
On Conceptually Simple Algorithms for Variants
of Online Bipartite Matching

Allan Borodin1?, Denis Pankratov1?, and Amirali Salehi-Abari2??

1 University of Toronto, Toronto ON, Canada
bor@cs.toronto.edu, denisp@cs.toronto.edu

2 Faculty of Business and IT, UOIT, Oshawa ON, Canada
abari@uoit.ca

Abstract. We present a series of results regarding conceptually simple
algorithms for bipartite matching in various online and related models.
We first consider a deterministic adversarial model. The best approxi-
mation ratio possible for a single-pass deterministic online algorithm is
1/2, which is achieved by any greedy algorithm. Dürr et al. [15] recently
presented a 2-pass algorithm called Category-Advice that achieves ap-
proximation ratio 3/5. We extend their algorithm to multiple passes. We
prove the exact approximation ratio for the k-pass Category-Advice
algorithm for all k ≥ 1, and show that the approximation ratio converges
to the inverse of the golden ratio 2/(1 +

√
5) ≈ 0.618 as k goes to infin-

ity. The convergence is extremely fast — the 5-pass Category-Advice
algorithm is already within 0.01% of the inverse of the golden ratio. We
then consider two natural greedy algorithms —MinDegree and Min-
Ranking. We analyze MinDegree in the online IID model and show
that its approximation ratio is exactly 1−1/e. We analyze MinRanking
in the priority model and show that this natural algorithm cannot obtain
the approximation of the Ranking algorithm in the ROM model.

Keywords: online bipartite matching · adversarial model · online IID model
· priority model · Category-Advice algorithm · MinGreedy algorithm

1 Introduction

Maximum bipartite matching (MBM) is a classical graph problem. Let G =
(U, V,E) be a bipartite graph, where U and V are the vertices on the two sides,
and E ⊆ U × V is a set of m edges. The celebrated O(m

√
n) Hopcroft-Karp

algorithm [21] was discovered in 1973 where n is the number of vertices. The
first improvement in the regime of relatively sparse graphs came forty years
later when Madry [26] developed a Õ(m10/7) algorithm based on electrical flows.
For dense graphs, i.e., when m ≈ n2, Mucha and Sankowski [31] describe an

? Research is supported by NSERC.
?? Research was done while the author was a postdoctoral fellow at the University of

Toronto. Research was also supported by NSERC.

algorithm running in time O(nω), where ω ≤ 2.373 is the matrix multiplication
constant. We refer the interested reader to [27] and [14] and references therein
for more information on MBM in the offline setting. While current algorithms
for solving MBM optimally in the offline setting are reasonably efficient, they
still fall short of linear time algorithms. For large graphs, linear or near linear
time algorithms might be required. In that regard, a (1− ε)-approximation can
be computed in O(m/ε) time by a version of the Hopcroft-Karp algorithm in
the offline setting [14]. Arguably, such algorithms are not conceptually simple
and require a reasonable understanding of the problem.

Our focus in this paper3 is on “conceptually simple algorithms” with regard
to variants of the online MBM problem. We will not define “conceptual simplic-
ity” but claim that certain types of algorithms (e.g., greedy and local search)
usually fall within this informal “you know it when you see it” concept. The
online model is sometimes necessitated by applications, and can be studied with
respect to a completely adversarial model, the random order model (ROM), or
a distributional input model (e.g., known and unknown IID input models). In
these models, the algorithm has no control over the ordering of the inputs and
must make irrevocable decisions for each input item as it arrives. As such, online
algorithms are a prime example of a conceptually simple algorithmic paradigm
that can be extended in various ways leading to simple offline algorithms. These
online extensions can provide improved performance both in terms of worst-case
approximation ratios and in terms of performance on real data. See, for example,
the experimental analysis of MaxSat provided by Poloczek and Williamson [35].
This still begs the question as to why we should restrict ourselves to conceptually
simple algorithms when better offline algorithms are known.

While conceptually simple algorithms may not match the best approxima-
tions realized by more complex methods, they are usually very efficient (i.e.,
linear or near linear time with small constant factors) and often work well on
realistic data exceeding worst-case approximation bounds. Conceptually sim-
ple algorithms can also be used as a preprocessing step for initializing a local
search algorithm as in Chandra and Halldórsson [11]. Moreover, conceptually
simple algorithms are easy to implement and modify with relatively little knowl-
edge about the problem domain. Conceptual simplicity is arguably the main
reason for the use of simple mechanisms in auctions (see, for example, Lucier
and Syrgkanis [25]) and the success of MapReduce [13] in distributed parallel
applications.

We will consider two departures from the adversarial and distributional one-
pass online models. In the first departure, we consider a multi-pass online algo-
rithm generalizing the two-pass algorithm in Dürr et al. [15]. In this regard we
are also motivated by the Poloczek et al. [34] two-pass algorithm for MaxSat.
These multi-pass algorithms can be viewed as de-randomizations of known on-
line algorithms and the Dürr et al. algorithm (and our extension) can also be
viewed as an O(n) space semi-streaming algorithm. The second departure is that
of priority algorithms [8], a model for greedy and more generally myopic algo-

3 The full version of the paper can be found on arXiv [9].

rithms that extend online algorithms by allowing the algorithm to determine (in
some well-defined way) the order of input arrivals. Other conceptually simple
generalizations of the traditional online model are clearly possible, such as the
ability to modify previous decisions and parallel executions of online algorithms.

Adversarial Online Model. In 1990, Karp, Vazirani, and Vazirani [24] studied
MBM in the adversarial online setting. Any greedy algorithm (yielding a max-
imal matching) achieves a 1/2 approximation and no deterministic algorithm
can do asymptotically better in the adversarial online model. Karp et al. gave
a randomized online algorithm called Ranking and showed that it achieves a
1 − 1/e ≈ 0.632 expected approximation ratio. Moreover, they proved that no
randomized algorithm can beat 1−1/e in the adversarial online model. After 17
years, a mistake in the analysis of Ranking was found independently by Krohn
and Varadarajan and by Goel and Mehta. A correct proof was first given by
Goel and Mehta [19], followed by many alternative proofs.

Online Stochastic Models. Feldman et al. [17] introduced the known IID
model for MBM. Feldman et al. model statistics about the upcoming queries
by the notion of a type graph G = (U, V,E) and a probability distribution
p : U → [0, 1]. The online nodes are sampled from p independently one at a time.
An algorithm knows G and p beforehand. As before, an algorithm is required to
make an irrevocable decision on how to match each arriving online node. In this
setting, the adversary can only choose the type graph and the distribution p but
doesn’t have further control over the online sequence of nodes. Feldman et al. [17]
provide an algorithm beating the 1− 1/e barrier achieving approximation ratio
≈ 0.67. This work was followed by a long line of work including [3,10,20,22,29].
So far, the best approximation ratio for arbitrary arrival rates is ≈ 0.706 due to
Jaillet and Lu [22].

Semi-streaming Model. Streaming algorithms are motivated by the neces-
sity to process extremely large data streams. Much of the streaming literature
concerns various forms of counting and statistics gathering. Semi-streaming al-
gorithms are streaming algorithms designed for (say) graph search and optimiza-
tion problems where the output itself requires Ω(n) space and hence a realistic
goal is to maintain Õ(n) space rather than space O(m). Eggert et al. [16] provide
a FPTAS multi-pass semi-streaming algorithm for MBM using space Õ(n) in the
edge input model. In the vertex input semi-streaming model, Goel et al. [18] give
a deterministic 1 − 1/e approximation and Kapralov [23] proves that no semi-
streaming algorithm can improve upon this ratio. (See also the recent survey by
McGregor [30].) Streaming algorithms do not have to make online decisions but
must maintain small space throughout the computation while online algorithms
must make irrevocable decisions for each input item but have no space require-
ment. In some cases, streaming algorithms are designed so as to make results
available at any time during the computation and hence some streaming algo-
rithms can also be viewed as online algorithms as well. Conversely, any online
algorithm that restricts itself to Õ(n) space can be considered as a streaming
algorithm.

Priority Model. In the priority model [8], an input to the algorithm is repre-
sented as a set of items coming from some universe. The universe of items in
the MBM problem is the set of all pairs (online node, its neighborhood). The
algorithm orders the entire universe by defining a priority function mapping each
possible input item to a real number. Then, the adversary picks an instance G
and reveals the online nodes in increasing order as specified by the priority func-
tion value. In a fixed-order algorithm, there is one initial ordering of the items
whereas in an adaptive-order algorithm, the ordering can be redefined in each
iteration. The algorithm makes an irrevocable decision about each input item.
This captures many offline greedy algorithms that make a single pass over input
items. Many problems have been studied in the priority model [1,5–7,12,33,37].
In a fully randomized priority algorithm [1] both the ordering of the input items
and the decisions for each item are randomized. When only the decisions are
randomized (and the ordering is deterministic) we will simply say randomized
priority algorithm. With regards to maximum matching, Aronson et al. [2] proved
that an algorithm that picks a random vertex and matches it to a random avail-
able neighbor (if it exists) achieves approximation ratio 1/2 + ε for some ε > 0
in general graphs. Besser and Poloczek [5] show that the algorithm that picks a
random vertex of minimum degree and matches it to a randomly selected neigh-
bor cannot improve upon the 1/2 approximation ratio (with high probability)
even for bipartite graphs. Pena and Borodin [32] show that no deterministic pri-
ority algorithm can achieve approximation ratio better than 1/2. See [4,32] with
respect to the the difficulty of proving inapproximation results for randomized
priority algorithms.

Advice Model. Dürr et al. [15] studied the online MBM problem in the adver-
sarial (tape) advice model. In the most unrestricted advice setting, the advice
bits are set by an all-powerful oracle. Dürr et al. show that Θε(n) advice bits are
necessary and sufficient to guarantee approximation ratio 1− ε for MBM. They
also show that O(log n) advice bits are sufficient for a deterministic advice algo-
rithm to guarantee a 1− 1/e approximation ratio. Construction of the O(log n)
advice bits is based on examining the behavior of the Ranking algorithm on
all n! possible random strings for a given input of length n, which requires ex-
ponential time. It is not known if there is an efficient way to construct O(log n)
advice bits. One may put computational or information-theoretic restrictions on
the advice string, and ask what approximation ratios are achievable by online
algorithms with restricted advice. Beyond their theoretical value, advice algo-
rithms also give rise to classes of conceptually simple offline algorithms if the
advice string is restricted to be efficiently computable. The Dürr et al. [15] de-
terministic advice algorithm Category-Advice achieves approximation ratio
3/5 using an n-bit advice string, where the advice string itself is computable by
an online algorithm. This algorithm can be viewed as a 2-pass online algorithm.

Our Online Multipass Results. We generalize the Category-Advice algo-
rithm to a k-pass Category-Advice algorithm for k ≥ 1. For each k ≥ 1,
we prove that the exact approximation ratio of k-pass Category-Advice
algorithm is F2k/F2k+1, where Fn is the nth Fibonacci number. Our bounds

show that the analysis of Dürr et al. for the 2-pass Category-Advice al-
gorithm was tight. Our result immediately implies that the approximation ra-
tio of k-pass Category-Advice converges to the inverse of the golden ratio
2/(1 +

√
5) ≈ 0.618 as k goes to infinity.

Our Results for the Known IID Model. A greedy algorithm always matches
an online vertex if it has at least one available neighbor. In the known IID model,
we can consider greedy algorithms without loss of generality (see Remark 1).
Moreover, greedy algorithms satisfying natural consistency conditions achieve
approximation ratio at least 1 − 1/e. Ties may occur in a greedy algorithm
when an online node has more than one available neighbor. A good tie-breaking
rule can improve the approximation ratio. Algorithms beating the 1− 1/e ratio
are known in this model ([3, 10, 20, 22, 29]).4 They are usually stated as non-
greedy algorithms, but using a general conversion they can be turned into greedy
algorithms, albeit with somewhat unnatural tie-breaking rules. These algorithms
have polynomial time preprocessing step and, thus, are feasible from a theoretical
point of view, but might not be feasible from a practical point of view on large
inputs. Moreover, we argue that these algorithms are not that “conceptually
simple.” We study a deterministic greedy online algorithm MinDegree using
a natural, conceptually simple, and efficient tie-breaking rule. This algorithm is
motivated by the offline matching algorithm MinGreedy [36]. We show that
MinDegree does not beat the 1−1/e approximation achieved by any consistent
greedy algorithm.

Our Results for the Priority Model. The Ranking algorithm in the ROM
model is an instance of a fully randomized priority algorithm. The ordering of
the online vertices is simply a uniform random permutation of the set of adver-
sarially chosen input items. Is there a more “informed” way to deterministically
or randomly choose the ordering within the priority framework? A natural idea
is to give priority to the online nodes having the smallest degree since intuitively
they seem to be the hardest to match if not seen early. Our intuition turns out
to be misleading. We show that giving priority to nodes having the smallest de-
gree using some deterministic (or the uniform random tie-breaking) rule cannot
match the approximation achieved by a uniform ordering of the online nodes. In
contrast to the 2-pass Category-Advice 3/5 approximation, our analysis can
also be used to show that a deterministic two-pass algorithm that computes the
degree of the offline vertices in the first pass and then reorders the offline ver-
tices according to non-decreasing degree (breaking ties by the initial ordering)
will not achieve an asymptotic approximation ratio better than 1/2.

4 In fact, it is easy to see that there is an optimal tie-breaking rule that can be
computed by dynamic programming. Unfortunately, the size of the dynamic pro-
gramming table is exponentially large, and moreover, currently it is not known how
to analyze such optimal tie-breaking rules.

2 Preliminaries

G = (U, V,E) denotes a bipartite graph where U, V ⊂ N form a partition of the
vertices, and edges are E ⊆ U × V . We consider the MBM in various online
models. U represents the online vertices that are revealed one at a time, and
V represents the offline vertices. A vertex u from U is revealed together with
all edges incident on it. The online models differ in how vertices in U and their
arrivals are chosen — adversarially, sampled from a known distribution, or via
a limited adversary.

Let M ⊆ E be some matching in G. For u ∈ U , we write u ∈ M when
there exists v ∈ V such that (u, v) ∈ M . Similarly, we write v ∈ M when there
exists u ∈ U such that (u, v) ∈ M . For u ∈ M , we write M(u) to indicate the
neighbor of u in M . We write OPT(G) to stand for an offline optimum matching
in G. Given an algorithm ALG, we let ALG(G) stand for the matching returned
by the algorithm ALG on input G. Abusing notation, we will also use ALG(G)
(resp. OPT(G)) to stand for the size of the matching returned by the algorithm
on G (resp. by OPT(G)).

Definition 1. We define asymptotic approximation ratio of an algorithm ALG

as AR(ALG) = limE[OPT(G)]→∞ infG
E[ALG(G)]
E[OPT(G)] , where the expectation is over

the input distribution and randomness of the algorithm. Approximation ratios in
other models (e.g., adversarial input, deterministic algorithms, etc.) are defined
analogously.

An online (or priority) MBM algorithm is greedy if whenever a newly arriving
online node has at least one available neighbor the algorithm matches the arrived
node to one of its neighbors.

Remark 1. Any online (or priority) algorithm for MBM achieving approxima-
tion ratio ρ (in an adversarial or stochastic input setting) can be turned into
a greedy algorithm achieving approximation ratio ≥ ρ. Informally, the idea is a
simulation of the non-greedy algorithm in which we replace any non-greedy de-
cision by forcing a match while remembering the configuration of the non-greedy
algorithm.

In the graphs G = (U, V,E) that we consider, we shall often refer to the so-
called “parallel edges.” Let U ′ = {u′1, . . . , u′k} ⊆ U and V ′ = {v′1, . . . , v′k} ⊆ V
be two distinguished subsets such that for all i ∈ [k] we have (u′i, v

′
i) ∈ E (there

might be other edges incident on U ′ and V ′). The parallel edges between U ′ and
V ′ are precisely the edges (u′i, v

′
i).

2.1 The Ranking Algorithm

In the adversarial model, graph G as well as an order π of its online vertices U
is chosen by an adversary. Karp, Vazirani, and Vazirani [24] presented Ranking
(see Algorithm 1). They showed that AR(Ranking) = 1 − 1/e and that no
randomized algorithm can do better in the adversarial model. Ranking samples

a permutation σ of the offline nodes uniformly at random and runs a greedy
algorithm on G breaking ties using σ. That is, when u arrives, if u has many
unmatched neighbors v then u is matched with v that minimizes σ(v). We write
Ranking(π, σ) to denote the matching returned by Ranking given π and σ.
When π is clear from the context we will omit it and simply write Ranking(σ).

2.2 Known IID Model with Uniform Probability Distribution

Algorithm 1 The Ranking algorithm.

procedure Ranking(G = (U, V,E))
Sample permutation σ : V → V
uniformly at random

for all u ∈ U do
When u arrives, set
N(u) = {unmatched v s.th. (u, v) ∈ E}
if N(u) 6= ∅ then

v∗ = arg minv{σ(v) | v ∈ N(u)}
match u with v∗

In the known IID model,
G = (U, V,E) is a type
graph and nodes U are re-
ferred to as “types.” The type
graph specifies the distribu-
tion from which the actual in-
stance graph Ĝ = (Û , V̂ , Ê) is
generated. An instance graph
is generated by setting V̂ =
V , sampling each û ∈ Û IID
uniformly from U , and let-
ting (û, v̂) ∈ Ê if and only if
the corresponding (u, v) ∈ E.
Each û is drawn IID from U
with replacement, thus it is
possible that the same u ∈ U appears multiple times in Û . The type graph
is chosen adversarially and is revealed to the algorithm in advance. Nodes û are
generated and presented to the algorithm one at a time. The algorithm makes
an irrevocable decision on how to match û (if at all). More general versions of
this model have been defined and studied, but we won’t need them in this paper.

A basic guarantee on the performance of a greedy algorithm in the known
IID model holds as long as its tie-breaking rules satisfy natural consistency
conditions. These conditions are somewhat technical, so we defer them to the full
version of the paper [9]. Goel and Mehta [19] proved that such greedy algorithms
achieve approximation at least 1− 1/e in the known IID model.5

3 Deterministic Multipass Online Algorithms

To break through the 1/2 barrier of the adversarial online model, Dürr et al.
[15] modify the model to allow for a second pass over the input. They give a
deterministic 2-pass algorithm, called Category-Advice, that achieves a 3/5
approximation ratio. Category-Advice belongs to the class of Ranking-based
algorithms called category algorithms that were introduced in the work of Dürr
et al. A category algorithm considers a permutation σ of the offline nodes. Instead
of running Ranking directly with σ, a category function c : V → Z ∪ {±∞} is

5 The Goel and Mehta [19] result is even stronger as it holds for the ROM model.

computed first. The updated permutation σc is the unique permutation satisfying
the following defining property: for all v1, v2 ∈ V , we have σc(v1) < σc(v2) if and
only if c(v1) < c(v2) or (c(v1) = c(v2) and σ(v1) < σ(v2)). Then Ranking(σc)
is performed with σc as the permutation of the offline nodes.

The Category-Advice algorithm starts with an arbitrary permutation σ,
e.g., σ could be induced by the names of nodes V . In the first pass, the algorithm
runs Ranking with σ. Let M be the matching obtained in the first pass. The
category function c : V → [2] is then defined as follows: c(v) = 1 if v 6∈ M
and c(v) = 2 otherwise. In the second pass, the Category-Advice algorithm
runs Ranking(σc). The output of the second run of Ranking is declared as the
output of the Category-Advice algorithm. In other words, in the second pass
the algorithm gives preference to those vertices that were not matched in the
first pass. (We observe that the Besser-Poloczek graphs, see the full version of
the paper [9], show that the category function c(v) = degree of v will not yield
an asymptotic approximation better than 1/2.)

We present a natural extension of the Category-Advice algorithm to mul-
tiple passes, called k-pass Category-Advice (see Algorithm 2). Let Fn de-
note the nth Fibonacci number, i.e., F1 = F2 = 1, and Fn = Fn−1 + Fn−2
for n ≥ 3. For each k ≥ 1, we prove that the k-pass Category-Advice al-
gorithm6 achieves the approximation ratio F2k/F2k+1. Moreover, we show that
this is tight, i.e., there exists a family of bipartite graphs, one for each k ≥ 1,
such that the k-pass Category-Advice algorithm computes a matching that
is F2k/F2k+1 times the size of the maximum matching. In particular, we show
that the analysis of the 3/5 approximation ratio in [15] is tight. It immediately
follows that as k goes to infinity, the approximation guarantee of the k-pass
Category-Advice algorithm converges (quickly) to the inverse of the golden
ratio 2/(1 +

√
5) ≈ 0.618. The main theorem of this section is

Theorem 1. The exact approximation ratio of the k-pass Category-Advice
algorithm is F2k/F2k+1, where Fn is the nth Fibonacci number. Thus, the ap-
proximation ratio of the k-pass Category-Advice algorithms tends to the
inverse of the golden ration 2/(1 +

√
5) ≈ 0.618 as k goes to infinity. This holds

even when k depends on n arbitrarily. The algorithm can be realized as a k-pass
semi-streaming algorithm using O(n log k) space, which is O(n) for constant k.

3.1 Positive Result

The pseudocode for k-pass Category-Advice appears in Algorithm 2. The
algorithm is defined iteratively with each iteration corresponding to a new pass.
The algorithm initializes σ of the offline nodes to the identity permutation. The
algorithm maintains a category function c : V → Z∪ {±∞}. Initially, c is set to

6 A notable feature of this multi-pass algorithm is that after pass i, the algorithm
can deterministically commit to matching a subset of size F2i

F2i+1
|M | where M is a

maximum matching. This follows from a certain monotonicity property. See the full
version of the paper for details [9].

−∞ everywhere. In the ith pass, the algorithm runs Ranking on σc. Let Mi be
the resulting matching. For each v ∈ V , if c(v) = −∞ and v ∈ Mi then c(v) is
updated to −i. The algorithm uses the updated c in the next pass. In words, c
records for each vertex v the (negative of the) first pass in which v was matched.
In the subsequent pass, the algorithm gives preference to the nodes that were
unmatched, followed by nodes that were matched for the first time in the latest
round, etc.

Lemma 1. The k-pass Category-Advice algorithm achieves approximation
ratio F2k/F2k+1.

Algorithm 2 k-pass Category-Advice.

procedure k-pass Category Advice
σ ← the identity permutation of V
initialize array c of size V with −∞
for i from 1 to k do

Run pass i: Mi ←Ranking(σc)
for v ∈ V do

if c(v) = −∞ and v ∈Mi then
c(v)← −i

return Mk

Proof (by induction on k).
Base case: k = 1. The 1-
pass Category-Advice al-
gorithm is the simple de-
terministic greedy algorithm,
which achieves a 1/2 = F2/F3

approximation ratio.
Inductive step. Consider

the (k + 1)-pass Category-
Advice algorithm running on
G = (U, V,E). WLOG, we
may assume that |U | = |V |
and G has a perfect matching
(see the full version of the pa-
per [9]). Let U1 ⊆ U be the set of nodes matched in the first pass of the algorithm.
Let V1 ⊆ V be the nodes that U1 nodes are matched to. Define U2 = U \ U1

and V2 = V \ V1. Note that there are no edges between U2 and V2; otherwise
some node of U2 would have been matched to some node of V2 in the first
round. Let Mi be the matching found by the (k + 1)-pass Category-Advice
algorithm in round i, where i ∈ [k + 1]. Also define M11 = Mk+1 ∩ U1 × V1,
M12 = Mk+1 ∩ U1 × V2, and M21 = Mk+1 ∩ U2 × V1. We are interested in
bounding |Mk+1| = |M11|+ |M12|+ |M21|. See Figure 1.

U1

U2

V1

V2

M1

U1

U2 V2

V11

V12

M11

M12M21

Mk+1

V1

Fig. 1. G is the input graph. On the left we show the matching constructed in the first
pass. On the right we show the matching constructed in the k + 1st pass.

After the first round, nodes in U1 prefer nodes from V2 to those from V1.
Moreover, nodes in V2 are only connected to nodes in U1 and there is a perfect
matching between V2 and a subset of U1. Thus, the matching constructed be-
tween U1 and V2 in the next k passes is the same as if we ran k-pass Category-
Advice algorithm on the subgraph of G induced by U1 ∪ V2. This implies that
|M12| ≥ (F2k/F2k+1)|V2| = (F2k/F2k+1)|U2|.

By the monotonicity property (see the full version of the paper [9]), in
the k + 1st pass, all nodes from U1 that were not matched with V2 will be
matched with some nodes in V1, i.e., |U1| = |M12| + |M11|. Let V11 be such a
set, and let V12 = V1 \ V11. To lower bound |M21|, we first lower bound the
size of a maximum matching between U2 and V12. Since U2 is only connected
to V1 and since there is a perfect matching, a maximum matching between
U2 and V1 is of size |U2|. Thus, the size of a maximum matching between U2

and V12 is at least |U2| − |V11|. Also, observe that |V11| = |V1| − |V12| and
|V12| = |M12|. Therefore, the size of a maximum matching between U2 and V12
is at least |U2| − (|V1| − |M12|) = |U2| − |U1| + |M12| (note that |U1| = |V1|).
Finally in the last round, the algorithm constructs a maximal matching be-
tween U2 and V12 guaranteeing that |M21| ≥ (1/2)(|U2| − |U1|+ |M12|). Putting
it all together, we obtain |Mk+1| = |M11| + |M12| + |M21| = |U1| − |M12| +
|M12| + |M21| ≥ |U1| + 1

2 (|U2| − |U1|+ |M12|) ≥ 1
2

(
|U2|+ |U1|+ F2k

F2k+1
|U2|

)
=

1
2

(
n+ F2k

F2k+1
(n− |M1|)

)
=
(

1
2 + F2k

F2k+1

)
n− F2k

2F2k+1
|M1|.

By the monotonicity property we also have that |Mk+1| ≥ |M1|. Thus, we derive

|Mk+1| ≥ max
{
|M1|,

(
1
2 + F2k

F2k+1

)
n− F2k

2F2k+1
|M1|

}
. This implies that |Mk+1| ≥

1/2+F2k/F2k+1

1+F2k/(2F2k+1)
n = F2k+1+F2k

2F2k+1+F2k
n =

F2(k+1)

F2(k+1)+1
n.

3.2 Negative Result

In this subsection, we construct a family of bipartite graphs (Gk)∞k=1 with the
following properties7: (1) Gk has exactly F2k+1 online nodes and F2k+1 offline
nodes, (2) Gk has a perfect matching, (3) the k-pass Category-Advice algo-
rithm finds a matching of size F2k, (4) for all k′ > k, the k′-pass Category-
Advice algorithm finds a matching of size F2k + 1.

This family of graphs shows that our analysis of k-pass Category-Advice
is tight. The construction of the Gk is recursive. The base case is given by G1,
which is depicted in Figure 2. The online nodes are shown on the left whereas
the offline nodes are on the right. The online nodes always arrive in the order
shown on the diagram from top to bottom, and the initial permutation σ of the
offline nodes is also given by the top to bottom ordering of the offline nodes on
the diagram.

7 The last property allows us to conclude that the approximation ratio of k-pass
Category-Advice converges to the inverse of the golden ratio even when k is
allowed to depend on n arbitrarily.

Fig. 2. G1 is used for the basis of the in-
duction.

In the recursive step, we construct
Gk+1 from Gk. The online nodes U of
Gk+1 are partitioned into three dis-
joint sets U = U1 ∪ U2 ∪ U3 such that
|U1| = |U3| = F2k+1 and |U2| = F2k.
Similarly, the offline nodes V of Gk+1

are partitioned into three disjoint sets V = V1 ∪ V2 ∪ V3 such that |V1| = |V3| =
F2k+1 and |V2| = F2k. There is a copy of Gk between U1 and V3. U2 and V2
are connected by parallel edges. There is a complete bipartite graph between U1

and V1, as well as between U2 and V1. Finally, U3 is connected to V1 by parallel
edges. The construction is depicted in Figure 3.

Lemma 2. Properties (1-4) mentioned at the beginning of this subsection hold
for the Gk.

Proof (by induction on k). Base case: k = 1. G1 has 2 online and 2 offline nodes
and F3 = 2. Clearly, G1 has a perfect matching. The 1-pass Category-Advice
algorithm is the regular greedy algorithm, which returns a matching of size 1
on G1, and F2 = 1. Lastly, 2-pass Category-Advice finds a matching of size
F2 + 1 = 2 and adding more passes does not change anything.

U1

U2

U3

V1

V2

V3

Gk

F2k+1

F2k

F2k+1

F2k+1

F2k

F2k+1

Fig. 3. Gk+1 shows the inductive construction.

Inductive step. As-
sume that properties
(1-4) hold for Gk.
The number of on-
line vertices of Gk+1

is equal to the num-
ber of offline ver-
tices and is equal to
F2k+1+F2k+F2k+1 =
F2k+2 + F2k+1 =
F2k+3 = F2(k+1)+1.
By inductive assump-
tion, Gk has a per-
fect matching. There-
fore, U1 vertices can
be matched with V3
via the perfect match-
ing given by Gk. In addition, U2 can be matched with V2 by parallel edges, and
U3 can be matched with V1 by parallel edges as well. Thus, Gk+1 has a perfect
matching. Thus, we proved properties 1 and 2. To prove the 3rd property, observe
that in the first pass, the (k + 1)-pass Category-Advice algorithm matches
U1 and V1 by parallel edges, U2 with V2 by parallel edges, and leaves U3 and
V3 unmatched. Since V3 is only connected to the nodes U1, in the next k passes
the behavior of the algorithm between U1 and V3 nodes is exactly that of the
k-pass Category-Advice algorithm. Therefore, by the inductive assumption,
the algorithm is going to match exactly F2k nodes from U1 with the nodes in

V3. The remaining F2k+1 − F2k nodes from U1 will be matched to the nodes in
V1 (since those are the only neighbors of U1 nodes besides the nodes from V3).
The nodes from U2 in all passes behave the same way – they prefer V1 nodes
to V2 nodes. Thus, since V1 will have F2k nodes unmatched after processing all
nodes of U1 in the last round, all of U2 nodes will be matched to V1 in the last
round. This implies that after processing U1 and U2 in the last round, all of
V1 nodes are matched. Therefore, none of U3 nodes can be matched. Thus, the
matching found by the (k + 1)-pass Category-Advice algorithm on Gk+1 is
of size |U1|+ |U2| = F2k+1 +F2k = F2k+2 = F2(k+1). The last property is proved
similarly.

4 MinDegree Algorithm in the Known IID Model

Algorithm 3 The MinDegree algorithm.

procedure MinDegree(G = (U, V,E))
Let S = V be the set of active offline nodes
repeat

Let û denote the arriving online node
Let N(û) = {v ∈ S | (u, v) ∈ E}
if N(û) 6= ∅ then

Let v = arg minv∈N(û) deg(v)
Match û with v
Remove v from S

until all online nodes have been processed

Our algorithm is MinDe-
gree (see Algorithm 3). The
motivation for studying this
algorithm is as follows. It is
easy to see that in the ad-
versarial setting we can take
any greedy algorithm, mod-
ify the tie-breaking rule to al-
ways give more preference to
the offline nodes of degree 1,
and this will not decrease the
approximation ratio of the al-
gorithm. Generalizing this, we
conclude that online vertices
should give preference to the
offline vertices of smaller degrees. The problem is that in the adversarial setting,
degrees of the offline nodes are not known a priori. However, in the known IID
setting we can estimate the degrees of the offline vertices from the type graph.
This is precisely what MinDegree formalizes. The algorithm is given a type
graph G = (U, V,E) as input. It keeps track of a set S of currently “active”, i.e.,
not yet matched, offline nodes. When a new node ũ arrives, it is matched to its
active neighbor of minimum degree in the type graph.

Remark 2. Our algorithm does not fully break ties, i.e., MinDegree takes some
neighbor of currently minimum degree. In practice, it means that ties are broken
in some arbitrary way, e.g., by names of vertices. In our theoretical analysis, this
means that the adversary is more powerful, as it can decide how the algorithm
breaks these ties.

MinDegree is a conceptually simple and promising algorithm in the known
IID setting. Indeed, a version of MinDegree called MinGreedy has been ex-
tensively studied in the offline setting (see Besser and Poloczek [5] and references
therein). Unfortunately, in spite of having excellent empirical performance as well

as excellent performance under various random input models, MinGreedy has
a bad worst-case approximation ratio of 1/2 in the offline adversarial setting [5].
As far as we know, this algorithm has not been analyzed in the known IID model.
We obtain a result that, in spirit, is similar to the offline result, but the proof is
different. Namely, we show that MinDegree cannot achieve an approximation
ratio better than 1−1/e, which is guaranteed by any consistent greedy algorithm
in the known IID model. See the full version of the paper [9] for the proof of the
following result.

Theorem 2.

AR(MinDegree) = 1− 1

e

Th negative result holds no matter which rule is used to break (remaining) ties
in MinDegree.

5 MinRanking – A Hybrid Algorithm in the Priority
Model

We propose a conceptually simple greedy algorithm for MBM. Our algorithm
is a natural hybrid between two well-known algorithms—Ranking and Min-
Greedy. We have already encountered MinGreedy in this paper (see Section 1
and Section 4). MinGreedy is an offline algorithm that selects a random vertex
of minimum degree in the input graph and matches it with a random neigh-
bor, removes the matched vertices, and proceeds. In a natural adaptation of
MinGreedy to bipartite graphs G = (U, V,E), the algorithm picks a random
node of minimum degree from U and matches it to a random neighbor from
V . Observe that this algorithm can be realized as a fully randomized priority
algorithm, where the ordering of the input items is by increasing degree with
ties broken randomly. See the full version of the paper [9] for the pseudocode.

Karp, Vazirani, Vazirani [24] exhibited a family of graphs, on which Ranking
gets its worst approximation ratio 1−1/e. MinGreedy finds a perfect matching
on these graphs. Thus, it is natural to consider the performance of an algorithm
that combines Ranking and MinGreedy. This is our proposed MinRanking
algorithm (see Algorithm 4). In MinRanking, a random permutation π of ver-
tices V is initially sampled. Then, nodes in U are processed in the increasing
order of their current degrees (cur deg) with ties broken randomly. When a node
u is processed, it is matched with its neighbor appearing earliest in the ordering
π.

MinRanking modifies MinGreedy in the same way that the online Rank-
ing algorithm modifies the seemingly more natural online randomized algorithm
that simply matches an online vertex to an available neighbor uniformly at
random which surprisingly was shown to be (asymptotically) a 1/2 approxi-
mation. So it is hopeful that MinRanking can improve upon MinGreedy.
Like MinGreedy, our algorithm can be implemented and analyzed in the fully
randomized adaptive priority model [8]. Since our algorithm is a generalization

of Ranking, its asymptotic approximation ratio is at least 1 − 1/e ≈ 0.632.
We show that the asymptotic approximation ratio of this algorithm is at most
1/2+1/(2e) ≈ 0.684, as witnessed by the construction of Besser and Poloczek [5].

Theorem 3.

1− 1

e
≤ AR(MinRanking) ≤ 1

2
+

1

2e
.

Algorithm 4 The MinRanking algorithm.

procedure MinRanking(G = (U, V,E))
Pick a permutation π : V → V at random
repeat

Let d = min{cur deg(i) | i ∈ U}
Let S = {i ∈ U | cur deg(i) = d}
Pick i ∈ S uniformly at random
Let N(i) be the set of neighbors of i
if N(i) = ∅ then

i remains unmatched
Delete i from G

else
j = arg mink{π(k) | k ∈ N(i)}
Match i with j
Delete i and j from G
Update cur deg

until U = ∅

This negative result shows
that MinRanking falls short
of the known bound for
Ranking in the ROM model,
where it achieves approxima-
tion ratio 0.696 [28]. From our
result it follows that a deter-
ministic ordering of the on-
line nodes by non-decreasing
degree (breaking ties by the
given initial labeling of those
nodes) will also fall short.
That is (similar to the result
in [32] for deterministic deci-
sions), a naive randomized or-
dering can be better than a
seemingly informed determin-
istic ordering. See the full ver-
sion of the paper [9] for more
details.

6 Conclusion and
Open Problems

We have considered a number of “online-based” algorithms for the MBM prob-
lem. We believe that the algorithms considered in this paper all pass the intuitive
“you know it when you see it” standard for conceptually simple algorithms. In
particular, these algorithms take linear time in the number of edges and are very
easy to implement. Even given the restricted nature of these algorithms, it is a
challenge to understand their performance.

Our results for the MBM, in conjunction with the results in Poloczek et
al. [34] for MaxSat, show both the promise and limitations of conceptually sim-
ple algorithms. Many open problems are suggested by this work. Clearly, any
problem studied in the competitive online literature can be considered within
the expanded framework of conceptually simple algorithms. For what problems is
there a general method for de-randomizing online algorithms? Is there a precise
algorithmic model that lends itself to analysis and captures multi-pass algo-
rithms? And in addition to worst-case and stochastic analysis, how would any
of the conceptually simple MBM algorithms perform “in practice?”

References

1. Spyros Angelopoulos and Allan Borodin. On the power of priority algorithms for
facility location and set cover. In Proc. of APPROX, pages 26–39, 2002.

2. Jonathan Aronson, Martin Dyer, Alan Frieze, and Stephen Suen. Randomized
greedy matching. II. Random Struct. Algorithms, 6(1):55–73, 1995.

3. Bahman Bahmani and Michael Kapralov. Improved bounds for online stochastic
matching. In Proc. of ESA, pages 170–181, 2010.

4. Bert Besser and Matthias Poloczek. Erratum to: Greedy matching: Guarantees
and limitations. Algorithmica, pages 1–4, 2017.

5. Bert Besser and Matthias Poloczek. Greedy matching: Guarantees and limitations.
Algorithmica, 77(1):201–234, 2017.

6. Allan Borodin, Joan Boyar, and Kim S. Larsen. Priority Algorithms for Graph
Optimization Problems, pages 126–139. Springer Berlin Heidelberg, 2005.

7. Allan Borodin, Ioana Ivan, Yuli Ye, and Bryce Zimny. On sum coloring and sum
multi-coloring for restricted families of graphs. Theoretical Computer Science, 418:1
– 13, 2012.

8. Allan Borodin, Morten N. Nielsen, and Charles Rackoff. (incremental) priority
algorithms. Algorithmica, 37(4):295–326, 2003.

9. Allan Borodin, Denis Pankratov, and Amirali Salehi-Abari. On conceptually simple
algorithms for variants of online bipartite matching. CoRR, abs/1706.09966, 2017.

10. Brian Brubach, Karthik Abinav Sankararaman, Aravind Srinivasan, and Pan Xu.
New Algorithms, Better Bounds, and a Novel Model for Online Stochastic Match-
ing. In Proc. of ESA, pages 24:1–24:16, 2016.

11. Barun Chandra and Magnús M. Halldórsson. Greedy local improvement and
weighted set packing approximation. J. Algorithms, 39(2):223–240, 2001.

12. Sashka Davis and Russell Impagliazzo. Models of greedy algorithms for graph
problems. Algorithmica, 54(3):269–317, 2009.

13. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on
large clusters. Commun. ACM, 51(1):107–113, 2008.

14. Ran Duan and Seth Pettie. Linear-time approximation for maximum weight match-
ing. J. ACM, 61(1):1:1–1:23, 2014.

15. Christoph Dürr, Christian Konrad, and Marc Renault. On the Power of Advice and
Randomization for Online Bipartite Matching. In Proc. of ESA, pages 37:1–37:16,
2016.

16. Sebastian Eggert, Lasse Kliemann, Peter Munstermann, and Anand Srivastav.
Bipartite matching in the semi-streaming model. Algorithmica, 63(1-2):490–508,
2012.

17. Jon Feldman, Aranyak Mehta, Vahab Mirrokni, and S. Muthukrishnan. Online
stochastic matching: Beating 1-1/e. In Proc. of FOCS, pages 117–126, 2009.

18. Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication
and streaming complexity of maximum bipartite matching. In Proceedings of
the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2012, Kyoto, Japan, January 17-19, 2012, pages 468–485, 2012.

19. Gagan Goel and Aranyak Mehta. Online budgeted matching in random input
models with applications to adwords. In Proc. of SODA, pages 982–991, 2008.

20. Bernhard Haeupler, Vahab S. Mirrokni, and Morteza Zadimoghaddam. Online
stochastic weighted matching: Improved approximation algorithms. In Proc. of
WINE, pages 170–181, 2011.

21. John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum match-
ings in bipartite graphs. SIAM J. on Comput., 2(4):225–231, 1973.

22. Patrick Jaillet and Xin Lu. Online stochastic matching: New algorithms with better
bounds. Mathematics of Operations Research, 39(3):624–646, 2014.

23. Michael Kapralov. Better bounds for matchings in the streaming model. In Proc.
of SODA, pages 1679–1697, 2013.

24. R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line
bipartite matching. In Proc. of STOC, pages 352–358, 1990.

25. Brendan Lucier and Vasilis Syrgkanis. Greedy algorithms make efficient mecha-
nisms. In Proc. of Conference on Economics and Computation, EC, pages 221–238,
2015.

26. A. Madry. Navigating central path with electrical flows: From flows to matchings,
and back. In Proc. of FOCS, pages 253–262, 2013.

27. A. Madry. Computing maximum flow with augmenting electrical flows. In Proc.
of FOCS), pages 593–602, 2016.

28. Mohammad Mahdian and Qiqi Yan. Online bipartite matching with random ar-
rivals: An approach based on strongly factor-revealing LPs. In Proc. of STOC,
pages 597–606, 2011.

29. Vahideh H. Manshadi, Shayan Oveis Gharan, and Amin Saberi. Online stochastic
matching: Online actions based on offline statistics. In Proc. of SODA, pages
1285–1294, 2011.

30. Andrew McGregor. Graph sketching and streaming: New approaches for analyzing
massive graphs. In Proc. of Intern. Comput. Sci. Symp. in Russia, CSR, pages
20–24, 2017.

31. M. Mucha and P. Sankowski. Maximum matchings via gaussian elimination. In
Proc. of FOCS, pages 248–255, 2004.

32. Nicolas Pena and Allan Borodin. On the limitations of deterministic de-
randomizations for online bipartite matching and max-sat. CoRR, abs/1608.03182,
2016.

33. Matthias Poloczek. Bounds on Greedy Algorithms for MAX SAT, pages 37–48.
2011.

34. Matthias Poloczek, Georg Schnitger, David P. Williamson, and Anke Van Zuylen.
Greedy algorithms for the maximum satisfiability problem: Simple algorithms and
inapproximability bounds. SICOMP. Accepted for publication.

35. Matthias Poloczek and David P. Williamson. An experimental evaluation of fast
approximation algorithms for the maximum satisfiability problem. In Proc. of
Intern. Symp. on Experimental Algorithms, SEA, pages 246–261, 2016.

36. Gottfried Tinhofer. A probabilistic analysis of some greedy cardinality matching
algorithms. Annals of Operations Research, 1(3):239–254, 1984.

37. Yuli Ye and Allan Borodin. Priority algorithms for the subset-sum problem. J.
Comb. Optim., 16(3):198–228, 2008.

