A,
denoted L(A), is the set of words accepted byA.

Deterministic finite-state automata (DFAs) are NFAs in
which |Q0| = 1 and |δ(q, θ)| = 1 for all (q, θ) ∈ Q × Σ. When
A is a DFA, we write δ : Q×Σ→ Q and q′ = δ(q, θ) in place
of q′ ∈ δ(q, θ), and when Q0 = {q0}, we will simply write q0
(without the set notation). For every NFA A, there exists a
DFA that accepts the same language as A and whose size
is at most single exponential in the size of A. The powerset
construction is a well-known technique to determinize NFAs
(Rabin and Scott 1959).

Non-deterministic Büchi automata (NBA) are defined like
NFAs but evaluated on infinite words, that is, elements of Σω.
A run of A on an infinite word w = θ1θ2 · · · is a se-
quence ρ = q0q1q2 · · · of states, such that q0 ∈ Q0, and
qi+1 ∈ δ(qi, θi+1) for every i ≥ 0. A run ρ is accepting if
inf(ρ)∩F , ∅, where inf(ρ) is the set of states that appear in-
finitely often in ρ. We say that an NBAA accepts w if some
run of A on w is accepting. Analogous definitions apply to
deterministic Büchi automata (DBAs).

We will also consider deterministic finite-state transduc-
ers (also called Mealy machines, later abbreviated to ‘trans-
ducers’), given by tuples T = 〈Σ,Ω,Q, δ, ω, q0〉, where Σ
and Ω are respectively the input and output alphabets, Q is
the set of states, δ : Q × Σ → Q is the transition function,
ω : Q×Σ→ Ω is the output function, and q0 the initial state.
The run of T on w = θ1θ2 . . . ∈ Σω is an infinite sequence of
states q0q1q2 . . . with qi+1 ∈ δ(qi, θi+1) for every i ≥ 0, and
the output sequence of T on w is ω(q0, θ1)ω(q1, θ2)

Given an LTLf formula ϕ, one can construct an NFA that
accepts precisely those finite traces π with π |= ϕ (e.g. (De
Giacomo and Vardi 2015)). For every safe formula ϕs (resp.
co-safe formula ϕc), one can construct an NFA that accepts
all bad prefixes of ϕs (resp. good prefixes of ϕc) (Kupfer-
man and Vardi 2001). In these constructions, the NFAs are
worst case single exponential in the size of the formula. By
determinizing these NFAs, we can obtain DFAs of double-
exponential size that recognize the same languages.

3 LTL and LTLf Synthesis
To set the stage for our work, we recall the definition of LTL
synthesis in the infinite and finite trace settings and the rela-
tionship between planning and synthesis.

3.1 LTL Synthesis
An LTL specification is a tuple 〈X,Y, ϕ〉 where ϕ is an LTL
formula over uncontrollable variables X and controllable
variables Y. A strategy is a function σ : (2X)∗ → 2Y. The
infinite trace induced by X = {Xi}i≥1 ∈ (2X)ω and σ is

π[σ,X] = (X1 ∪ σ(X1)) (X2 ∪ σ(X1X2)) . . .

The set of all infinite traces induced by σ is denoted
traces(σ) = {π[σ,X] | X ∈ (2X)ω}. The realizability prob-
lem 〈X,Y, ϕ〉 consists in determining whether there exists a
winning strategy, i.e., a strategy σ such that π |= ϕ for every
π ∈ traces(σ). The synthesis problem is to compute such a
winning strategy when one exists.

LTL synthesis can be viewed as a 2-player game between
the environment (X) and the agent (Y). In each turn, the en-
vironment makes a move by selecting Xi ⊆ X, and the agent
replies by selecting Yi ⊆ Y. The aim is to find a strategy σ
for the agent that guarantees the resulting trace satisfies ϕ.

3.2 Finite LTL Synthesis
We now recall LTLf realizability and synthesis, where the
specification formula is interpreted on finite traces. An LTLf
specification is a tuple 〈X,Y, ϕ〉, where ϕ is an LTLf for-
mula over uncontrollable variables X and controllable vari-
ables Y. A strategy is a function σ : (2X)∗ → 2Y∪{end}

such that for each infinite sequence X = {Xi}i≥1 ∈ (2X)ω
of subsets of X, there is exactly one integer nσ,X ≥ 1 with
end ∈ σ(X1 · · · Xnσ,X). The induced infinite trace π[σ,X] is
defined as before, and the finite trace induced by X and σ is

πf[σ,X] = (X1 ∪ σ(X1)) . . .
(
Xnσ,X ∪ σ(X1 · · · Xnσ,X)

)
but with end removed from σ(X1 · · · Xnσ,X). The set of all fi-
nite traces induced by σ is denoted tracesf(σ) = {πf[σ,X] |
X ∈ (2X)ω}. A finite trace π is compatible with σ if π v π′

for some π′ ∈ tracesf(σ), with ptraces(σ) (‘p’ for ‘par-
tial’) the set of all such traces. We call σ a winning strat-
egy for an LTLf specification 〈X,Y, ϕ〉 if π |= ϕ for every
π ∈ tracesf(σ). The realizability and synthesis problems for
LTLf are then defined in the same way as for LTL.
Comparison with prior formulations Prior work on LTLf
synthesis defined strategies as functions σ : (2X)∗ → 2Y
that do not explicitly indicate the end of the trace (De Gi-
acomo and Vardi 2015; Zhu et al. 2017; Camacho et al.
2018a). In these works, a strategy σ is winning iff for each
π ∈ traces(σ) there exists some finite prefix π′ v π such
that π′ |= ϕ. Note that in general, multiple prefixes π′ that
satisfy ϕ may exist. We believe that it is cleaner mathemati-
cally to be precise about which trace is produced, and it will
substantially simplify our technical developments. The two
definitions give rise to the same notion of realizability, and
existing results and algorithms for LTLf synthesis transfer to
our slightly different setting.

3.3 Planning as LTLf Synthesis
It has been observed that different forms of automated plan-
ning can be recast as LTLf synthesis (see e.g. (De Giacomo
and Vardi 2015; D’Ippolito, Rodrı́guez, and Sardiña 2018;
Camacho et al. 2018b)). We recall that planning problems
are specified in terms of a set of fluents (i.e., atomic facts
whose value may change over time), a set of actions which
can change the state of the world, an action theory whose
axioms give the preconditions and effects of the actions
(i.e., which fluents must hold for an action to be executable,
and how do the fluents change as a result of performing
an action), a description of the initial state, and a goal. In
classical planning, actions are deterministic (i.e. there is a
unique state resulting from performing an action in a given
state), and the aim is to produce a sequence of actions lead-
ing from the initial state to a goal state. In fully observ-
able non-deterministic (FOND) planning, actions have non-
deterministic effects, meaning that there may be multiple
possible states that result from performing a given action
in a given state (with the effect axioms determining which
states are possible results). Strong solutions are policies (i.e.,
functions that map states into actions) that guarantee even-
tual achievement of the goal.

We briefly describe how FOND planning can be reduced
to LTLf synthesis,1 as the reduction crucially relies on the
use of environment assumptions. We will use the set F of
fluents as the uncontrollable variables, and the set of actions
A for the controllable variables. The high-level structure
of the LTLf specification formula is: Φ = (Ψinit ∧ Ψeff) →
(Ψpre ∧ Ψgoal) Intuitively, Φ states that under the assump-
tion that the environment sets the fluents in accordance with
the initial state and effect axioms (captured by Ψinit and
Ψeff), the agent can choose a single action per turn (Ψone)
in such a way that the preconditions are obeyed (Ψpre) and
the goal is achieved (Ψgoal). We set Ψgoal = ♦(γ ∧ ¬ >),

1Our high-level presentation combines elements of the reduc-
tions in (De Giacomo and Vardi 2015; Camacho et al. 2018a). Its
purpose is to illustrate the general form and components of an LTLf
encoding of planning (not to provide the most efficient encoding).

where γ is a propositional formula over F describing goal
states. The formula Ψone = �ψone with ψone = (> ↔∨

a∈A a)∧
∧

a,a′∈A,a,a′ (¬a∨¬a′) enforces that a single action
is performed at each step. The formula Ψpre can be defined as
�

∧
a∈A(a → ρa), where ρa is a propositional formula over

F (typically, a conjunction of literals) that gives the precon-
ditions of a. The formula Ψinit will simply be the conjunction
of literals over F corresponding to the initial state. Finally,
Ψeff will be a conjunction of formulae of the form

� ((κ ∧ a ∧ ρa ∧ ψone)→ β) (1)

where a ∈ A, and κ and β are propositional formulas over F .
Intuitively, the latter formula states that if the current state
verifies κ and action a is correctly performed by the agent
(i.e. the preconditions are met and no other action is simul-
taneously performed) then the next state must satisfy β. We
discuss later why it is important to include ρa ∧ ψone.

3.4 Illustrative Example
We now give a concrete example of an LTLf synthesis prob-
lem, which illustrates the importance of environment as-
sumptions. Consider synthesizing a high-level control strat-
egy for your Roomba-style robot vacuum cleaner. You want
the robot to clean the living room (LR) and bedroom (BR)
when they are dirty, but you don’t want it to vacuum a room
while your cat is there (the robot scares her). We now de-
scribe how this problem can be formalized as LTLf synthesis.

Taking inspiration from the encoding of planning, we will
use {clean(z), catIn(z) | z ∈ {LR, BR}} (the fluents2 in our
scenario) as the set of uncontrollable variables, and take the
robot’s actions {vac(BR), vac(LR)} as the controllable vari-
ables. As was the case for planning, it is natural to conceive
of the specification as having the form of an implication
Ψcat

env → Ψcat
robot, with Ψcat

env describing the rules governing the
environment’s behavior and Ψcat

robot the desired behavior of
the robot. We define Ψcat

robot as the conjunction of:
• for z ∈ {LR, BR}, the formula �(vac(z) → ρvac(z)), with
ρvac(z) = ¬clean(z) ∧ ¬catIn(z) the precondition of vac(z)
(we can only vacuum dirty cat-free rooms);

• �(¬vac(LR) ∨ ¬vac(BR)) (we cannot vacuum in two
places at once);

• ♦(clean(LR) ∧ clean(BR)) (our goal: both rooms clean).
We let ϕvac(z) = vac(z) ∧ ρvac(z) ∧ ¬vac(z′) (with z′ the other
room) encode a correct execution of vac(z), and let Ψcat

env be
a conjunction of the following:
• for z ∈ {LR, BR}: �

(
clean(z) ∨ ϕvac(z) → clean(z)

)
(if

room z is currently clean, or if the robot correctly per-
forms action vac(z), then room z is clean in the next state3)

• for z ∈ {LR, BR}: � (¬clean(z) ∧ ¬vac(z)→ ¬clean(z))
(a room can only become clean if it is vacuumed);

• �(¬catIn(LR) ∨ ¬catIn(BR)) and �(catIn(LR) ∨
catIn(BR)) (the cat is in exactly one of the rooms).

As the reader may have noticed, while the assumptions in
Ψcat

env are necessary, they are not sufficient to ensure real-
izability, as the cat may stay forever in a dirty room. If

2We use notation reminiscent of first-order logic to enhance
readability, but the variables (e.g. clean(LR)) are propositional.

3For simplicity, we assume once a room is clean, it stays clean.

we further assume that the cat eventually leaves each of
the rooms (ϕleaves = ♦¬catIn(BR) ∧ ♦¬catIn(LR)), there
is an obvious solution: vacuum a cat-free room, and then
simply wait until the other room is cat-free and then vac-
uum it. However, rather unexpectedly, adding ϕleaves to Ψcat

env
makes the specification Ψcat

env → Ψcat
robot realizable in a triv-

ial and unintended way: by ending execution in the first
move, ¬Ψcat

env trivially holds in the resulting length-1 trace π.
Indeed, there are three possibilities: (i) π |= catIn(BR)
(so π 6|= ♦¬catIn(BR)), (ii) π |= catIn(LR) (so π 6|=
♦¬catIn(LR)), or (iii) π |= ¬catIn(LR)∧¬catIn(BR) (so π 6|=
(�(catIn(LR) ∨ catIn(BR)))). Clearly, this length-1 strategy
is not the strategy that we wanted to synthesize. In Section 4,
we propose a new framework for handling environment as-
sumptions which avoids the generation of such trivial strate-
gies and makes it possible to find the desired strategies.

4 Constrained LTLf Synthesis
To the aim of properly handling environment assumptions,
we introduce a generalization of LTLf synthesis, in which the
assumptions are separated from the rest of the specification
formula and given a different interpretation. Essentially, the
idea is that the environment is allowed to satisfy the assump-
tion over the whole infinite trace, rather than on the finite
prefix chosen by the agent. This can be accomplished using
LTL semantics for the environment assumption, but keeping
LTLf semantics for the formula describing the objective.

Formally, a constrained LTLf specification is a tuple
〈X,Y, α, ϕ〉, where X andY are the uncontrollable and con-
trollable variables, ϕ is an LTLf formula over X ∪ Y, and α
is an LTL formula over X ∪ Y. Here ϕ describes the desired
agent behavior when the environment behaves so as to sat-
isfy α. We will henceforth call ϕ the objective, and will refer
to α as the (environment) assumption or constraint (as it acts
to constrain the allowed environment behaviors).

A strategy for 〈X,Y, α, ϕ〉 is a function σ : (2X)∗ →
2Y∪{end} such that for each infinite sequence X = {Xi}i≥1 ∈

(2X)ω of subsets of X, there is at most one integer nσ,X ≥ 1
with end ∈ σ(X1 · · · Xnσ,X). If none exists, we write nσ,X =
∞. To account for traces that do not contain end, we redefine
tracesf(σ) as follows: {πf[σ,X] | X ∈ (2X)ω and nσ,X < ∞}.
A strategy σ is an α-strategy if for every X ∈ (2X)ω, ei-
ther nσ,X < ∞ or π[σ,X] 6|= α, i.e. σ terminates on every
trace that satisfies α. A winning strategy (w.r.t. 〈X,Y, α, ϕ〉)
is an α-strategy such that π |= ϕ for every π ∈ tracesf(σ).
In other words, winning strategies are those that guaran-
tee the satisfaction of the objective ϕ under the assumption
that the environment behaves in a way that constraint α is
satisfied. The realizability and synthesis problems for con-
strained LTLf specifications are defined as before, using this
notion of winning strategy.

Because the constraints are interpreted using infinite LTL
semantics, we are now able to correctly handle liveness
constraints (♦ψ) and fairness constraints as studied in LTL
synthesis (�♦ψ) and FOND planning (�♦ψ1 → �♦ψ2)
(D’Ippolito, Rodrı́guez, and Sardiña 2018).

Example 1. Returning to our earlier example, consider the
constrained synthesis problem with assumption Ψcat

env (which

includes ϕleaves) and objective Ψcat
robot. The obvious strategy

(vacuum dirty rooms as soon as they are cat-free) gives rise
to a winning strategy, in which we output end if we man-
age to clean both rooms, and otherwise, produce an infinite
trace without end in which Ψcat

env is not true. Trivial strategies
that terminate immediately will not be winning strategies,
as there will be infinite traces that satisfy the constraint but
where the length-1 finite trace falsifies the objective.

We remark that if we are not careful about how we write
the constraint α, we may unintentionally allow the agent to
block the environment from fulfilling α.
Remark 1. Suppose that instead of using Equation 1
to encode the effects of actions, we employ the simpler
� ((κ ∧ a)→ β). While intuitive, this alternative formula-
tion does not properly encode FOND planning, as the spec-
ification may be realized in an unintended way: by perform-
ing multiple actions with conflicting effects, or a single ac-
tion whose precondition is not satisfied, the agent can force
the environment to satisfy a contradictory set of formulae β
in the next state, causing the assumption to be violated.

Chatterjee, Henzinger, and Jobstmann (2008) discuss this
phenomenon in the context of LTL synthesis, and suggest
that a reasonable environment constraint is one which is re-
alizable for the environment. We note that the constraints we
considered in Section 3 all satisfy this property.

Correspondence with Finite LTL Synthesis We begin by
observing that (plain) LTLf synthesis is a special case of con-
strained LTLf synthesis in which one uses the trivial con-
straint > for the environment assumption:
Theorem 1. Every winning strategy σ for the LTLf speci-
fication 〈X,Y, ϕ〉 is a winning strategy for the constrained
LTLf specification 〈X,Y,>, ϕ〉, and vice-versa. In particu-
lar, 〈X,Y, ϕ〉 is realizable iff 〈X,Y,>, ϕ〉 is realizable.

A natural question is whether a reduction in the other di-
rection exists. Indeed, it is well-known that in the infinite set-
ting, assume-guarantee LTL synthesis4 with an assumption α
and objective ϕ corresponds to classical LTL synthesis w.r.t.
α → ϕ (that is, the two synthesis problems have precisely
the same winning strategies). The following negative result
shows that a simple reduction via implication does not work
in the finite trace setting:
Theorem 2. There exists an unrealizable constrained LTLf
specification S = 〈X,Y, α, ϕ〉 such that the LTLf specifica-
tion S→ = 〈X,Y, α→ ϕ〉 is realizable.

Proof. Consider the constrained LTLf specification S =
〈{x, x′} , {y} , α, ϕ〉 with α = ¬x ∧ ♦x and ϕ = ♦(x′∧ y). We
claim that S is unrealizable. Indeed, take any X = X1X2 . . .
such that x < X1, x ∈ X2, and x′ < Xi for all i ≥ 1. Then
no matter which strategy σ is used, the infinite trace π[σ,X]

4Here we refer to assume-guarantee synthesis as considered in
(Chatterjee, Henzinger, and Jobstmann 2008; Almagor et al. 2017),
where given a pair (α, ϕ), the aim is to construct a strategy such that
every induced infinite trace either violates α or satisfies ϕ. This is
different from the assume-guarantee synthesis of (Chatterjee and
Henzinger 2007), in which N agents each have their own goals,
and the objective is for each agent to satisfy its own goals.

will satisfy α, and the induced finite trace πf[σ,X], if it ex-
ists, will falsify ϕ (as x′ never holds).

Next consider S→ = 〈{x} , {y} , α → ϕ〉, and observe that
α→ ϕ ≡ x∨(�¬x)∨♦(x′∧ y). A simple winning strategy ex-
ists: output end in the first time step. Indeed, every induced
trace has length 1 and hence trivially satisfies x ∨ �¬x. �

With the next theorem, we observe a more fundamental
difficulty in reducing constrained LTLf synthesis problems to
standard LTLf synthesis: winning strategies for constrained
problems may need an unbounded number of time steps to
realize the specification, a phenomenon that does not occur
in standard LTLf synthesis.

Theorem 3. An LTLf specification is realizable iff it admits
a bounded winning strategy, i.e. a strategy for which there
exists B > 0 such that every induced finite trace has length
at most B. There exist realizable constrained LTLf specifica-
tions that do not possess any bounded winning strategy.

Proof. A straightforward examination of the LTLf synthe-
sis algorithm5 in (De Giacomo and Vardi 2015) shows that
when 〈X,Y, ϕ〉 is realizable, the produced strategy guaran-
tees achievement of ϕ in a number of time steps bounded by
the number of states in a DFA for ϕ.

For the second point, consider the constrained LTLf spec-
ification S = 〈{x} , {y} , ♦x,¬y U (x ∧ y)〉. Observe that S is
realizable, as it suffices to output ¬y until the first x is read,
then output {y, end}. Assume for a contradiction that there
is a winning strategy σ for S and constant B > 0 such that
nσ,X ≤ B for every X ∈ Xω. Define XB = XB

1 XB
2 . . . as fol-

lows: XB
i = {x} if i = B + 1 and XB

i = ∅ otherwise. The
induced trace π = πf[σ,XB] has length at most B and hence
does not contain x. It follows that π 6|= ϕ, contradicting our
assumption that σ is a winning strategy. �

While the implication-based approach does not work in
general, we show that it can be made to work for environ-
ment assumptions that belong to the safe fragment:

Theorem 4. When α is a safe formula, the constrained LTLf
specification S = 〈X,Y, α, ϕ〉 is realizable iff the LTLf spec-
ification S′ = 〈X,Y, α′ → ϕ〉 is realizable, where α′ is ob-
tained from α by replacing every occurrence of ψ by ψ.

Proof sketch. Let σ′ be a winning strategy for 〈X,Y, α′ →
ϕ〉, with α a safe formula. To define a winning strategy σ for
〈X,Y, α, ϕ〉, we set σ(X1 · · · Xn) equal to
• σ(X1 · · · Xn) \ {end}, when end ∈ σ(X1 · · · Xn) and

(X1 ∪ σ(X1)) . . . (Xn ∪ σ(X1 · · · Xn)) 6|= α′;
• σ(X1 · · · Xn), otherwise.
For the other direction, given a winning strategy σ for
〈X,Y, α, ϕ〉, we can define a winning strategy σ′ for
〈X,Y, α′ → ϕ〉 by setting σ′(X1 · · · Xn) equal to

• σ(X1 · · · Xn)∪{end}, if (X1∪σ(X1)) . . . (Xn∪σ(X1 · · · Xn))
is a bad prefix for α, and end < σ′(X1 · · · Xk) for k < n;

• σ(X1 · · · Xn)\{end}, if end ∈ σ′(X1 · · · Xk) for some k < n;
• σ′(X1 · · · Xn) = σ(X1 · · · Xn), otherwise. �

5The algorithm can be easily modified to output end once ϕ has
been satisfied to match our definition of strategy.

The following example shows that it is essential in the
preceding theorem to use α′ → ϕ rather than α→ ϕ:

Example 2. If we let α = �(¬x ∨ x) and ϕ = ¬x ∧ y,
then the constrained specification 〈X,Y, α, ϕ〉 is not realiz-
able (as the environment can output x in the first step), but
the LTLf specification 〈X,Y, α → ϕ〉 is realizable with a
strategy that outputs {y, end} in the first step. Indeed, if the
environment outputs x, then ¬α ≡ ♦(x ∧ ¬ x) holds in the
induced length-1 trace; if we have ¬x instead, then ϕ holds.

Note however that the negative result in the general case
(Theorem 2) continues to hold if α′ → ϕ is used instead of
α→ ϕ, since the formulas in that proof do not involve .

Another interesting observation is the environment as-
sumptions Ψinit and Ψeff used to encode the initial state and
action effects in planning are safe formulas. This explains
why these constraints can be properly encoded in LTLf using
implication and rather than . We note that if we encode
planning using constrained LTLf synthesis, then we can use

in the effect axioms, which is arguably more natural.

Reduction to LTL Synthesis Every LTLf formula ϕ over
P can be polynomially transformed into an LTL formula ϕinf
over P ∪ {alive} such that π |= ϕinf iff π′ |= ϕ for some fi-
nite prefix π′ v π (De Giacomo and Vardi 2013). Intuitively,
alive holds for the duration of the (simulated) finite trace.
Formally, ϕinf B τ(ϕ) ∧ alive ∧ (alive U (�¬alive)), where:

τ(p) = p τ(¬ϕ) = ¬τ(ϕ) τ(ϕ1 ∧ ϕ2) = τ(ϕ1) ∧ τ(ϕ2)
τ(ϕ) = (alive ∧ τ(ϕ)) τ(ϕ1 Uϕ2) = ϕ1 U (alive ∧ τ(ϕ))

We extend this transformation as follows:

ψend B �(end↔ alive ∧ ¬alive) ∧ �(end→ �¬end)
ψα,ϕ B ψend ∧ ((α ∨ ♦end)→ ϕinf)

Here ψend forces the agent to trigger variable end when the
end of the trace is simulated and also ensures that end occurs
at most once. Formula ψα,ϕ ensures that ϕinf is satisfied – i.e.,
a finite trace that satisfies ϕ and ends is simulated – when
either the environment assumption α holds or end occurs.

Theorem 5. The constrained LTLf specification S =
〈X,Y, α, ϕ〉 is realizable iff LTL specification S∞ = 〈X,Y ∪
{alive, end} , ψα,ϕ〉 is realizable. Moreover, for every winning
strategy σ for S∞, the strategy σ′ defined by σ′(X1 · · · Xn) B
σ(X1 · · · Xn) \ {alive} is a winning strategy for S.

5 Algorithms for Constrained LTLf Synthesis
LTL and LTLf realizability are both 2EXP-complete (Pnueli
and Rosner 1989; De Giacomo and Vardi 2015), and we can
show the same holds for constrained LTLf problems. The up-
per bound exploits the reduction to LTL (Theorem 5), and the
lower bound is inherited from (plain) LTLf synthesis, which
is a special case of constrained LTLf synthesis (Theorem 1).

Theorem 6. Constrained LTLf realizability (resp. synthesis)
is 2EXP-complete (resp. in 2EXP).

It follows from Theorem 6 that the reduction to infi-
nite LTL realizability and synthesis yields worst-case opti-
mal algorithms. However, we argue that the reduction to
LTL does not provide a practical approach. Indeed, while

LTL and LTLf synthesis share the same worst-case complex-
ity, recent experiments have shown that LTLf is much eas-
ier to handle in practice (Zhu et al. 2017). Indeed, state-of-
the-art approaches to LTL synthesis rely on first translating
the LTL formula into a suitable infinite-word automata, then
solving a two-player game on the resulting automaton. The
computational bottleneck is the complex transformations of
infinite-word automata, for which no efficient implementa-
tions exist. Recent approaches to LTLf synthesis also adopt
an automata-game approach, but LTLf formulae require only
finite-word automata (NFAs and DFAs), which can be ma-
nipulated more efficiently.

The preceding considerations motivate us to explore an
alternative approach to constrained LTLf synthesis, which
involves a reduction to DBA games. Importantly, the DBA
can be straightforwardly constructed from DFAs for the con-
straint and objective formulae, allowing us to sidestep the
difficulties of manipulating infinite-word automata.

5.1 DBA for Constrained Specifications
For the rest of this section, we assume α = αs ∧ αc, where
αs is a safe formula and αc is a co-safe formula6, both de-
fined over X∪Y. Safe and co-safe formulae are well-known
LTL fragments (Kupferman and Vardi 2001) of proven util-
ity. Safe formulas are prevalent in LTL specifications and a
key part of the encoding of planning as LTLf synthesis (see
Section 3.3); the usefulness of co-safe formulas can be seen
from our example (Section 3.4) and their adoption in work
on robot planning (see e.g. (Lahijanian et al. 2015)).

Our aim is to construct a DBA that accepts infinite traces
π over 2X∪Y∪{end} such that either (i) π contains a single
occurrence of end which induces a finite prefix π′ with
π′ |= ϕ, or (ii) π doesn’t contain end and π 6|= αs ∧ αc. Such
a DBA Aαs,αc

ϕ can be defined by combining three DFAs:
As = 〈2P,Qs, δs, (q0)s, Fs〉 accepts the bad prefixes of αs;
Ac = 〈2P,Qc, δc, (q0)c, Fc〉 accepts the good prefixes of αc;
andAg = 〈2P,Qg, δg, (q0)g, Fg〉 accepts models of ϕ. Recall
that these DFAs can be built in double-exponential time.

Formally, we let Aαs,αc
ϕ = 〈2P∪{end},Q, δ, q0, F〉, where Q,

q0, and F are defined as follows:
• Q B

(
(Qs ∪ {qbad}) × (Qc ∪ {qgood}) × Qg)

)
∪ {q>, q⊥}

• q0 B ((q0)s, (q0)c, (q0)g)
• F B {(qs, qc, qg) ∈ Q | qs = qbad or qc , qgood} ∪ {q>}
For ‘regular’ symbols θ ∈ 2P (i.e., end < θ), we set
δ((qs, qc, qg), θ) = (δ∗s(qs, θ), δ∗c(qc, θ), δg(qg, θ)) where:

δ∗s(qs, θ) =

{
qbad, if qs = qbad or δs(qs, θ) ∈ Fs

δs(qs, θ), otherwise

δ∗c(qc, θ) =

{
qgood, if qc = qgood or δc(qc, θ) ∈ Fc

δc(qc, θ), otherwise

For θ with end ∈ θ, we set δ((qs, qc, qg), θ) = q> if
δg(qg, θ) ∈ Fg, and δ((qs, qc, qg), θ) = q⊥ in all other cases.
Accepting state q> is quasi-absorbing: δ(q>, θ) = q> when
end < θ, and δ(q>, θ) = q⊥ otherwise. This forces winning

6If we want to have only a safe (resp. co-safe) constraint, it suf-
fices to use a trivial constraint αc = > (resp. αs = ⊥R (p ∨ ¬p)).

strategies to output variable end at most once. Finally, q⊥ is
an absorbing state: δ(q⊥, θ) = q⊥ for every θ ∈ 2P∪{end}.
Theorem 7. The DBA Aαs,αc

ϕ accepts infinite traces π such
that either: (i) π(1) · · · π(n) |= ϕ and end occurs only in π(n),
or (ii) π 6|= αs ∧ αc and end does not occur in π. Aαs,αc

ϕ can
be constructed in double-exponential time in |αs|+ |αc|+ |ϕ|.

5.2 DBA Games
Once a specification has been converted into a DBA, real-
izability and synthesis can be reduced to DBA games. We
briefly recall next the definition of such games and how win-
ning strategies can be computed.

A DBA (or Büchi) game (see e.g. (Chatterjee, Henzinger,
and Piterman 2006)) is a two-player game given by a tuple
〈X,Y,A〉, whereX andY are disjoint finite sets of variables
and A is a DBA with alphabet 2X∪Y. A play is an infinite
sequence of rounds, where in each round, Player I selects
Xi ⊆ X, then Player II selects Yi ⊆ Y. A play is winning if
it yields a word (X1 ∪ Y1)(X2 ∪ Y2) . . . that belongs to L(A).
A game is winning if there exists a strategy σ : (2X)∗ →
2Y such that for every infinite sequence X1X2 . . . ∈ X

ω, the
word (X1∪σ(X1))(X2∪σ(X1X2)) . . . obtained by followingσ
belongs to L(A). In this case, we call σ a winning strategy.

Existence of a winning strategy for a DBA game G =
〈X,Y,A〉 based upon A = 〈2X∪Y,Q, δ, q0, F〉 can be deter-
mined by computing the winning region of G. This is done
in two steps. First, we compute the set RA(G) of recurring
accepting states, i.e. those q ∈ F such that Player II has
a strategy from state q to revisit F infinitely often. Next,
we define the winning region Win(G) of G as those states
in q ∈ Q for which Player II has a strategy for reaching a
state in RA(G). The sets RA(G) and Win(G) can be com-
puted in polynomial time by utilizing the controllable pre-
decessor operator: CPre(S) = {q ∈ Q | ∀X ⊆ X∃Y ⊆ Y :
δ(q, X∪Y) ∈ S }. We set Reach0(S) = S and Reachi+1(S) =
Reachi(S) ∪ CPre(Reachi(S)). Intuitively, Reachi(S) con-
tains those states from which Player II has a strategy for
reaching (or returning to) S in at most i rounds. The limit
limi Reachi(S) exists because Reachi(S) ⊆ Reachi+1(S),
and convergence is achieved in a finite number of iterations
bounded by |Q|. To compute RA(G), we set S1 = F and let
Sk+1 = Sk ∩ limi Reachi(S k). The set Sk contains those ac-
cepting states from which Player II has a strategy for visit-
ing Sk no less than k times. The limit limk S k exists because
Sk ⊆ Sk+1, and convergence is achieved in a finite number of
iterations bounded by |F |. RA(G) is the finite limit of Sk, and
the set Win(G) is then the finite limit of Reachi(RA(G)). It is
easy to see that Win(G) can be computed in polynomial time
w.r.t. the size of the DBA A. The following well-known re-
sult shows how we can use Win(G) to decide ifG is winning.
Theorem 8. G is winning iff q0 ∈ Win(G).

We sketch the proof of the right-to-left implication here,
since it will be needed for later results. We suppose that
q0 ∈ Win(G) and show how to construct a transducer TG
that implements a winning strategy. Intuitively, the trans-
ducer’s output function ensures that the transducer stays
within Win(G), always reducing the ‘distance’ to RA(G).
More precisely, we can define TG as 〈2X, 2Y,Q, δ′, ω, q0〉,

where: the set of states Q and initial state q0 are the same
as for the DBAA, and the transition function δ′ mirrors the
transition function δ of A: δ′(q, X) = δ(q, X ∪ ω(q, X)). We
define the output function ω as follows:
• Case 1: there exists Y∗ such that δ(q, X ∪ Y∗) ∈ Win(G).

In this case, we let ω(q, X) be any7 Y ∈ 2Y such that (a)
δ(q, X∪Y) ∈ Reachi+1(RA(G)), and (b) there is no Y ′ with
δ(q, X ∪ Y ′) ∈ Reachi(RA(G)).

• Case 2: no such Y∗ exists. We let ω(q, X) be any Y ∈ 2Y.
According to this definition, after reading X, the transducer
TG chooses an output symbol Y that allows the underlying
automaton A to transition from the current state via X ∪ Y
to a state in Win(G) (if some such symbol exists). Moreover,
among the immediately reachable winning states, preference
is given to those that are closest to RA(G), i.e. those belong-
ing to Reachi(RA(G)) for the minimal value i.

5.3 Constrained LTLf Synthesis via DBA Games
Given a constrained LTLf synthesis specification 〈X,Y, α, ϕ〉
with α = αs ∧ αc, we proceed as follows:

1. Construct the DBA game Gαs,αc
ϕ = 〈X,Y∪ {end},Aαs,αc

ϕ 〉.
2. Determine whether Gαs,αc

ϕ is winning: build Win(Gαs,αc
ϕ)

and check whether ((q0)s, (q0)c, (q0)g) ∈ Win(Gαs,αc
ϕ).

3. If Gαs,αc
ϕ is not winning, return ‘unrealizable’.

4. Otherwise, compute a winning strategy for Gαs,αc
ϕ using

the transducer from Section 5.2.
Using Theorems 7 and 8, we can show that this method is
correct and yields optimal complexity:

Theorem 9. Consider a constrained LTLf specification
S =〈X,Y, αs ∧ αc, ϕ〉 where αs (resp. αc) is a safe (resp.
co-safe) formula. Then:
• S is realizable iff the DBA game Gαs,αc

ϕ is winning;
• Every winning strategy for Gαs,αc

ϕ is a winning strategy for
S, and vice-versa;

• Deciding whether Gαs,αc
ϕ is winning, and constructing a

winning strategy when one exists, can be done in 2EXP.

6 Synthesis of High-Quality Strategies
This section explores the use of a quantitative specification
language to compare strategies based upon how well they
satisfy the specification. We adopt the LTLf[F] language
from (Almagor, Boker, and Kupferman 2016) and propose
a new more refined way of defining optimal strategies.

6.1 The Temporal Logic LTLf[F]
We recall here the language LTLf[F] proposed by Almagor,
Boker, and Kupferman (2016). The basic idea is that instead
of a formula being either totally satisfied or totally violated
by a trace, a value between 0 and 1 will indicate its degree
of satisfaction. In order to allow for different ways of aggre-
gating formulae, the basic LTL syntax is augmented with a
set F ⊆ { f : [0, 1]k → [0, 1] | k ∈ N} of functions, with the

7Several Y may satisfy the conditions, and choosing any such
Y yields a suitable transducer. Alternatively, one can use nonde-
terministic transducers (called strategy generators in (De Giacomo
and Vardi 2015)) to encode a family of deterministic transducers.

choice of which functions to include in F being determined
by the application at hand.

Formally, the set of LTLf[F] formulae is obtained by
adding f (ϕ1, . . . , ϕk) to the grammar for ϕ, for every f ∈ F .
We assign a satisfaction value to every LTLf[F] formula, fi-
nite trace π, and time step 1 ≤ i ≤ |π|, as follows8:

~π,>�i = 1 ~π,⊥�i = 0 ~π, p�i =

{
1 if p ∈ π(i)
0 otherwise

~π,¬ϕ�i = 1 − ~π, ϕ�i

~π, ϕ1 ∧ ϕ2�i = min{~π, ϕ1�i, ~π, ϕ2�i}

~π, ϕ�i = ~π, ϕ�i+1

~π, f (ϕ1, . . . , ϕk)�i = f (~π, ϕ1�i, . . . , ~π, ϕk�i)

~π, ϕ1 Uϕ2�i = max
i≤i′≤|π|

{
min

{
~π, ϕ2�i′ , min

i≤ j<i′
{~π, ϕ1� j}

}}
The (satisfaction) value of ϕ on π, written ~π, ϕ�, is ~π, ϕ�1.

We define V(ϕ) ⊆ [0, 1] as the set of values ~π, ϕ�i, rang-
ing over all traces π and steps 1 ≤ i ≤ |π|. The follow-
ing proposition, proven by (Almagor, Boker, and Kupferman
2016), shows that an LTLf[F] formula can take on only ex-
ponentially many different values.

Proposition 1. For every LTLf[F] formula ϕ, |V(ϕ)| ≤ 2|ϕ|.

The functions f allow us to capture a diversity of meth-
ods for combining a set of potentially competing objec-
tives (including classical preference aggregation methods
like weighted sums and lexicographic ordering).

Example 3. For illustration purposes, consider two variants
of our robot vacuum example, with specifications ϕ1 and
ϕ2, in which the goal ♦(clean(LR) ∧ clean(BR)) is replaced
by ♦(clean(LR)) and ♦(clean(BR)), respectively. We can in-
clude in F a binary weighted sum operator sum0.3,0.7, where
the satisfaction value of sum0.3,0.7(ϕ1, ϕ2) on trace π is 0.3 if
π |= ϕ1∧¬ϕ2, 0.7 if π |= ¬ϕ1∧ϕ2, 1 if π |= ϕ1∧ϕ2, and zero
otherwise. We can thus express that we’d like to clean both
rooms, but give priority to the bedroom.

6.2 Defining Optimal Strategies
Henceforth, we consider a constrained synthesis LTLf[F]
problem 〈X,Y, α, ϕ〉, defined as before except that now ϕ is
an LTLf[F] formula. Such formulae assign satisfaction val-
ues to traces, allowing us to rank traces according to the ex-
tent to which they satisfy the expressed preferences. It re-
mains to lift this preference order to strategies.

Perhaps the most obvious way to rank strategies is to
consider the minimum value of any trace induced by the
strategy, preferring strategies that can guarantee the highest
worst-case value. This is the approach adopted by (Almagor,
Boker, and Kupferman 2016) for LTL[F] synthesis. We for-
malize it for constrained LTLf[F] synthesis as follows:

Definition 1. The best guaranteed value of strategy σ, de-
noted bgv(σ), is the minimum value of ~π, ϕ� over all π ∈
tracesf(σ) (or 0 if tracesf(σ) = ∅). A strategy σ is bgv-
optimal w.r.t. (α, ϕ) if it is a α-strategy and no α-strategy σ′
exists with bgv(σ′) > bgv(σ).

8We omit ∨ and R , as they can be defined using ¬, ∧, and U .

Optimizing for the best guaranteed value seems natural,
but can be insufficiently discriminative. Consider a simple
scenario with X = {x} and Y = {y}. If the environment plays
x, then we get value 0 no matter what, and if ¬x is played,
a value of 1 is achieved by playing y, and 0 if ¬y is played.
Clearly, we should prefer to play y after ¬x, yet the strat-
egy that plays ¬y following ¬x is bgv-optimal, since like
every strategy, its bgv is 0. This motivates us to introduce a
stronger, context-aware, notion of optimality:

Definition 2. Given a strategy σ, trace π ∈ ptraces(σ) that
does not contain end, and X ∈ 2X, the best guaranteed value
of σ starting from π·X, written bgvπ,X(σ), is the minimum of
~π′, ϕ� over all traces π′ ∈ tracesf(σ) such that π · (X ∪ Y) v
π′ for some Y ∈ Y (or 0 if no such trace exists). A strategy σ
is a strongly bgv-optimal w.r.t. (α, ϕ) if it is an α-strategy, and
there is no α-strategy σ′, trace π ∈ ptraces(σ)∩ptraces(σ′)
without end, and X ∈ 2X such that bgvπ,X(σ′) > bgvπ,X(σ).

Strongly bgv-optimal strategies take advantage of any fa-
vorable situation during execution to improve the best worst-
case value. In the preceding example, they allow us to say
that the first strategy is better than the second.

7 Algorithms: High-Quality LTLf Synthesis
In this section, we present novel techniques to compute
bgv-optimal and strongly bgv-optimal strategies for a con-
strained LTLf[F] synthesis problem 〈X,Y, α, ϕ〉. As in Sec-
tion 5.1, we focus on the case where α is a conjunction
αs ∧ αc of safe and co-safe formulae.

7.1 Automaton for LTLf[F]
It has been shown in (Almagor, Boker, and Kupferman
2016) how to construct, for a given LTLf[F] formula ϕ and
set of values V ⊆ [0, 1], an NFA Aϕ,V = 〈2P,Q, δ,Q0, F〉
that accepts finite traces π with ~π, ϕ� ∈ V. We briefly
recall the construction here. We denote by sub(ϕ) the set
of subformulas of ϕ, and let Cϕ be the set of functions
g : sub(ϕ)→ [0, 1] such that g(ψ) ∈ V(ψ) for all ψ ∈ sub(ϕ).
Q contains all consistent functions in Cϕ, where a function
g is consistent if, for every ψ ∈ sub(ϕ), the following hold:
• if ψ = >, then g(ψ) = 1, and if ψ = ⊥, then g(ψ) = 0
• if ψ ∈ P then g(ψ) ∈ {0, 1}
• if ψ = f (ψ1, . . . , ψk)), then g(ψ) = f (g(ψ1), . . . , g(ψk))
The transition function δ is such that g′ ∈ δ(g, σ) whenever:
• σ = {p ∈ P | g(p) = 1}
• g(ψ1) = g′(ψ1) for every ψ1 ∈ sub(ϕ))
• g(ψ1 Uψ2) = max {g(ψ2),min {g(ψ1), g′(ψ1 Uψ2)}} for ev-

ery ψ1 Uψ2 ∈ sub(ϕ)
Finally, the set of initial states is Q0 = {q ∈ Q | g(ϕ) ∈ V},
and F = {g | g(ψ2) = g(ψ1 Uψ2) for all ψ1 Uψ2 ∈ sub(ϕ)} ∩
{g | g(ψ) = 0 for all ψ ∈ sub(ϕ)}.

The NFA Aϕ,V can be constructed in single-exponential
time, andL(Aϕ,V) = {π | ~π, ϕ� ∈ V} (Almagor, Boker, and
Kupferman 2016). By determinizingAϕ,V, we obtain a DFA
Âϕ,V that accepts the same language and can be constructed
in double-exponential time. In what follows, V will always
take the form [b, 1], so we’ll use Âϕ≥b in place of Âϕ,[b,1].

7.2 Synthesis of bgv-optimal strategies
We describe how to construct a bgv-optimal strategy. First
note that given b ∈ [0, 1], we can construct a DBA Aα

ϕ≥b
that recognizes traces such that either (i) α = αs ∧ αc is
violated and end does not occur, or (ii) end occurs exactly
once and the induced finite trace π is such that ~π, ϕ� ≥ b.
Indeed, we simply reuse the construction from Section 5.1,
replacing the DFA Ag with the DFA Âϕ≥b. We next ob-
serve that an α-strategy σ with bgv(σ) ≥ b exists iff the
DBA game 〈X,Y ∪ {end},Aα

ϕ≥b〉 is winning. Thus, by iter-
ating over the values in V(ϕ) in descending order, we can
determine the maximal b∗ for which an α-strategy σ with
bgv(σ) ≥ b∗ exists. A bgv-optimal strategy can be com-
puted by constructing a winning strategy for the DBA game
〈X,Y∪{end},Aα

ϕ≥b∗〉, using the approach in Section 5.2. As
there are only exponentially many values in V(ϕ) (Prop. 1),
the overall construction takes double-exponential time.
Theorem 10. A bgv-optimal strategy can be constructed in
double-exponential time.

7.3 Synthesis of strongly bgv-optimal strategies
To compute a strongly bgv-optimal stategy, we build a trans-
ducer that runs in parallel DBAs Aα

≥b for different val-
ues b, and selects outputs symbols so as to advance within
the ‘best’ applicable winning region. This idea can be for-
malized as follows. As in Section 7.2, we first determine
the maximal b∗ ∈ V(ϕ) for which a α-strategy σ with
bgv(σ) ≥ b∗ exists, and set B = V(ϕ) ∩ [b∗, 1]. In the pro-
cess, we will compute, for each b ∈ B, the sets Win(Gb)
and RA(Gb) for the DBA game Gb = 〈X,Y,Aα

≥b〉 based on
the DBA Aα

≥b = 〈2P∪{end},Qb, δb, qb
0, Fb〉. In the sequel, we

will assume that the elements of B are ordered as follows:
b1 < b2 . . . < bm, with b∗ = b1 and bm = 1.

We now proceed to the definition of the desired transducer
T str = 〈2X, 2Y∪{end},Qstr, δstr, ωstr, qstr

0 〉, obtained by taking
the cross product of the set of DBAs Aα

≥b with b ∈ B, in
order to keep track of the current states in these automata:
• qstr

0 = (qb1
0 , q

b2
0 , . . . , q

bm
0) and Qstr = Qb1 × . . . × Qbm

• δstr((q1, . . . , qm), X) = (δb1 (q1, X∪Y), . . . , δbm (qm, X∪Y)),
where Y = ωstr((q1, q2, . . . , qm), X)

After reading X, the output function identifies the maximal
value b ∈ B such that current state qb of Aα

≥b can transition,
via some symbol X∪Y , into a state in Win(Gb), and it returns
the same output as the transducer TGb in state qb:
• ωstr((q1, . . . , qm), X) = ωb(qb, X), where b = max({v ∈ B |
∃Y δv(qv, X ∪ Y) ∈ Win(Gv)})

We note that the transducer TGb can be defined as in Section
5.2 even when qb

0 < Win(Gb), but it only returns ‘sensible’
outputs when it transitions to Win(Gb).
Theorem 11. T str implements a strongly bgv-optimal strat-
egy and can be constructed in double-exponential time.

8 Discussion and Concluding Remarks
It has been widely remarked in the (infinite) LTL synthe-
sis literature that environment assumptions are ubiquitous:
the existence of winning strategies is almost always pred-
icated on some kind of environment assumption. This was

observed in the work of (Chatterjee, Henzinger, and Jobst-
mann 2008), motivating the introduction of the influential
assume-guarantee synthesis model, and in work on rational
synthesis (Fisman, Kupferman, and Lustig 2010), where the
environment is assumed to act as a rational agent, and syn-
thesis necessitates finding a Nash equilibrium. Interesting
reflections on the role of assumptions in LTL synthesis, to-
gether with a survey of the relevant literature, can be found
in (Bloem et al. 2014).

In this paper, we explored the issue of handling environ-
ment assumptions in LTLf synthesis (De Giacomo and Vardi
2013), the counterpart of LTL synthesis for programs that ter-
minate. Our starting point was the observation that the stan-
dard approach to handling assumptions in LTL synthesis (via
logical implication) fails in the finite-trace setting. This led
us to propose an extension of LTLf synthesis that explicitly
accounts for environment assumptions. The key insight un-
derlying the new model of constrained LTLf synthesis is that
while the synthesized program must realize the objective in
a finite number of steps, the environment continues to exist
after the program terminates, so environment assumptions
should be interpreted under infinite LTL semantics.

We studied the relationships holding between constrained
LTLf synthesis and (standard) LTLf and LTL synthesis. In par-
ticular, we identified a fundamental difficulty in reducing
constrained LTLf synthesis to LTLf synthesis – the former
problem can require unbounded strategies, while bounded
strategies suffice for the latter. Nevertheless, when the con-
straints were restricted to the safe LTL fragment, a reduction
from constrained LTLf synthesis to LTLf synthesis is possi-
ble. Interestingly, this explains why planning – more natu-
rally conceived as a constrained LTLf synthesis problem –
can also be encoded as LTLf synthesis. The connection be-
tween synthesis and planning has been remarked in several
works (see e.g., (De Giacomo and Vardi 2015; D’Ippolito,
Rodrı́guez, and Sardiña 2018; Camacho et al. 2018a; 2018b;
2018c)). We also showed how to reduce constrained LTLf
synthesis to (infinite) LTL synthesis, which provides a worst-
case optimal means of solving constrained LTLf synthesis
problems, in the general case, using (infinite) LTL synthesis
tools. In the case where our constraint is comprised of a con-
junction of safe and co-safe formulae, we showed that the
constrained LTLf synthesis problem can be reduced to DBA
games and the winning strategy determined from the win-
ning region. What makes our approach interesting is that the
DBA is constructed via manipulation of DFAs, much easier
to handle in practice than infinite-word automata.

We next turned our attention to the problem of augment-
ing constrained LTLf synthesis with quality measures. We
were motivated by practical concerns surrounding the abil-
ity to differentiate and synthesize high-quality strategies in
settings where we may have a collection of mutually un-
realizable objective formulae and alternative strategies of
differing quality. Our work builds on results for the in-
finite case, e.g., (Almagor, Boker, and Kupferman 2016;
Almagor et al. 2017; Kupferman 2016) with and without
environment assumptions. We adopted LTLf[F] as our lan-
guage for specifying quality measures. While the syntax
of LTLf[F] is utilitarian, many more compelling preference

languages are reducible to this core language. We defined
two different notions of optimal strategies – bgv-optimal and
strongly bgv-optimal. The former adapts a similar definition
in (Almagor, Boker, and Kupferman 2016) and the latter
originates with us. We focused again on assumptions that
can be expressed as conjunctions of safe and co-safe formu-
lae and provided algorithms to compute bgv- and strongly
bgv-optimal strategies with optimal (2EXP) complexity.

Proper handling of environment assumptions and quality
measures, together with the design of efficient algorithms for
such richer specifications, is essential to putting LTLf syn-
thesis into practice. The present paper makes several impor-
tant advances in this direction and also suggests a number
of interesting topics for future work including: the study of
other types of assumptions in the finite-trace setting (e.g. ra-
tional synthesis), the exploitation of more compelling KR
languages for specifying preferences, and the exploration of
further ways of comparing and ranking strategies (perhaps
incorporating notions of cost or trace length).
Acknowledgements: This work was partially funded by
the Natural Sciences and Engineering Research Council of
Canada (NSERC) and the ANR project GoAsQ (ANR-15-
CE23-0022).

References
Almagor, S.; Kupferman, O.; Ringert, J. O.; and Velner, Y.
2017. Quantitative assume guarantee synthesis. In Pro-
ceedings of the 29th International Conference on Computer
Aided Verification (CAV), 353–374.
Almagor, S.; Boker, U.; and Kupferman, O. 2016. For-
mally reasoning about quality. Journal of the ACM (JACM)
63(3):24:1–24:56.
Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning. Artificial
Intelligence 116(1-2):123–191.
Baier, J. A.; Bacchus, F.; and McIlraith, S. A. 2009. A
heuristic search approach to planning with temporally ex-
tended preferences. Artificial Intelligence 173(5-6):593–
618.
Bloem, R.; Ehlers, R.; Jacobs, S.; and Könighofer, R. 2014.
How to handle assumptions in synthesis. In Proceedings of
the 3rd Workshop on Synthesis (SYNT), 34–50.
Camacho, A.; Baier, J. A.; Muise, C. J.; and McIlraith, S. A.
2018a. Finite LTL synthesis as planning. In Proceedings of
the 28th International Conference on Automated Planning
and Scheduling (ICAPS), 29–38.
Camacho, A.; Baier, J. A.; Muise, C. J.; and McIlraith, S. A.
2018b. Synthesizing controllers: On the correspondence be-
tween LTL synthesis and non-deterministic planning. In Ad-
vances in Artificial Intelligence - Proceedings of the 31st
Canadian Conference on Artificial Intelligence, 45–59.
Camacho, A.; Muise, C. J.; Baier, J. A.; and McIlraith, S. A.
2018c. LTL realizability via safety and reachability games.
In Proceedings of the 27th International Joint Conference
on Artificial Intelligence (IJCAI), 4683–4691.
Chatterjee, K., and Henzinger, T. A. 2007. Assume-
guarantee synthesis. In Proceedings of the 13th Interna-

tional Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS), 261–275.
Chatterjee, K.; Henzinger, T. A.; and Jobstmann, B. 2008.
Environment assumptions for synthesis. In Proceedings of
the 19th International Conference on Concurrency Theory
(CONCUR), 147–161.
Chatterjee, K.; Henzinger, T.; and Piterman, N. 2006. Al-
gorithms for Büchi games. In GDV Workshop. Available on
Arxiv (arXiv:0805.2620).
Church, A. 1957. Applications of recursive arithmetic to
the problem of circuit synthesis. Summaries of the Summer
Institute of Symbolic Logic, Cornell University 1957 1:3–50.
De Giacomo, G., and Vardi, M. Y. 2013. Linear temporal
logic and linear dynamic logic on finite traces. In Proceed-
ings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI), 854–860.
De Giacomo, G., and Vardi, M. Y. 2015. Synthesis for LTL
and LDL on finite traces. In Proceedings of the 24th Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
1558–1564.
D’Ippolito, N.; Rodrı́guez, N.; and Sardiña, S. 2018. Fully
observable non-deterministic planning as assumption-based
reactive synthesis. Journal of Artificial Intelligence Re-
search 61:593–621.
Fisman, D.; Kupferman, O.; and Lustig, Y. 2010. Rational
synthesis. In Proceedings of the 16th International Con-
ference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), 190–204.
Kupferman, O., and Vardi, M. Y. 2001. Model check-
ing of safety properties. Formal Methods in System Design
19(3):291–314.
Kupferman, O. 2016. On high-quality synthesis. In Pro-
ceedings of the 11th International Computer Science Sym-
posium in Russia, 1–15.
Lahijanian, M.; Almagor, S.; Fried, D.; Kavraki, L. E.; and
Vardi, M. Y. 2015. This time the robot settles for a cost: A
quantitative approach to temporal logic planning with partial
satisfaction. In Proceedings of the 29th AAAI Conference on
Artificial Intelligence (AAAI), 3664–3671.
Pnueli, A., and Rosner, R. 1989. On the synthesis of a reac-
tive module. In Conference Record of the Sixteenth Annual
ACM Symposium on Principles of Programming Languages
(POPL), 179–190.
Pnueli, A. 1977. The temporal logic of programs. In Pro-
ceedings of the 18th IEEE Symposium on Foundations of
Computer Science (FOCS), 46–57.
Rabin, M. O., and Scott, D. S. 1959. Finite automata and
their decision problems. IBM Journal of Research and De-
velopment 3(2):114–125.
Sistla, A. P. 1994. Safety, liveness and fairness in temporal
logic. Formal Aspects of Computing 6(5):495–512.
Zhu, S.; Tabajara, L. M.; Li, J.; Pu, G.; and Vardi, M. Y.
2017. Symbolic LTLf synthesis. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence (IJ-
CAI), 1362–1369.

