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7.1 The Bass Model

● p is rate of innovation, q is rate of imitation
● F(t) is the fraction of agents that have adopted by time t

F(t) = F(t-1) + p(1 - F(t-1)) + q(1 - F(t-1))F(t-1)

dF(t) / dt = (p + qF(t))(1 - F(t))



7.2.1 Percolation, Component Size, 
Immunity and Diffusion

● Percolation asks if there is a path across the network
● Immunity corresponds to percolation with a fraction π of nodes removed 

uniformly at random
● Giant component emerges at the threshold

<d2>π = 2<d>π



7.2.1 Percolation, Component Size, 
Immunity and Diffusion

Degree distribution after removing nodes is

Giant component emerges when



Regular network of degree d:

Poisson random network:

Scale free network has threshold 0 when γ < 3 
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7.2.2 Breakdown, Attack and Failure of 
Networks, and Immunization

● Removing the π nodes with highest degree will remove more than π links
● Proportion of removed links is:

Threshold for a giant component to exist becomes:



● In a scale-free distribution with density (γ - 1)d-γ, π = 0.056
● Uniform immunization leads to threshold of 0
● When γ = 2.5 immunizing nodes with degrees in highest 5% leads to 

eliminating ⅓ of links and all nodes with degree 4 or higher
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7.2.4 The SIR Model

● Susceptible, Infected, Removed model
○ Infected nodes are eventually removed from the system or become immune (chicken pox)

● Model duration of infection as t, where neighbours have a probability t 
chance of being infected

● Equivalent to percolation case with π = 1 - t



7.2.5 The SIS Model

● Susceptible-Infected-Susceptible model
● Match model variant where probability of meeting a node with degree di is 

given by:

● Average infection rate, ρ, given by:



7.2.5 The SIS Model

● Chance interaction with infected individual, θ, given by:

● Let ν be the rate of transmission and δ be the rate of recovery.

● Chance of infection for individual with degree d given by:



Thresholds and Steady-State Infection Rates

● If there is a finite set of agents, the long-run steady-state will approach 
zero when the infection dies out.

● If there is an infinite set of agents, then ν among the unaffected will equal 
δ among the infected:



Thresholds and Steady-State Infection Rates

● Let λ = ν / δ, then solving for ρ(d), we get:

● Combining this equation with the equation for ρ, we get:
 



Non-Zero Steady State Infection Rates

● Let H(θ) be the number of people
infected given that we start at θ.

● H’(θ) describes if an infection can 
be sustained in the steady state.



Non-Zero Steady State Infection Rates

● H values for various infections.
● Steady-state at  H(0) = 0
● Able to derive equation from H’(0):

● Individuals with high degrees serve
as conduits for infection. 



Comparisons of Infections Across Network 
Structure

● How does infection change as network structure is varied?
● First order stochastic domination: One network outperforms another 

network as its degree distribution is right-shifted. 
● Strict mean-preserving spread: Shift some weight to higher degree nodes 

and some weight to lower degree nodes
● Proposition 7.2.1: Steady-state infection rates depend on network 

structure differently based on high and low infection rates.





7.2.6 Remarks on Models of Diffusion

● Higher variance in degree distribution lead to lower infection thresholds
● Higher degree density increases infection rates, lowers thresholds

● Analyses did not study the effect of loops or cycles, always assumed 
neighbour’s degrees are independent

● No study of how a network might react to a process


