
Computing High-Quality Solutions
to Probabilistic Planning Problems

Alberto Camacho 1 Christian Muise 2 Sheila A. McIlraith 1

1Department of Computer Science
University of Toronto, Canada

{acamacho,sheila}@cs.toronto.edu

2Department of Computing and Information Systems
University of Melbourne, Australia
christian.muise@unimelb.edu.au

Planning in Artificial Intelligence is the problem of finding action strategies, typically executed by intelligent software agents, autonomous robots, or unmanned vehicles. Given a description of the world, a set of actions that an
agent is capable of performing, and some desired goal or objective, the solution to a planning problem is a policy – a mapping from states to actions – that the agent can execute to achieve the goal. There is often uncertainty
in the task either because the world is not modeled precisely, or because action outcomes are intrinsically uncertain or outside the control of the agent. For example, a slippery road or strong wind can affect the movement of
a vehicle. In this work we address the class of Probabilistic Planning problems, where the outcomes of the actions are non-deterministic and follow a probabilistic transition model. In particular, we focus on finding policies
that maximize the probability of reaching a prescribed goal. Our algorithm, Prob-PRP, outperforms the state of the art, computing substantially more robust policies orders of magnitude faster than the state of the art.

Motivation

Objective: To synthesize controllers for software agents
and devices that can handle uncertainty in the world, provide
compact solutions, and are able to provide guarantees with
respect to their behaviour.
Existing solutions to Probabilistic Planning problems:
• Offline planners cannot handle large problems
• Online planners:

• no guarantees of optimality
• poor mechanism to avoid deadends
• large solutions

Approach: Exploit (our) state-of-the-art techniques for
Fully Observable Non-Deterministic (FOND) planning:
• better scalability
• compact solutions

The Problem
Given: a description of the initial state of the world,

a set of actions, and a goal or objective
Compute: a policy — a mapping from states to actions

that the agent can execute to achieve the goal.
A sequence of executable actions, π, is called a plan.
FOND planning: non-deterministic action outcomes
Probabilistic planning: stochastic action outcomes

Quality of Solution
1 goal achievement criterion
FOND planning: strong or strong cyclic plan
Probabilistic planning: maximize probability of reaching

the goal (MAXPROB)
2 compact policy
3 short plans

PRP: Core FOND Algorithm
Policy ← ∅
while Policy changes do

Open ← {Init}
Seen ← {}

while Open 6= ∅ do
s ← Open.pop()
if s 6|= Goal∧ s 6∈ Seen then

Seen.add(s)
if Policy(s) is undefined then

[a1 · · ·an] ← GenerateWeakPlan(s, Goal)
φ← Goal
for i = n, . . . , 1 do
φ = Regress(φ, ai)
Policy← Policy ∪ {〈φ, ai〉}

if s not a deadend then
for s ′ ∈ Prog(s,Policy(s)) do

Open.add(s ′)
ProcessDeadends()

return Policy

PRP → Prob-PRP

Prob-PRP extends PRP to obtain high-quality MAXPROB
solutions to probabilistic problems.

Exploring most likely plans
• Likelihood of a plan π: L(π) = Πni=0Pr(si, ai, si+1)
• GenerateWeakPlan modified to give preference
to exploring the most likely plans

Maximizing Reachability
• Best quality policy P found so far is selected
• All states reachable by P are fully explored

RFF Prob-PRP
Problem % L S T % L S T
blocksworld-p01 100 23 18 0,02 100 19 17 0,00
blocksworld-p03 100 23 18 0,02 100 19 17 0,00
blocksworld-p05 100 65 61 0,72 100 47 43 0,16
blocksworld-p07 100 64 61 0,69 100 47 43 0,16
blocksworld-p09 100 41 38 0,67 100 65 61 0,46
blocksworld-p11 100 42 39 0,66 100 65 61 0,46
blocksworld-p13 0 0 117 17 100 115 107 1,38
blocksworld-p15 0 0 117 17 100 115 107 1,38
boxworld-p01 100 29 50 0,43 100 32 57 0,06
boxworld-p03 100 29 48 0,38 100 32 57 0,06
boxworld-p05 100 39 81 1,77 100 39 105 0,24
boxworld-p07 100 65 160 13,0 100 69 266 2,32
boxworld-p09 100 65 132 7,56 100 63 207 1,84
boxworld-p11 100 73 183 22,2 100 102 415 17,9
boxworld-p13 0 0 344 36 100 178 906 130
boxworld-p15 0 0 347 35 100 178 906 160
ex-blocksworld-p02 28 12 37 0,11 54 10 15 0,02
ex-blocksworld-p04 52 14 49 0,09 59 21 18 0,06
ex-blocksworld-p06 90 13 62 0,10 96 22 28 0,34
ex-blocksworld-p08 7 24 69 0,64 36 18 32 0,38
ex-blocksworld-p10 2 36 77 0,97 3,1 26 105 14,3
ex-blocksworld-p12 1 38 97 2,15 2,1 17 78 6,28
schedule-p02 100 59 5 0,01 100 48 7 0,04
schedule-p03 100 100 5 0,01 100 87 7 0,12
schedule-p04 96 58 14 0,02 100 46 21 0,14
schedule-p05 89 116 14 0,03 100 95 16 0,18
schedule-p06 45 364 141 1,42 0 – – –
triangle-tire-p02 100 13 81 0,17 100 12 23 0,00
triangle-tire-p04 100 30 248 1,76 100 25 55 0,06
triangle-tire-p06 100 46 490 7,98 100 39 95 0,22
triangle-tire-p08 100 62 958 36,5 100 52 143 0,72
triangle-tire-p10 100 78 1595 111 100 65 199 2,38

Table: Successful runs (%), expected plan length (L), policy size (S),
and computation time (T) for previous state-of-the-art MAXPROB
planner, RobustFF (Teichteil-Konigsbuch 2010), and Prob-PRP.
Bold numbers indicate superior performance. Dash (–) indicates the
planner exceeded the 2GB memory limit during computation.

High-Quality Solutions

Prob-PRP finds high-quality solutions that outperform the
state of the art.

MAXPROB Prob-PRP is guaranteed to find optimal
MAXPROB solutions when deadends are
avoidable.

Compact
Policy

Prob-PRP inherits the compact repre-
sentation of the policies from PRP, lead-
ing to small policies.

Short Plans Prob-PRP solutions do not rely on highly
improbable events to reach the goal.

Example

Potential Applications

Summary

• Introduced Prob-PRP: a planner capable of finding
high-quality MAXPROB solutions offline.

• Identified properties of high-quality solutions.
• Prob-PRP improves the previous state of the art in
Probabilistic Planning in terms of performance and quality
of the solutions.
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X Forbidden State-Action pairs
X Compact state representation
X Compact solutions
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unstackKey produces plans of
likelihood L ≥ 1/n.
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testKeyAtRandom produces
plans of likelihood L = 1/n.

• Init: set of n keys
• Goal: door open
• Actions:

• unstackKey
• testKeyAtRandom


