
Finite LTL Synthesis as Planning

Alberto Camacho†, Jorge A. Baier‡, Christian Muise?, Sheila A. McIlraith†
†Department of Computer Science, University of Toronto.

‡Pontificia Universidad Católica de Chile, and Chilean Center for Semantic Web Research.
?IBM Research. Cambridge Research Center. USA.

†{acamacho,sheila}@cs.toronto.edu, ‡jabaier@ing.puc.cl, ?christian.muise@ibm.com

Abstract

LTL synthesis is the task of generating a strategy that satisfies
a Linear Temporal Logic (LTL) specification interpreted over
infinite traces. In this paper we examine the problem of LTLf

synthesis, a variant of LTL synthesis where the specification
of the behaviour of the strategy we generate is interpreted
over finite traces – similar to the assumption we make in many
planning problems, and important for the synthesis of busi-
ness processes and other system interactions of finite dura-
tion. Existing approaches to LTLf synthesis transform LTLf

into deterministic finite-state automata (DFA) and reduce the
synthesis problem to a DFA game. Unfortunately, the DFA
transformation is worst-case double-exponential in the size of
the formula, presenting a computational bottleneck. In con-
trast, our approach exploits non-deterministic automata, and
we reduce the synthesis problem to a non-deterministic plan-
ning problem. We leverage our approach not only for strategy
generation but also to generate certificates of unrealizability –
the first such method for LTLf . We employ a battery of tech-
niques that exploit the structure of the LTLf specification to
improve the efficiency of our transformation to automata. We
combine these techniques with lazy determinization of au-
tomata and on-the-fly state abstraction. We illustrate the ef-
fectiveness of our approach on a set of established LTL syn-
thesis benchmarks adapted to finite LTL.

1 Introduction
Synthesizing software from logical specification is a funda-
mental problem in computer science dating back to Alonzo
Church (Church 1957). In 1989, Pnueli and Rosner exam-
ined the problem of reactive synthesis, proposing the use of
Linear Temporal Logic (LTL) as a specification language,
and showing that so-called LTL synthesis is 2EXPTIME-
complete (Pnueli and Rosner 1989).

Traditional approaches to LTL synthesis rely on trans-
forming the LTL specification into deterministic automata,
for which a so-called winning region is computed. Comput-
ing the winning region is polynomial in the size of the deter-
ministic automaton. However, computing such an automa-
ton is worst-case double-exponential in the size of the LTL
formula, and this becomes a computational bottleneck in the
synthesis process. To mitigate for this, Acacia+, the state
of the art in LTL synthesis, transforms the LTL formula into

multiple worst-case exponential non-deterministic Büchi au-
tomata (NBA). Acacia+’s computation of the winning re-
gion implicitly performs a determinization of the automa-
ton, and thus is worst-case double-exponential. However, it
has the computational advantage that the determinization is
symbolic, and in practice it only instantiates a reduced sub-
set of the states (Bohy et al. 2012).

Our concern in this paper is with the synthesis of LTL
specifications interpreted over finite traces (LTLf synthesis)
(De Giacomo and Vardi 2015). Many interesting problems
of finite duration, including typical planning problems, and
business processes, are most appropriately specified with
respect to a finite interpretation. Indeed, the study of LTL
interpreted over finite traces (henceforth LTLf) dates back
within the planning community, at least, to TLPlan (Bac-
chus and Kabanza 2000), and a subset of LTLf can be found
in the specification of PDDL 3.0 (Gerevini et al. 2009).
The correspondence between LTLf and automata has sim-
ilarly been exploited within automated planning for well
over a decade in support of tasks such as planning with
temporally extended goals (e.g. (Baier and McIlraith 2006;
Edelkamp 2006)) and preferences (e.g., (Baier, Bacchus,
and McIlraith 2009; Coles and Coles 2011)). Perhaps most
similar to LTLf (resp. LTL) synthesis is the task of plan-
ning with LTLf (resp. LTL) goals in non-deterministic en-
vironments (e.g. (Patrizi, Lipovetzky, and Geffner 2013;
Camacho et al. 2017)). Both tasks aim to synthesize con-
trollers that guarantee satisfaction of the LTLf (resp. LTL)
formula. In contrast, the dynamics of a planning task is
characterized by a highly structured explicit action model
that captures non-determinism from the environment as un-
certain action effects, whereas in synthesis the problem is
reduced to repeated assignments of variables by either the
agent or environment. Preliminary studies of the connection
between LTL synthesis and planning have been recently pre-
sented (Camacho et al. 2018).

Like its infinite counterpart, LTLf synthesis is
2EXPTIME-complete (De Giacomo and Vardi 2015)
and existing approaches to LTLf synthesis rely on trans-
formations of the LTLf specification into a deterministic
finite-state automaton (DFA) (De Giacomo and Vardi 2015;
Zhu et al. 2017). DFA transformations are worst-case
double-exponential in the size of the LTLf formula,
matching the complexity of LTLf synthesis, and become
the computational bottle neck of these approaches. Very
recently, the first LTLf synthesis implementation was

**

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
** Correction to published version: see footnote on page 7.

developed, Syft, which computes the winning region over
a symbolic representation of the DFA rather than as an
explicit graph (Zhu et al. 2017).

In this paper, we present the first LTLf synthesis system
that not only computes strategies but that also produces cer-
tificates of unrealizability – a strategy and proof certificate
that will cause the the LTLf specification to be violated. Such
certificates are very useful for incremental design and de-
bugging, for verification, and as a tool for optimization. In
contrast to existing theory and to the only other LTLf realiza-
tion we are aware of, our system relies on a transformation
to NFA (rather than DFA). We then reduce LTLf synthesis
to the task of finding a strong plan for a fully-observable
non-deterministic (FOND) planning problem. The FOND
problem captures the dynamics of non-deterministic finite-
state automata (NFA) that corresponds to the original LTLf
formula. Transformation of an LTL formula into an NFA is
worst-case exponential in the size of the formula, and hence
is computationally more appealing than a worst-case double-
exponential DFA transformation. The compilations in our
implemented system employ a battery of techniques that al-
low planning algorithms to exploit structure, including sym-
bolic automata decompositions of the specification, lazy de-
terminization of the NFA, and on-the-fly state abstractions.

The rest of the paper is organized as follows. We first re-
view LTLf and its correspondence with automata, and intro-
duce the FOND planning model (Section 2). We then give
a formal definition of LTLf synthesis (Section 3) and define
what stands for a certificate of unrealizability (Section 4).
We exploit the duality between these two problems in a tech-
nique to determine realizability and unrealizability (Section
5). We extablish a bidirectional mapping between LTLf syn-
thesis and FOND planning (Section 6). The following sec-
tions describe the algoithmic details of our reductions from
LTLf realizability and unrealizability to FOND planning. Fi-
nally, we discuss the results of an empirical evaluation of our
algorithms implemented in a tool that we called SynKit, and
we close with concluding remarks.

2 Preliminaries
2.1 Linear Temporal Logic
Linear Temporal Logic (LTL), first introduced by Pnueli
(1977) as a specification language for reactive synthesis, is a
propositional modal logic with modalities referring to time.
LTLf has essentially the same syntax as LTL but is inter-
preted over finite traces. In particular, given a set of propo-
sitional symbols, P , LTLf formula ϕ is defined as follows:

ϕ := > | ⊥ | p | ¬ϕ | ϕ1 ∧ ϕ2 | dϕ | ϕ1 Uϕ2

where p ∈ P , and d (next) and U (until) are temporal op-
erators. Intuitively, the next specifies what needs to hold
in the next time step, and the until specifies what needs
to hold at least until something else holds. Other temporal
operators such as eventually (♦), always (�), and release
(R) are defined by the standard equivalences: ♦ϕ ≡ >Uϕ,
�ϕ ≡ ¬♦¬ϕ, and ϕ1 Rϕ2 ≡ ¬(¬ϕ1 U¬ϕ2). LTLf also has
a weak-next operator (t), defined by tϕ ≡ ¬ d¬ϕ, that tells
that ϕ needs to hold in the next time step if such next time

step exists. Note that ¬ dϕ 6≡ d¬ϕ (De Giacomo and Vardi
2013). Within the planning community, the study of LTL in-
terpreted over finite traces dates back at least to the work by
Bacchus and Kabanza (1998) on specifying temporally ex-
tended goals, and was incorporated into PDDL 3.0 in 2006
(Gerevini et al. 2009). Recent work uses LTLf (De Giacomo
and Vardi 2013) as a specification language (e.g. (Camacho
et al. 2017; De Giacomo et al. 2017)).

LTLf formulae are interpreted over finite traces σ =
s0 · · · sn of propositional states, where each si is a set of
propositions from P that are true in si. We say that σ sat-
isfies an LTLf formula ϕ, denoted σ |= ϕ, when σ, 0 |= ϕ,
where:

• σ, i |= p, for each p ∈ P ∪ {>} iff si |= p.

• σ, i |= ¬ϕ iff σ, i |= ϕ does not hold.

• σ, i |= ϕ1 ∧ ϕ2 iff σ, i |= ϕ1 and σ, i |= ϕ2.

• σ, i |= dϕ iff i < n and σ, (i+ 1) |= ϕ.

• σ, i |= ϕ1 Uϕ2 iff there exists a i ≤ j ≤ n such that
σ, j |= ϕ2, and σ, k |= ϕ1, for each i ≤ k < j.

The interpretation of other modal operators such as eventu-
ally and always follow from their definitions.

2.2 LTLf and Finite State Automata
For every LTLf formula ϕ, it is possible to construct a non-
deterministic finite-state automaton (NFA), Aϕ, in worst-
case exponential time, which accepts the models of ϕ
(Baier and McIlraith 2006). Such an NFA is a tuple Aϕ =
〈Q,Σ, q0, δ, α〉, where Q is a finite set of states, Σ contains
all subsets of propositions in ϕ, q0 ∈ Q is the initial state,
δ ⊆ Q × L(P) × Q is a transition relation, where L(P) is
the set of propositional formulae over P , and α ⊆ Q is a set
of accepting states.

A run of Aϕ on a word w = x1 · · ·xn ∈ Σ∗ is a sequence
of states q0q1 · · · qn such that (qi−1, ϕi, qi) ∈ δ and xi |= ϕi
for each i ∈ {1, . . . , n}. A run is accepting if qn ∈ α. In
general, more than one run of Aϕ may exist for an given
input word. A word w is accepted when some run of A on w
is accepting. The language of A is the set of words accepted
by A. Sometimes we slightly abuse notation and denote by
δ(q, x) the set of states q′ for which there is a formula ψ such
that (q, ψ, q′) ∈ δ and x |= ϕ.

An NFA is, in particular, a deterministic finite-state au-
tomaton (DFA) when exactly one run exists for every input
string. A DFA can be constructed (e.g. with the well-known
powerset construction) by determinizing an NFA (Rabin and
Scott 1959).

2.3 FOND Planning
A FOND planning problem is a tuple P = 〈F , I,G,A〉,
where F is a finite set of propositional fluents; I ⊆ F de-
scribes what holds in the initial state; G ⊆ F describes what
must hold in a state for the goal to be achieved; and A is a
finite set of actions. We denote by Lits(F) := F ∪ {¬f |
f ∈ F} the set of literals of F . Planning states are sets of
literals, and we say that a state s satisfies a literal f , denoted
by s |= f , iff f ∈ s.

Each action a ∈ A is described by a set of precondi-
tions (Prea) and a set of effects (Eff a). The preconditions
Prea ⊆ Lits(F) describe what must hold in a state s
for a to be applicable. The outcome of a is selected non-
deterministically from one of the effects in Eff a. Elements
e in Eff a are sets of tuples ci → ei. Each ei is a set of liter-
als that describes the outcome s′ of a relative to state s and
condition ci. Each ci is a set of literals that describes the con-
dition that must hold in a state s for ei to have effect. When
no conditions exist, we simply write effects e ∈ Eff a as sets
of literals. Formally, s′ |= f iff s |= f and ¬f 6∈ e, or f ∈ e.
Sometimes we abuse notation and write oneof (p, q) ∈ Eff a
to denote that each effect in Eff a must be interpreted as two
effects that contain, respectively, literals p and q.

A policy is a mapping π from states to actions such that,
if π(s) = a, then a is applicable in s. A finite execu-
tion of π from state s0 is a finite sequence of state-actions
s0, a0, s1, a1, . . . sn where each si+1 is an outcome of si by
ai. A finite execution of π achieves the goal G if sn |= f for
each f ∈ G.

Different classes of solutions to FOND problems have
been studied. In particular, strong solutions are policies
whose execution guarantees goal achievement in a finite
number of steps, despite non-determinism. The class of
strong cyclic solutions are policies π where the goal can
be achieved by π from each state that is reachable by π
from the initial state. It has been shown that strong planning
and strong cyclic planning are EXPTIME-complete prob-
lems (Rintanen 2004).

3 LTL-f Realizability and Synthesis
The problem of LTL synthesis was first introduced by Pnueli
and Rosner (1989) to study the synthesis of a reactive mod-
ule where the specification language used was LTL. Re-
cently, De Giacomo and Vardi (2015) studied the synthe-
sis problem for LTLf specifications (cf. Definition 1), and
determined the problem to be 2EXPTIME-complete – and
therefore matching the complexity of LTL synthesis. In what
follows, we denote by 〈X ,Y, ϕ〉 the LTLf synthesis problem
with specification ϕ over uncontrollable (resp. controllable)
variables X (resp. Y).

Definition 1 (LTLf realizability and synthesis). Given two
disjoint sets of variables, X and Y , the realizability problem
for an LTLf specification 〈X ,Y, ϕ〉 is to determine whether
there exists a strategy f : (2X)∗ → 2Y such that, for each
infinite sequence {Xi}i≥0 ∈ (2X)ω of subsets of X , the se-
quence {Xi ∪ f(X0 · · ·Xi)}i≥0 has a finite prefix that sat-
isfies ϕ. In this case, f is said to be a winning strategy. The
synthesis problem for a realizable LTLf specification is to
compute a winning strategy. When 〈X ,Y, ϕ〉 is not realiz-
able, we say that it is unrealizable.

As noted briefly in the Section 1, existing approaches to
LTLf synthesis rely on transformation of the LTLf specifi-
cation into a DFA. These approaches then reduce the prob-
lem to finding a solution to a so-called DFA game where
the agent player controls the X variables, the environment
player controls the Y variables, and the objective is for the

agent player to generate a state trajectory that is accept-
ing with respect to the DFA (De Giacomo and Vardi 2015;
Zhu et al. 2017). Solving a DFA game can be done in poly-
nomial time in the size of the DFA. The computational bot-
tle neck of these approaches has been the transformation of
the specification into a DFA, which is worst-case double-
exponential in the size of the LTLf formula and matches the
complexity of LTLf synthesis.

LTLf synthesis can be reduced to LTL synthesis by trans-
lating the original LTLf specification formula ϕ into a larger
LTL formula ϕ′ that contains extra variables and operators,
and then solving the resulting LTL synthesis problem. Un-
fortunately, the resulting LTL formula ϕ′ is prohibitively
large, causing the resulting transformation to a correspond-
ing Büchi automata to be impossible in practice. By com-
parison, transformation of the original LTLf formula, ϕ to
a corresponding DFA is much easier to compute. Zhu et al.
show that their state-of-the-art tool for LTLf synthesis, Syft,
outperforms the approach of synthesis via reduction to LTL
synthesis.

4 LTL-f Unrealizability
In this section we define LTLf certificates of unrealizability,
and establish the correspondence between LTLf realizability
and the existence of unrealizability certificates.

An LTLf synthesis problem is unrealizable when no win-
ning strategy for the agent exists. Viewed another way,
the problem is unrealizable when the environment, rather
than the agent, has a winning strategy in a similar setting.
Formally, 〈X ,Y, ϕ〉 is unrealizable when the environment
has a strategy g : (2Y)∗ → 2X such that, for any se-
quence {Yi}i≥0 ∈ (2Y)ω , the infinite sequence (g(ε) ∪
Y0), {g(Y0 · · ·Yi) ∪ Yi+1}i≥0 does not have a finite prefix
that satisfies ϕ. That is, g is such that every finite prefix of
(g(ε)∪Y0), {g(Y0 · · ·Yi) ∪ Yi+1}i≥0 satisfies ¬ϕ. Here, we
write g(ε) ⊆ X to denote the first move of the environment,
which does not depend on any of the agent moves.

Definition 2. A certificate of unrealizability for an LTLf
specification 〈X ,Y, ϕ〉 is a strategy g : (2Y)∗ → 2X such
that, for any sequence {Yi}i≥0 ∈ (2Y)ω , the infinite se-
quence (g(ε)∪ Y0), {g(Y0 · · ·Yi) ∪ Yi+1}i≥0 does not have
a finite prefix that satisfies ϕ.

The function g is a certificate of unrealizability, as it
proves that the environment has a strategy to prevent the
agent from realizing ϕ. Theorem 1 characterizes the exis-
tence of certificates of unrealizability for an LTLf specifica-
tion in terms of existence of winning strategies, and follows
directly from Definitions 1 and 2.

Theorem 1. An LTLf specification 〈X ,Y, ϕ〉 is realizable
iff no certificate of unrealizability for 〈X ,Y, ϕ〉 exists.

Existing tools for LTLf realizability and synthesis do not
provide a certificate or explanation as to why a problem can-
not be solved. Having such a certificate can be crucial to
understanding or debugging errors in the modeling of the
LTLf problem, and allows for independent verification that
the problem has no solution. A certificate is an important

tool in the arsenal of those who design and verify specifica-
tions and has a myriad of different applications in business
process design and modeling.

5 Approach
Given an LTLf specification 〈X ,Y, ϕ〉, our approach to LTLf
synthesis and unrealizability comprises four steps:
(1) Preprocess 〈X ,Y, ϕ〉 to eliminate variables from X and
Y that do not appear in LTLf formula, ϕ.

(2) Transform ϕ into NFA.
(3) EncodeX ,Y together with the NFA states and dynamics

from (2) as a FOND planning problem instance.
(4) Find a solution to the FOND problem constructed in (3).

The following sections describe the algorithmic details of
a complete mapping from LTLf synthesis to strong planning
(Section 7), and from LTLf unrealizability to strong cyclic
planning (Section 8).
Solving LTLf Realizability and Unrealizability The dual-
ity between LTLf synthesis and the existence of certificates
of unrealizability (Theorem 1) can be exploited to determine
whether an specification is realizable or otherwise unreal-
izable. Corollaries 1 and 2 formalize these conditions. As
such, realizability and unrealizability of a given LTLf speci-
fication can be determined by running two complete solvers
for LTLf synthesis and unrealizability certificates computa-
tion, respectively.
Corollary 1. An LTLf specification 〈X ,Y, ϕ〉 is realizable
when either 〈X ,Y, ϕ〉 has a winning strategy, or no certifi-
cates of unrealizability for 〈X ,Y, ϕ〉 exists.
Corollary 2. An LTLf specification 〈X ,Y, ϕ〉 is unrealiz-
able when either 〈X ,Y, ϕ〉 has a certificate of unrealizabil-
ity, or no winning strategy for 〈X ,Y, ϕ〉 exists.

6 LTL-f Synthesis and Planning
Our objective in this section is to establish a clear mapping
between LTLf synthesis and FOND planning, two models
for sequential decision-making. Other attempts to map syn-
thesis and planning have been done to cast FOND planning
as a reactive synthesis task (e.g. (Sardiña and D’Ippolito
2015)). The focus of this paper is in the other direction.

6.1 FOND Planning as LTL-f Synthesis
This section describes a polynomial reduction of a FOND
problem P = 〈F , I,G,A〉 into an LTLf synthesis problem
〈XP ,YP , ϕP〉. Inspired by encodings of planning into SAT
(Rintanen, Heljanko, and Niemelä 2006), our reduction gen-
erates a single LTLf formula ϕP := ϕinit → ϕenv →
(ϕagt ∧ ϕg), where ϕinit models the initial state I, ϕenv
and ϕagt model the dynamics of P , and ϕg models the goal
G.

For each fluent f ∈ F and each action a ∈ A we create a
variable in YP . XP is defined as {x0, . . . , xM}, whereM =
blog(maxa∈A |Eff a|)c. An assignment σ to all variables in
XP can be seen as encoding the number

∑M
i=0 2i[σ(xi) =

true]; intuitively, once an action is executed by the agent,
this number is used to encode which of its effects triggers.

Below, we denote as Γk the formula of variables in XP that
encodes number k.

Now we describe each part of ϕP . Formula ϕagt, which
models the agent’s action choice is a conjunction of two
formulae that must hold globally. The first formula mod-
els the action preconditions and corresponds to the conjunc-
tion of formulae of the form (a → ∧

`∈Prea `), for every
a ∈ A. The second formula establishes that exactly one ac-
tion is performed at any time, by conjoining

∨
a∈A a, and∧

a,a′∈A,a6=a′(a→ ¬a′).
Formula ϕenv describes how the environment reacts to the

execution of actions. Assuming that Eff a = {e0, . . . , en},
formula χa defines the successor state, which depends on the
setting of the Y variables by the environment. Intuitively, if
the environment made Γk true, then the k-th effect of a trig-
gers. The last effect en triggers if none of the the preced-
ing effects triggers. Formally χa = (

∧n−1
i=0 ¬Γi) → (df ≡

φf,en)∧∧n−1i=0 (Γi → (df ≡ φf,ei)), where φf,e is a propo-
sitional formula that encodes all conditions under which f
is true in the next state after outcome e of action a occurs.
Finally, ϕenv conjoins formulae �(a → t⊥ ∨ χa) for each
action a ∈ A, ϕinit :=

∧
I|=l l is the conjunction of the

literals in the initial state I, and ϕg := ♦G.
Theorem 2. A FOND problem P = 〈F , I,G,A〉 has a
strong solution iff 〈XP ,YP , ϕP〉 is realizable.
Proof sketch. The construction is such that, if 〈XP ,YP , ϕP〉
is realizable, then a winning strategy defines a policy that is
a strong solution for P . In the other direction, a winning
strategy for the agent can be constructed from unfolding a
strong policy for the FOND problem. �

Theorem 3. FOND strong planning can be reduced to LTLf
synthesis in polynomial time

6.2 LTL-f Synthesis as FOND Planning
In this section we show a reduction of LTLf synthesis
into FOND planning. The reduction of an LTLf speci-
fication ϕ constructs a FOND planning problem Pϕ =
〈F , I,G,A〉 that simulates the dynamics of the 2-player
game between the environment and the agent over an NFA
Aϕ = 〈Q,Σ, q0, δ, α〉 that accepts the models of ϕ. The con-
struction of Aϕ is worst-case exponential, and the compo-
nents of Pϕ are polynomial in the size of Aϕ. Hence, the
reduction is exponential.

The components of Pϕ are defined as follows. The set
of fluents is F := X ∪ Q ∪ {env, agt, goal}. The ini-
tial state I := {env, q0} sets the turn to the environment
player, and the initial state of the automaton. Since the en-
vironment moves are uncontrollable to the agent, these are
simulated with a non-deterministic action aenv with pre-
condition {env} and non-deterministic outcomes Eff aenv ={
{agt,¬env} ∪X | X ∈ 2X

}
. The moves of the agent

player are controllable, and are thus simulated with deter-
ministic actions in the set Aagt =

{
aZ | Z ∈ 2X × 2Y

}
.

Action aZ , where Z = (X,Y) simulates the agent play-
ing Y after the environment has playedX . The precondition
of aZ is {agt} ∪ X . The effects of aZ update the automa-
ton configuration according to δ and the input X ∪ Y , and

reestablish the turn of the environment using conditional ef-
fects. Specifically, a(X,Y) has conditional effect q → q′ for
every q, q′ such that δ(q,X ∪ Y) = q′, it has conditional
effect q → goal for every q ∈ Q such that δ(q,X ∪ Y) is a
final state, it has conditional effect q → ¬q for every q ∈ Q,
and finally it has unconditional effects that remove agt and
add env. The set of planning actions isA := {aenv} ∪Aagt.
Finally, the goal condition is G = {goal}.

The actions of plans in the compiled FOND problem al-
ternate aenv with an action in Aagt. Execution of an action
sequence aenv, aZ0

, . . . , aZm
simulates played turns w =

(X0 ∪ Y0) · · · (Xm ∪ Ym), and yields a state sm that entails
some automaton configuration Qm ∈ 2Q. The dynamics of
the compiled FOND problem enforces the following prop-
erty: q ∈ Qm iff there exists a run of Aϕ on w that finishes
in q. In other words,Qm captures all the runs of the automa-
ton. As such, the goal condition goal is reached when the
simulated play satisfies ϕ.

A winning strategy for 〈X ,Y, ϕ〉 can be constructed from
a strong policy π that solves Pϕ. Intuitively, f(X0 · · ·Xn)
is obtained by unfolding π in Pϕ, and selecting the envi-
ronment action effects that follows the sequence X0 · · ·Xn.
Such strategy can be implemented compactly as a finite-state
controller (FSC).
Theorem 4. An LTLf synthesis problem 〈X ,Y, ϕ〉 is realiz-
able iff the FOND problem Pϕ has a strong solution.
Theorem 5. LTLf synthesis can be reduced into strong
FOND planning in worst-case exponential time.

7 LTL-f Synthesis via Planning
In Section 6 we established a mapping between LTLf synthe-
sis and FOND planning. In this section we describe the algo-
rithmic details of a reduction from LTLf synthesis to FOND
planning, corresponding to step number (3) in our approach
described in Section 5. In contrast to the mappings described
in Section 6, we focus on performance and introduce a num-
ber of effective techniques to exploit structure. We use a
STRIPS-like propositional language that can be adapted for
use with standard FOND planners that use PDDL or SAS+
description model languages (e.g. myND (Mattmüller et al.
2010), PRP (Muise, McIlraith, and Beck 2012)). If desirable,
more compact compilations can be easily obtained by using
numeric fluents and conditional effects.

We assume that an NFA Aϕ = 〈Q,Σ, q0, δ, α〉 for LTLf
specification formula ϕ is given, and construct a FOND
problem Pϕ = 〈F , I,G,A〉. Below, for each pair q, q′ ∈ Q,
guard(q, q′) is a DNF formula equivalent to

∧
(q,ψ,q′)∈δ ψ.

The set T of transitions is defined as {(q, guard(q, q′), q′) |
q, q′ ∈ Q}. We denote by macro(t), for t = (q, ψ, q′), the
set of transitions in T of the form (q, ψ′, q′).

The dynamics of Pϕ simulates the two-player game be-
tween the environment and agent players. Each round is sim-
ulated with three consecutive stages. The first stage simu-
lates, non-deterministically, the move of the environment.
The second stage simulates the move of the agent. The third
mode synchronizes the states of the automaton by perform-
ing those in accordance with the input move being simu-
lated.

F := {autState(q)}q∈Q ∪ {poss(t)}t∈T ∪ {sync}

∪
{
isTurn(v|X|)

}
∪ {isTurn(v)}v∈X ∪ Facts

Facts := {isAcc(t)}t.dest∈α
I := {sync, autState(q0)}
A := {continue} ∪ {playX(v)}v∈X

∪{transAcc(t), transRej(t)}t∈T
∪{startSync} ∪ {syncAutState(q)}q∈Q

G := {winning}

PreplayX(vi) := {isTurn(vi)}
Eff playX(vi)

:= {isTurn(vi+1),¬isTurn(vi)}
∪ oneof (e1, e2)

e1 := {¬poss(t)}¬vi∈Lits(guard(t))

e2 := {¬poss(t)}vi∈Lits(guard(t))

PretransAcc(t) :=
{
isTurn(v|X|), poss(t), isAcc(t)

}
Eff transAcc(t) :=

{
autState(q′),¬poss(t), winning

}
∪
{
¬poss(t′)

}
t′∈mutex(t)∪macro(t)

PretransRej(t) :=
{
isTurn(v|X|), poss(t),¬isAcc(t)

}
Eff transRej(t) :=

{
autState(q′),¬poss(t)

}
∪
{
¬poss(t′)

}
t′∈mutex(t)∪macro(t)

PrestartSync :=
{
isTurn(v|X|)

}
Eff startSync :=

{
sync,¬isTurn(v|X|)

}
∪ {¬poss(t)}t∈T

PresyncAutState(q) := {sync, autState(q)}
Eff syncAutState(q) := {poss(t)}t∈T,t.orig=q

∪ {¬autState(q)}
Precontinue := {sync} ∪ {¬autState(q)}q∈Q
Eff continue := {isTurn(v0),¬sync}

Figure 1: FOND compilation Pϕ := 〈F , I,G,A〉 for an
LTLf synthesis problem 〈X ,Y, ϕ〉 and given NFA Aϕ.

In the first stage, the move of the environment is simu-
lated with a cascade of actions playX(vi) for each uncon-
trollable variable vi ∈ X , indexed for 0 ≤ i < |X |. These
actions have non-deterministic effects that simulate an un-
controllable assignment to variables in X . For convenience,
we include an auxiliary fluent v|X |.

In the second mode, the assignment to variables in
Y is simulated implicitly by means of transition actions
transAcc(t) and transRej(t), one for each t ∈ T . In-
tuitively, the agent decides which automaton transitions per-
form within the ones that are feasible. Then, the dynamics
of the problem simulates the assignment to variables Y nec-
essary to satisfy guard(t), and deems unfeasible all tran-
sitions t′ whose guard is mutually exclusive with such as-
signment. Feasible transitions t ∈ T are identified by the

truth of fluents poss(t). More formally, transAcc(t) (resp.
transRej(t)) sets poss(t′) false to all t′ ∈ mutex(t),
where t′ ∈ mutex(t) if guard(t) ∧ guard(t′) |= ⊥. For
convenience, transition actions can deem unfeasible all tran-
sitions t′ ∈ macro(t), as it can be proved that transAcc(t′)
and transRej(t′) are no longer relevant actions. Transition
actions for t = (q, ψ, q′) ∈ T turn the fluent autState(q′)
true to acknowledge that there exists a run ofAϕ on the word
w being simulated that finishes in q′. When q′ is an accepting
state (indicated by t.dest ∈ α), action transAcc(t) turns
the fluent winning true to acknowledge that w is accepting.

The third mode starts with the action startSync. In the
third stage, actions syncAutState(q) synchronize the au-
tomaton states, and deem feasible all transitions t ∈ T that
have origin state q (indicated by t.orig = q). At the end of
the third stage, action continue initiates the simulation of a
new round by reestablishing the dynamics to the first stage.

To conclude the description of Pϕ, the initial state I starts
in synchronization mode, with the initial automaton state flu-
ent autState(q0) set true. The goal condition is to set the
fluent winning true.

Theorem 6 states the correctness of the compilation. A
strategy f : (2X)∗ → 2Y that realizes ϕ can be constructed
from a strong solution toPϕ by unfolding the policy over the
simulated turns of the two-player game. This can be imple-
mented compactly in form of a finite-state controller (FSC).
Because FOND is EXPTIME-complete (Rintanen 2004) and
our translation is exponential in the size of the formula, the
overall approach is worst-case 2-EXPTIME in the size of ϕ.
This is because the size of the compilation is worst-case ex-
ponential in the size of Aϕ, and therefore worst-case double
exponential in the size of ϕ.

Theorem 6. An LTLf specification 〈X ,Y, ϕ〉 is realizable
iff the compiled FOND problem Pϕ has a strong solution.

Corollary 3. A FSC that implements a solution to the
synthesis problem for specification 〈X ,Y, ϕ〉 can be con-
structed from a strong solution to the compiled FOND prob-
lem Pϕ.

Theorem 7. The approach to solve LTLf synthesis via com-
pilations to FOND planning is worst case double exponen-
tial in the size of the formula.

We close this section with a discussion on the lazy de-
terminization of the automaton and state abstractions per-
formed inherently within the dynamics of the compilation.
Lazy Determinization and Powerset Construction The
powerset construction is a well-known technique to deter-
minize a NFA into a DFA (Rabin and Scott 1959). States in
the DFA– so-called macrostates – are sets of states of the
original NFA, and macrostate transitions are constructed by
transitioning all NFA states in the macrostate. The power-
set construction is worst-case exponential in the size of the
NFA. Like in the powerset construction, planning states in
our compilation maintain a set of NFA states. However, the
determinization is lazy, meaning that macrostates are instan-
tiated on the fly in planning time only when necessary. This
leads to potentially exponential savings, when only a small
subset of macrostates are relevant to the search process. Sim-

ilar techniques to avoid instantiation of the deterministic au-
tomaton have been used in the LTL synthesis tool Acacia+
(Bohy et al. 2012) and LTLf synthesis tool Syft (Zhu et al.
2017).
Symbolic Determinization and State abstractions Unlike
the powerset construction, the transition of a macrostate
in our compilation is not obliged to apply all possible au-
tomaton state transitions. Instead, the agent can decide not
to apply certain transitions when these are not relevant.
Consequently, planning states can maintain more compact
macrostates, that we call partial macrostates for its paral-
lelism with so-called partial states in planning. The policy
that applies for a certain partial macrostate is also valid for
all macrostates that contain (or entail) the partial macrostate.
As such, partial macrostates can be interpreted as families
of macrostates, or state abstractions (e.g (Knoblock 1994)).
State abstractions are possible thanks to the symbolic de-
terminization of the NFA, that represents macrostates as
sets of fluents instead of instantiating a new fluent for each
macrostate.

8 Certificates of Unrealizability
A sound and complete procedure for determining the realiz-
ability of an LTLf synthesis problem can naturally be used
for instances that have no solution. However, by casting it
as a FOND problem to be solved leaves us with little re-
course to understand the source of inconsistency – generally
speaking, FOND solvers do not provide a certificate or ex-
planation as to why a problem cannot be solved.

Our approach to compute a certificate of unrealizability
compiles the synthesis problem for LTLf specification ϕ into
an instance of FOND planning Pϕ that simulates the two-
player game between the environment and agent players.
The details of the compilation differs from the construction
of Pϕ presented in Section 7 in four key aspects. First, in
this setting the moves of the environment are controllable,
and simulated with deterministic actions setX and unsetX.
The moves of the agent are uncontrollable, and are simu-
lated with non-deterministic actions playY. Second, Pϕ in-
tegrates the dynamics of an NFA automaton A¬ϕ that ac-
cepts the models of ¬ϕ. Like in the compilation presented
in Section 7, the dynamics of Pϕ has the property that for
a simulated sequence of moves w = (X0Y0) · · · (XnYn),
the fluent winning can be made true to acknowledge that
there exists a run of A¬ϕ on w that finishes in an accept-
ing state, and therefore satisfies ¬ϕ (Lemma 1). Third, the
action continue is non-deterministic, and applicable if the
fluent winning holds; otherwise, a deadend is reached. The
extra effect reestablishes the turn of the environment, and
allows for simulation of plans of infinite length. Finally, the
initial state is I := {winning, sync, autState(q0)}, and
the goal is G := {goal}. Theorem 8 states the correspon-
dence between strong cyclic solutions to Pϕ and the unreal-
izability of 〈X ,Y, ϕ〉. A certificate of unrealizability can be
obtained by unfolding a strong cyclic solution (Theorem 4).

Finally, the overall approach to obtain certificates of un-
realizability is worst-case double exponential in the size of
ϕ. The proof follows a similar argument than the one used

PresetX(vi) := {isTurn(vi), isX(vi)}
Eff setX(vi)

:= {isTurn(vi+1),¬isTurn(vi)} ∪ e1

PreunsetX(vi) := {isTurn(vi), isX(vi)}
Eff unsetX(vi)

:= {isTurn(vi+1),¬isTurn(vi)} ∪ e2

PreplayY(vi) := {isTurn(vi), isY(vi)}
Eff playY(vi)

:= {isTurn(vi+1),¬isTurn(vi)}
∪ oneof (e1, e2)

e1 := {¬poss(t)}¬vi∈Lits(guard(t))

e2 := {¬poss(t)}vi∈Lits(guard(t))

Precontinue := {winning, sync} ∪ {¬autState(q)}q∈Q
Eff continue :=oneof ({¬winning, isTurn(v0),¬sync} ,

{goal})

Figure 2: Components of the FOND compilation to obtain
certificates of unrealizability that differ from the compilation
described in Figure 1.

in Section 7 to establish exponential bounds on the size of
the problem with respect to the size of the NFA.

Lemma 1. A sequence of moves w = (X0Y0) · · · (XnYn)
satisfies ¬ϕ iff there exists a plan in Pϕ that simulates w
and makes fluent winning true.

Theorem 8. An LTLf synthesis problem 〈X ,Y, ϕ〉 is unre-
alizable iff the compiled FOND problem Pϕ has a strong
cyclic solution.

Proof. By definition, a policy π is a strong cyclic solution iff
the goal is reachable (by following π) from all states reach-
able by π. In Pϕ this happens iff executions never reach a
deadend and action continue is always applicable at the
end of the third mode. This happens iff the fluent winning
can be made true at the end of each simulated round. Lemma
1 completes the proof.

Corollary 4. A certificate of unrealizability for an LTLf syn-
thesis problem 〈X ,Y, ϕ〉 can be obtained from strong cyclic
solutions to Pϕ.

Theorem 9. The NFA-based reductions of LTLf synthesis to
check unrealizability are in double exponential time on the
size of the formula.

9 Leveraging Multiple Automata
Recall that the major source of complexity for LTL and LTLf
synthesis is the automaton construction. To improve scala-
bility, our approach leverages a technique that decomposes
the original LTLf formula into multiple subformulae and
then constructs multiple (smaller) automata, rather than a
single larger automaton. To do so, LTLf formula ϕ is first
converted to Negation Normal Form (NNF) and then selec-
tively decomposed into conjunctive subformulae, ϕi, bal-
ancing the number and relative size of subformulae. Next,

each subformula, ϕi, is transformed into an NFA, Ai, that
accepts the models of ϕi.

To define an appropriate acceptance criterion for the ag-
gregate of the automata, we replace each ϕi in the NNF
of ϕ with a new distinguished variable acci that is true iff
Ai accepts w. The resulting formula defines the acceptance
criterion for the aggregate of our Ai’s. Baier and McIlraith
(2006) proved that this acceptance criteria captures all and
only the models of ϕ.

Leveraging these multiple automata in the approaches of
previous sections is straightforward. The FOND compila-
tions described in Sections 7 and 8 are modified to reflect the
dynamics of all the individual automata. The unique fluent
winning, is replaced by a set of fluents, winning(i), one for
each automaton Ai. Intuitively, these fluents play the role of
acci above and are made true precisely when the simulated
input word is accepting forAi, and false otherwise. The goal
of the FOND problem is then defined by replacing each ϕi
in the NNF of ϕ with the fluent winning(i).

From the correctness of our FOND encodings and the cor-
rectness of the acceptance criterion for the collection of au-
tomata, it is easy to see that the dynamics of the FOND
problem capture all and only the models of ϕ. With these
modifications, our automata-based compilations are correct.

10 Empirical Evaluation
We implemented our proposed approaches in a tool we have
named SynKit. SynKit is able to generate strategies for real-
izable synthesis problems, to determine whether a problem
is realizable or unrealizable, and to construct a certificate if
it is unrealizable. We evaluated the performance of SynKit
in comparison to state-of-the-art tool Syft (Zhu et al. 2017).
All tests were conducted in an Intel Xeon E5-2430 2.2GHz
machine, with processes limited to 4GB of memory and 30
minutes runtime.
Off-the-Shelf Components We employed Syft’s code to
translate LTLf formulae into first-order logic (FOL), and
software system Mona (Henriksen et al. 1995) to trans-
late FOL formulae into NFA(**). We used the planner
myND (Mattm¨uller et al. 2010) to compute strong and
strong cyclic solutions to the compiled FOND problems.
Benchmarks We conducted experiments with a set of 24
benchmark problems from the lilydemo benchmark set (Job-
stmann and Bloem 2006), drawn from previous Syntcomp
LTL synthesis competitions (over infinite traces). These
problems are easy to solve when the specification formu-
lae are interpreted over finite traces. Consequently, we con-
structed new problems by conjoining a number of lilydemo
benchmarks, that from now on we call subproblems. More
formally, the new problems have the form 〈X ,Y, ϕ〉, where
X =

⋃Xi, Y =
⋃Yi, and ϕ =

∧
ϕi for certain subprob-

lems 〈X i,Yi, ϕi〉. We refer to the number of subproblems
that originate the specification formula as the size of a prob-
lem. We generated, at random, 100 problems for each prob-
lem size ranging from 1 to 6.
Configurations SynKit can be configured to search for win-
ning strategies or certificates of unrealizability. As explained
in Sections 7 and 8, each objective produces different FOND
(**) Correction: the automata produced by Mona were DFAs.

1 2 3 4 5 6
problem size

0

20

40

60

80

100
co

ve
ra

ge

(unreal, soft)
(unreal, hard)
(real, soft)
(real, hard)

(a) LTLf Realizability

101 102 103 104

hard decomposition

101

102

103

104

so
ft

de
co

m
po

si
tio

n

(b) FOND Problem Size

Figure 3: Performance of SynKit configured to compute win-
ning strategies (real) and certificates of unrealizability (un-
real). FOND compilations were generated using soft and
hard multiple automata decompositions.

compilations. Additionally, SynKit can make use of multi-
ple automata decompositions of the specification formula.
In our experiments, we made use of two types of automata
decompositions, that we name soft and hard. Soft decompo-
sitions transform the LTLf formula of each subproblem into
an NFA. For LTLf synthesis, hard decompositions consider
the CNF representation of the LTLf specification formula,
and transform each clause into an NFA. For LTLf unrealiz-
ability, hard decompositions consider the DNF representa-
tion of the negation of the LTLf specification formula, and
transform each clause into an NFA.

10.1 Multiple Automata Decompositions
We conducted experiments to evaluate the scalability of the
system with different automata decompositions. The first
thing to note is that the use of multiple automata decompo-
sitions is necessary to scale to large problems. Indeed, prob-
lems with size greater than 1 have LTLf specification formu-
lae that frequently transformed into large automata and gen-
erated FOND problems of prohibitively large size. In more
general terms, we observed that some large formulae could
not be transformed into automata by the approach taken by
Syft, as it ran into memory issues. This problem never oc-
curred with our decompositions, which decompose the for-
mula into smaller subformulae that are easier to transform.

We tested four different configurations of SynKit: using
soft and hard automata decompositions, and searching for
winning strategies and certificates of unrealizability. Figure
3a shows the coverage of the realizability tests performed by
each of these configurations. Recall that the realizability can
be determined by finding a solution (i.e. a winning strategy,
or a certificate), or proving that none exists.

Clearly, the configuration that performed soft decompo-
sitions, and searched for certificates dominated the others.
On the other extreme, the configuration that performed hard
decompositions, and searched for winning strategies mani-
fested the worst performance. This dominance could be re-
lated to the fact that most of the problems being tested were
unrealizable. Notably, the configurations that performed
soft decompositions dominated the configurations that per-
formed hard decompositions. Thus, it seems that automata
decompositions are necessary to scale, but decomposing

1 2 3 4 5 6
problem size

0

20

40

60

80

100

co
ve

ra
ge Syft

Syft+SynKit
SynKit (soft + hard)
SynKit (soft)
SynKit (hard)

(a) LTLf Realizability

1 2 3 4 5 6
problem size

0

20

40

60

80

100

co
ve

ra
ge

Syft (unrealizability)
SynKit (soft + hard)
SynKit (soft)
SynKit (hard)

(b) Certificates Generation

Figure 4: Number of problems solved by different configu-
rations of SynKit for LTLf realizability (Figure 4a) and un-
realizability certificates generation (Figure 4b). The perfor-
mance is evaluated relative to Syft.

the LTLf formula into too many automata may be counter-
productive and affect search performance. Soft and hard de-
compositions resulted in FOND problems of similar size,
with a few exceptions where soft decompositions resulted in
FOND problems of size one order of magnitude higher (Fig-
ure 3b). The discrepancy occurs because a reduced number
of subproblems have specification formula that transforms –
via soft decompositions – into significantly large automata.
In these cases, hard decompositions can be advantageous
and generate more tractable FOND problems.

10.2 Global Performance
We conducted experiments to evaluate the performance of
our approaches to LTLf realizability, synthesis, and certifi-
cate generation. We detail the results of our tests below.
LTLf Synthesis All realizable LTLf specifications in our
problem set have sizes 1 or 2. Even though automata de-
compositions were needed to scale, SynKit was able to find
winning strategies to realizable LTLf specifications with ei-
ther soft or hard decompositions of the formula.
LTLf Realizability LTLf realizability can be determined
more efficiently by running two configurations of SynKit in
parallel: one that searches for winning strategies, and an-
other one that searches for unrealizability certificates. LTLf
realizability can be determined when either a winning strat-
egy is found, a certificate is found, or one of the searches
concludes that no solution exists. We refer to these parallel
searches as portfolios.

We evaluated the performance of portfolios that used soft
(SynKit (soft)) and hard (SynKit (hard)) decompositions, and
also a portfolio that combined both methods above (SynKit
(soft + hard)). Syft had better coverage than SynKit (soft) and
SynKit (hard) alone, especially in problems with large size.
Interestingly, these configurations of SynKit solved different
sets of problems, and the portfolio SynKit (soft + hard) al-
together demonstrated better coverage than Syft in problems
of large size. Still, none of these methods strictly dominated
each other. A final round of experiments confirmed that there
is value in combining Syft with all configurations of SynKit
– in a portfolio that we denote by Syft + SynKit – resulting
in a configuration with the best coverage.
Certificates of Unrealizability SynKit is the only existing

0 100 200 300 400 500 600 700
formula size

0

50

100

150

200
au

to
m

at
a

si
ze

(a) LTLf to Automata

100 101 102

automata size

100

101

102

103

104

FO
N

D
pr

ob
le

m
si

ze

(b) FOND Problem Size

100 101 102 103 104

FOND problem size

10−3
10−2
10−1

100
101
102
103
104

se
ar

ch
ru

nt
im

e

(c) Search Runtime

LTLf
specification solution

EXP POLY EXP

linear linear quadratic

LTLf to
automata

construct
FOND

compute
policy

WORST-CASE COMPLEXITY

PERFORMANCE

(d) Complexity vs. Performance

Figure 5: Observed performance in each phase of SynKit. Automata constructions with soft decompositions are linear in the
size of the formulae (Figure 5a). The compiled FOND problems are linear in the size of the multiple automata (Figure 5b).
Finally, the search runtime for most problems grows quadratically with the size of the FOND problem (Figure 5c).

tool that computes certificates of unrealizability. For refer-
ence, we compared the number of unrealizability certificates
computed by SynKit with the number of problems that were
reportedly unrealizable (i.e. no solution for the synthesis
problem exists) by Syft. Figure 4b summarizes the results.
SynKit (hard) was able to find unrealizability certificates to
nearly all problems of sizes 1, 2, and 3 that are unrealizable.
Its performance suffered in problems of larger size, but the
coverage approximated that of Syft in problems with size 5
and 6. The best coverage was achieved with the portfolio
SynKit (soft + hard), especially in problems of largest size,
where it manifested better coverage than Syft – with the ad-
vantage of computing certificates of unrealizability.

10.3 Empirical Difficulty
We studied the complexity that the different phases of our
approach manifested in practice, with the objective to con-
trast it with the worst-case hardness. We used the config-
uration of SynKit that performs soft decompositions, and
searches for certificates of unrealizability. The results are
summarized in Figure 5d, and discussed below.
LTLf to Automata Decompositions of the LTLf formulae
into multiple automata allow for effective automata trans-
formations, with almost instantaneous run times that were
always lower than 8 seconds per problem. The sizes of the
multiple automata, measured as the sum of the sizes of all
automatons in the automata, did not result in the worst-case
exponential explosion (Figure 5a). Rather, they seemed to
grow linearly with the size of the formula – measured as the
number of logical connectives and temporal operators.
Automata to FOND The general trend observed in our ex-
periments shows that the size of the compiled FOND prob-
lems (measured as the sum of variables and ground actions)
grows linearly with respect to the size of the multiple au-
tomata decompositions (Figure 5b). Automata decomposi-
tions for some problems resulted in significantly large au-
tomata, a phenomena that explains the clusters that we can
also observe in Figure 3b. The number of actions in the
FOND compilations that model automaton transitions is,
worst-case, quadratic in the number of automaton states and
exponential in the number of variables in the specification.
In practice, we did not see such a combinatorial explosion.
Policy Search Figure 5c shows the distribution of planning
search runtime with respect to the size of the problem. Time

violations of 30 minutes are also represented. While the data
is reasonably sparse, linear regression nonetheless indicates
that the search runtime grows quadratically with the prob-
lem size, at least locally in problems of size lower than 500.
As the problem size approached 103, the trend exhibited a
more exponential behaviour. Even still, most of the problems
could be handled by the FOND planner myND. Our exper-
iments used myND as a unified software to compute strong
and strong-cyclic solutions, and the runtimes obtained are
not competitive with Syft – which obtained solutions in the
order of seconds. However, more efficient alternative plan-
ners exist. In particular, PRP (Muise, McIlraith, and Beck
2012) is, in general, more efficient than myND in computing
strong-cyclic solutions, and FIP (Fu et al. 2016) is a compet-
itive strong planner that has been more recently presented.

11 Summary and Concluding Remarks
Synthesizing software from LTL specifications is a funda-
mental problem in computer science. Its finite trace vari-
ant, LTLf synthesis, captures many interesting and important
problems that have finite duration, including typical plan-
ning problems and problems involving business processes.

The contributions of this paper are theoretical, algorith-
mic, and experimental. In particular, we characterized the
notion of a certificate of unrealizability for an LTLf speci-
fication, and established its duality with LTLf realizability.
Next, we cast LTLf synthesis and unrealizability as plan-
ning. From a theoretical perspective, we established the cor-
respondence between LTLf synthesis and FOND planning.
From an algorithmic perspective, we constructed algorithms
to find winning strategies and certificates of unrealizability.
Our algorithms leverage a number of interesting techniques
to exploit structure. Namely, state abstractions, lazy deter-
minization of NFA, and the transformation of our LTLf spec-
ification formula into multiple automata.

We implemented our algorithms in a synthesis tool that
we named SynKit. SynKit is the first LTLf synthesis tool that
computes certificates of unrealizability. Our empirical eval-
uation illustrates that SynKit is a good complement to state-
of-the-art LTLf synthesis tool Syft in determining realizabil-
ity and synthesis. Combined as a portfolio system Syft and
SynKit represent the state of the art. Experiments highlighted
some interesting computational properties that we plan to
explore in future work.

Acknowledgements
The authors gratefully acknowledge funding from the
Natural Sciences and Engineering Research Council of
Canada (NSERC) and Fondecyt grant numbers 1150328 and
1161526.

References
Bacchus, F., and Kabanza, F. 1998. Planning for tempo-
rally extended goals. Annals of Mathematics and Artificial
Intelligence 22(1-2):5–27.
Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning. Artificial
Intelligence 116(1-2):123–191.
Baier, J. A., and McIlraith, S. A. 2006. Planning with tem-
porally extended goals using heuristic search. In ICAPS,
342–345.
Baier, J. A.; Bacchus, F.; and McIlraith, S. A. 2009. A
heuristic search approach to planning with temporally ex-
tended preferences. Artificial Intelligence 173(5-6):593–
618.
Bohy, A.; Bruyère, V.; Filiot, E.; Jin, N.; and Raskin, J. 2012.
Acacia+, a tool for LTL synthesis. In CAV, 652–657.
Camacho, A.; Triantafillou, E.; Muise, C.; Baier, J. A.; and
McIlraith, S. A. 2017. Non-deterministic planning with tem-
porally extended goals: LTL over finite and infinite traces. In
AAAI.
Camacho, A.; Baier, J. A.; Muise, C. J.; and McIlraith, S. A.
2018. Synthesizing controllers: On the correspondence be-
tween LTL synthesis and non-deterministic planning. In
CCAI. To appear.
Church, A. 1957. Applications of recursive arithmetic to
the problem of circuit synthesis. Summaries of the Summer
Institute of Symbolic Logic, Cornell University 1957 1:3–50.
Coles, A., and Coles, A. 2011. LPRPG-P: relaxed plan
heuristics for planning with preferences. In ICAPS.
De Giacomo, G., and Vardi, M. Y. 2013. Linear temporal
logic and linear dynamic logic on finite traces. In IJCAI.
De Giacomo, G., and Vardi, M. Y. 2015. Synthesis for LTL
and LDL on finite traces. In IJCAI, 1558–1564.
De Giacomo, G.; Maggi, F. M.; Marrella, A.; and Patrizi, F.
2017. On the disruptive effectiveness of automated planning
for LTLf -based trace alignment. In AAAI, 3555–3561.
Edelkamp, S. 2006. On the compilation of plan constraints
and preferences. In ICAPS, 374–377.
Fu, J.; Jaramillo, A. C.; Ng, V.; Bastani, F. B.; and Yen, I.
2016. Fast strong planning for fully observable nondeter-
ministic planning problems. Annals of Mathematics and Ar-
tificial Intelligence 78(2):131–155.
Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth
international planning competition: PDDL3 and experimen-
tal evaluation of the planners. Artificial Intelligence 173(5-
6):619–668.

Henriksen, J.; Jensen, J.; Jørgensen, M.; Klarlund, N.; Paige,
B.; Rauhe, T.; and Sandholm, A. 1995. Mona: Monadic
second-order logic in practice. In TACAS.
Jobstmann, B., and Bloem, R. 2006. Optimizations for LTL
synthesis. In FMCAD, 117–124.
Knoblock, C. A. 1994. Automatically generating abstrac-
tions for planning. Artificial Intelligence 68(2):243–302.
Mattmüller, R.; Ortlieb, M.; Helmert, M.; and Bercher, P.
2010. Pattern database heuristics for fully observable non-
deterministic planning. In ICAPS, 105–112.
Muise, C.; McIlraith, S. A.; and Beck, J. C. 2012. Improved
non-deterministic planning by exploiting state relevance. In
ICAPS, 172–180.
Patrizi, F.; Lipovetzky, N.; and Geffner, H. 2013. Fair LTL
synthesis for non-deterministic systems using strong cyclic
planners. In IJCAI.
Pnueli, A., and Rosner, R. 1989. On the synthesis of a reac-
tive module. In Conference Record of the Sixteenth Annual
ACM Symposium on Principles of Programming Languages,
179–190.
Pnueli, A. 1977. The temporal logic of programs. In FOCS,
46–57.
Rabin, M. O., and Scott, D. S. 1959. Finite automata and
their decision problems. IBM Journal of Research and De-
velopment 3(2):114–125.
Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Plan-
ning as satisfiability: parallel plans and algorithms for plan
search. Artificial Intelligence 170(12-13):1031–1080.
Rintanen, J. 2004. Complexity of planning with partial ob-
servability. In ICAPS, 345–354.
Sardiña, S., and D’Ippolito, N. 2015. Towards fully observ-
able non-deterministic planning as assumption-based auto-
matic synthesis. In IJCAI, 3200–3206.
Zhu, S.; Tabajara, L. M.; Li, J.; Pu, G.; and Vardi, M. Y.
2017. Symbolic LTLf synthesis. In IJCAI, 1362–1369.

