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/7.1 The Bass Model

]

e pisrate of innovation, g is rate of imitation o Tunetien /
e F(t) is the fraction of agents that have adopted by time t /
' /
F() = F(t-1) + p(1 - F(t-1)) + q(1 - F(+-1))F(t-1) s 1
[
dF(t) / dt = (p + gF(t))(1 - F(t)) 3 /
i /
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/.2.1 Percolation, Component Size,

Immunity and Diffusion

e Percolation asks if there is a path across the network
e Immunity corresponds to percolation with a fraction m of nodes removed

uniformly at random
e Giant component emerges at the threshold

<d2>n = 2<d>n



/.2.1 Percolation, Component Size,

Immunity and Diffusion

Degree distribution after removing nodes is
P [d) = Z P(d) (g) (1 —m)in?

Giant component emerges when
_ {d) —2(d)
(d?) — {d)




/.2.1 Percolation, Component Size,

Immunity and Diffusion

Regular network of degree& T = (d - 2)/(d - 1)

1

Poisson random network: 7 =1—

Scale free network has threshold 0 wheny < 3
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7.2.2 Breakdown, Attack and Failure of

Networks, and Immunization

e Removing the t nodes with highest degree will remove more than 1 links
e Proportion of removed links is:

o ZZO:&(W)JA P(d)d
f(ﬂ-) o <d>

Threshold for a giant component to exist becomes:

(d*|d < d(m))(1 = f(m)) = (d|d < d(m))(2 — f())




7.2.2 Breakdown, Attack and Failure of

Networks, and Immunization

e In a scale-free distribution with density (y - 1)d”, m = 0.056

e Uniform immunization leads to threshold of 0

e Wheny = 2.5 immunizing nodes with degrees in highest 5% leads to
eliminating %5 of links and all nodes with degree 4 or higher



/.2.4 The SIR Model

e Susceptible, Infected, Removed model
o Infected nodes are eventually removed from the system or become immune (chicken pox)
e Model duration of infection as t, where neighbours have a probability t
chance of being infected

e Equivalent to percolation case withmt=1 -1t



7.2.5 The SIS Model

e Susceptible-Infected-Susceptible model
e Match model variant where probability of meeting a node with degree d. is

given by: P(d)d

(d)

e Average infection rate, p, given by:

p=>Y P(d)p(d)



7.2.5 The SIS Model

e Chance interaction with infected individual, 8, given by:

) _ X P(d)pld)d
(@

e Letv be the rate of transmission and 6 be the rate of recovery.

e Chance of infection for individual with degree d given by:

v0d



Thresholds and Steady-State Infection Rates

e If thereis a finite set of agents, the long-run steady-state will approach

zero when the infection dies out.
e If thereis an infinite set of agents, then v among the unaffected will equal

6 among the infected:

0= (1 - p(d))véd — p(d)o



Thresholds and Steady-State Infection Rates

e LetA=v/§,then solving for p(d), we get:

\Od
) = ~pi T

e Combining this equation with the equation for p, we get:

B P(d)\0d?
V= Zd: (d) (\0d + 1)




Non-Zero Steady State Infection Rates

e Let H(B) be the number of people P(d)d \db
infected given that we start at 6. H(0) = Z (d) ()\d@ )
e H’(0) describes if an infection can ( > -l

be sustained in the steady state.




Non-Zero Steady State Infection Rates

e H values for various infections.

1 St_eady state
e Steady-stateat H(0) =0 with 6>0
e Able to derive equation from H'(0): H(0)>1
A - ﬂ H(6) u/?t stgfgy state
<d2> H’(0)<1
stead
e Individuals with high degrees serve  state 010

as conduits for infection. 5 1



Comparisons of Infections Across Network

Structure

e How does infection change as network structure is varied?

e First order stochastic domination: One network outperforms another
network as its degree distribution is right-shifted.

e Strict mean-preserving spread: Shift some weight to higher degree nodes
and some weight to lower degree nodes

e Proposition 7.2.1: Steady-state infection rates depend on network
structure differently based on high and low infection rates.



PROPOSITION 7.2.1 [Jackson and Rogers [336]] Consider two distributions P’ and P,
with corresponding highest steady-state average neighbor infection rates g and 6, and

largest steady-state overall average infection rates o' and p; and suppose that 0 > 0.

(1) If P' and P strictly first order stochastic dominate P and P, respectively, then
the infection rates are higher under P’ than P (so g >89 and 0 >p).

(1) If P is a strict mean-preserving spread of P, then the average neighbor infection
rate increases 8 > 0. Moreover, there exist bounds on the relative infection to

recovery rate, A\ < X\, such that

— If the infection to recovery rate is below the lower bound, so that 5 < A, then

the steady-state average infection rate is higher under P', so p' > p.

— If the infection to recovery rate is above the upper bound, so that ¥ > A,

then the steady-state average infection rate is higher under P', so p' < p.



7.2.6 Remarks on Models of Diffusion

e Higher variance in degree distribution lead to lower infection thresholds
e Higher degree density increases infection rates, lowers thresholds

e Analyses did not study the effect of loops or cycles, always assumed
neighbour’'s degrees are independent
e No study of how a network might react to a process



