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ABSTRACT
Social networks play a central role in individual interactions
and decision making. While it is recognized that networks
can correlate behaviors and preferences among connected
agents, relatively little work has considered mechanisms for
social choice on such networks. We introduce a model for so-
cial choice—specifically, consensus decision making—on so-
cial networks that reflects dependence among the utilities
of connected agents. We define an empathetic social choice
framework in which agents derive utility based on both their
own intrinsic preferences and the satisfaction of their neigh-
bors. We translate this problem into a weighted form of clas-
sical preference aggregation (e.g., social welfare maximiza-
tion or voting), and develop scalable optimization algorithms
for this task. Empirical results validate the effectiveness of
our methods and the value of empathetic preferences.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence,Multiagent Systems; J.4 [Social and Behavioral
Sciences]: Economics and Sociology

General Terms
Algorithms, Economics, Human Factors, Theory

Keywords
Social Choice, Social and Economic Networks, Voting, Pref-
erence Aggregation, Empathy, Decision Making.

1. INTRODUCTION
Social and economic networks play a fundamental role in

facilitating interactions and behaviours between individuals,
businesses, and organizations. It is widely acknowledged
that the behaviors, and to a lesser extent preferences, of
individuals connected in a social network are correlated in
ways that can be explained, in part, by network structure
[13, 16, 24]. Because of this, and the increasing availabil-
ity of data that allows one to infer such relationships, the
study of social choice (group decision) problems on social
networks is one of tremendous practical import. Arguably
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most group decision problems, whether social, corporate, or
policy-oriented, involve people at least some of whom are
linked via myriad social ties. These ties may provide strong
clues as to the preferences of individuals, which can then
be used to facilitate preference aggregation and implement
a social choice function (or make a group decision).

Despite these natural connections, social choice within so-
cial networks has received, until recently, relatively little at-
tention. Recent work has examined, for example, the forma-
tion of (hedonic) coalitions on social networks [12, 11], social
network games [38], coalition structure generation [40] and
stable matching on social networks [7, 4]. The influence of
social networks on voting behavior has received attention in
the social sciences [2, 33, 10], and the emergence of online so-
cial networks has spawned research on mechanisms for vote
delegation [8].

This paper considers the problem of consensus decision
making (or group recommendation) on social networks, such
as voting over some option space. Specifically, we wish to
select a single option from a set of alternatives for some
group of individuals connected by a social network (e.g.,
a local constituency electing a political representative, or
friends selecting a vacation spot or a movie). While indi-
viduals have personal intrinsic utility over the options, we
also incorporate a novel form of empathetic utility on social
networks: the utility (or satisfaction) of an individual with
an alternative a is a function of both her intrinsic utility for
a and her empathetic utility for the “happiness” of her neigh-
bors. Empathetic utility in this sense reflects the fact that
a person’s happiness may be influenced by the happiness of
others with whom they are connected [18]. This inherent in-
terdependency of agent utilities is captured in the economic
literature on empathy, envy, and other forms of “other re-
garding” preferences [30, 26, 6]; our models also have ties
to work on opinion spread and social learning [24, 1] (see
Sec. 2.4).

We consider two varieties of empathetic preference. In
our local empathetic model, the utility of individual i for al-
ternative a combines her intrinsic preference for a with the
intrinsic preference of i’s neighbors for a, where the weight
given to j’s preference depends on the strength of the re-
lationship of i with j. For instance, i may be willing to
trade off some of her intrinsic preference for a restaurant if
her colleagues are happier with the cuisine (as her happi-
ness depends to those of her friends); and she defers more to
her closer friends. In our global empathetic model, i’s utility
for each a depends on her intrinsic preference and the total
utility of her neighbors for a (not just their intrinsic prefer-



ence): she wants her neighbors not only to be satisfied with
a, but to have high utility, which depends on the utility of
their neighbors, and so on. For example, in political voting,
i may have a mild preference for a over b, but if b is strongly
preferred by her neighbors, their neighbors, and others in
the community, she may prefer to see b elected rather than
have grumpy neighbors for the next few years.

Our main contribution is a model for preference aggre-
gation that selects consensus alternatives in a way that is
sensitive to both intrinsic and empathetic preferences. We
do not require agents to compute such combined preferences;
indeed, they need not even have knowledge of their neigh-
bors’ preferences. Instead, agents specify only their prefer-
ences for options and the extent to which they care about
their neighbors’ satisfaction (the latter potentially estimated
from social network structure). We describe methods for
computing optimal options under the local and global mod-
els. The former, unsurprisingly, corresponds to a simple
form of weighted preference aggregation, or voting in which
each agent implicitly “delegates” a portion of her vote to
her neighbors. The latter, because individual utilities are
co-dependent—indeed, utility spreads much like PageRank
values [34]—requires the solution of a linear system to deter-
mine the optimal (fixed-point) option. We describe (mild)
conditions under which such fixed points exist, and show
that it too results in a form of weighted voting. Experi-
ments demonstrate the effectiveness of our algorithms and
show that, in some settings, ignoring empathetic preferences
results in suboptimal decisions and high social welfare loss.1

2. SOCIAL EMPATHETIC MODEL
We outline our basic social choice model, describe our

empathetic models, and discuss related work.

2.1 The Social Choice Setting
Apart from empathetic preferences on a network, the so-

cial choice framework we adopt is standard. We assume a
set of alternatives or options A = {a1, . . . , am} and a set
of agents N = {1, . . . , n}. Each agent j has intrinsic pref-
erences over A in the form of either a (strict) preference
ranking �Ij or a (cardinal) utility function uIj . We describe
preferences in terms of utility functions, but discuss below
how to interpret voting procedures within our model.

Our goal is to select a consensus option a∗ ∈ A that im-
plements some social choice function f relative to the pref-
erences of N . For example, if agent utilities are dictated
solely by intrinsic preference and f is (utilitarian) social wel-
fare maximization (SWM), we select a∗ = arg max

∑
j u

I
j (a).

We ignore ties in the SWM option for ease of exposition. If
preferences are given by preference rankings, f might corre-
spond to some voting rule.2

2.2 Empathetic Preference on Social Networks
We depart from standard social choice by considering em-

pathetic preferences, in which the preferences of one agent

1Computational models of empathy may prove relevant in
online social applications, to address a recently observed de-
cline in empathy among young adults in which online social
networks and media may have a role [28].
2Our model applies directly to more general social choice
problems, such as assignment problems with network exter-
nalities, matching, etc., without difficulty. Our algorithms,
however, are specific to the “single-choice” assumption.

are dependent on those of other agents. We consider the
specific case in which these influences are induced by con-
nections in a social network (though the notion need not be
confined to networks). We focus on utility functions rather
than preference rankings, since these allow the direct ex-
pression of quantitative tradeoffs between intrinsic and em-
pathetic preference.3

We assume a directed weighted graph G = (N , E) over
agents, with an edge jk indicating that j’s utility is depen-
dent on its neighbor k’s preference, with the strength of
dependence given by edge weight wjk. A loop jj indicates
that j’s utility depends on her own intrinsic preferences (at
certain points below we assume that all such loops exist).
We assume wjk ≥ 0 for any edge jk, and

∑
k wjk = 1 for

any j. We treat missing edges as having weight 0, thus rep-
resent G with a weight matrix W = [wij ]. We generally
think of these edges as corresponding to some relationship
in a social network; see Fig. 1(a) for an illustration.

We consider pure consensus social choice scenarios in which
a single option a is selected. We take j’s utility for a to
be a linear combination of its own intrinsic preference for
a and the empathetic preference derived from each of its
neighbors j ∈ N where weights determine the relative im-
portance of each neighbor. (General non-linear models are
possible also.) Letting ejk(a) denote the empathetic utility
derived by j from k, define j’s utility uj(a) to be

uj(a) = wjju
I
j (a) +

∑
k 6=j

wjkejk(a).

The ratio of wjj to
∑
k 6=j wjk captures the relative impor-

tance of intrinsic and empathetic utility to j. Our framework
does not impose empathetic preference: fully self-interested
agents are represented by self-loops of weight 1.

We consider two ways of defining empathetic preferences.
In the local empathetic model, we define ejk(a) = uIk(a); i.e.,
j’s utility for a combines the intrinsic utilities of each of its
neighbors (including itself if wjj > 0):

uj(a) =
∑
k

wjku
I
k(a). (1)

This model reflects agents j who are concerned about the
“direct” preference of their neighbors k for a; but the fact
that k’s utility may depend on k’s own neighbors does not
impact j. Consider a family deciding on a movie: the prefer-
ences of certain family members (e.g., parents) for a film may
depend on the preferences of others (e.g., children, whom
they want to ensure are entertained).

In the global empathetic model, we define ejk(a) = uk(a),
so that k’s total utility for a—which may depend on k’s
neighbors—influences j’s utility for a, giving rise to

uj(a) = wjju
I
j (a) +

∑
k 6=j

wjkuk(a). (2)

Here j’s utility for a depends on the utility, not just intrin-
sic preferences of its neighbors. For example, a voter may
care about the overall satisfaction of her neighbors when
voting for a political representative, but recognize that their
satisfaction also depends on their neighbors, etc. Compa-
nies linked in complex supply chain may care about the suc-
cess of their suppliers and customers, and consider adopting
industry-specific or economic policies in that light. In the

3Suitable qualititative expression of such tradeoffs is an im-
portant ongoing research direction.



global model, the circular dependence of utilities requires a
fixed point solution to the linear system Eq. 2 (see below).

Correlations of behavior and/or preferences among agents
connected in social network is widely accepted, and can be
explained by a variety of mechanisms [16, 24]. Among these
are: information diffusion, in which agents become aware of
opportunities or innovations from connections to their neigh-
bors; network externalities, in which the benefits of adopting
some behavior increase when more neighbors do the same; or
homophily, in which people with similar characteristics (say,
preferences) more readily form social ties. Our empathetic
model is somewhat different in that a person’s intrinsic pref-
erences over options A are not presumed to be correlated
with their neighbors, but their revealed preferences might
be: their choices (or stated utilities) reflect some considera-
tion, however determined, of their neighbors’ preferences.

2.3 Weighting Agent Intrinsic Utilities
In realistic social choice situations, agents with empa-

thetic preferences must often perform sophisticated reason-
ing about not only their own intrinsic preferences, but also
those of their neighbors. Even in the local setting, expressing
preferences (e.g., voting) is difficult since agents usually have
incomplete (and in some cases, no) information about the
preferences of their friends, neighbors, or colleagues. The
global empathetic setting is even more complex, since an
agent is required to reason about her neighbors’ connections
as well as their intrinsic/empathetic tradeoffs.

In our models, preference aggregation and optimization
are simpler: agents need only specify their intrinsic pref-
erences, as is standard in social choice, and the empathetic
weights they assign to their acquaintances. In social scenar-
ios, this can remove a considerable informational and cogni-
tive burden from agents who might otherwise be required to
explicitly compute or otherwise determine their total utility
for alternatives. In other settings, agents might not wish
to reveal their preferences to their neighbors, but still want
their neighbors to obtain a favorable result (e.g., compa-
nies voting on economic policy who are linked together in
supply chain relationships which correlate their stability or
profitability). Fortunately, given a network G, consensus
decision making with empathetic preferences can be recast
as a weighted preference aggregation problem over intrinsic
preferences alone. This eases the burden on agents, and also
allows one to recast the problem as simple weighted voting,
or weighted (utilitarian) SWM, rendering the decision mak-
ing process fully transparent. We present the model using
SWM (but draw connections to weighted voting).

In the local model, determining the weights associated
with each agent’s intrinsic preference is straightforward. As-
sume network weights W. Let u(a) be the n-vector of agent
utilities to be computed as a function of the corresponding
vector uI(a) of intrinsic utilities for a fixed alternative a.
By Eq. 1, u(a) = WuI(a). Letting ω = e>W (where e is a
vector of ones), the (local) social welfare of a is:

sw l(a,u
I) = ω>uI(a). (3)

Thus SWM under the local model is simply weighted max-
imization of intrinsic preferences, where the weight of j’s
intrinsic utility ωj is the sum of its incoming edge weights.
Fig. 1(b) shows the weights derived for each agent under the
local model. Using preference rankings and any scoring rule
(e.g., Borda, plurality, k-approval, etc.) to determine intrin-

sic utilities, the decision may be different in the local model
than when only intrinsic preferences are used (e.g., for both
Borda and plurality, a wins in the intrinsic model while b
wins in the local model; see Fig. 1(a) and (b)). Indeed, using
score-based voting rules, we can readily interpret this model
as a form of empathetic voting, where the weight one assigns
to a neighbor can be interpreted as the extent to which one
would trade off one’s own preferences with that neighbor’s
intrinsic satisfaction with the winning alternative.

Things are more subtle in the global empathetic model.
Computing the utility vector u(a) for alternative a requires
solving a linear system to find the fixed point of Eq. 2.
A unique solution is not guaranteed to exist;4 however, in
addition to our assumptions above of non-negativity (i.e.,
W ≥ 0) and normalization (i.e.,

∑
k wjk = 1 for all j), a

third mild condition on the social network W is sufficient to
ensure a unique fixed point solution, namely, positive self-
loop: wjj > 0 for all j. Let D be the n× n diagonal matrix
with djj = wjj . We can write Eq. 2 as:

u(a) = (W −D)u(a) + DuI(a). (4)

As a consequence,

Proposition 1 (Fixed-point Utility). Assuming non-
negativity, normalizaton, and positive self-loop, Eq. 4 has a
unique fixed-point solution u(a) = (I−W + D)−1DuI(a).

(Proofs of all results are included in an online appendix.) As
in the local model, SWM in the global model can be seen as
weighted maximization of intrinsic preference:

Corollary 1. In the global empathetic model, (global)
social welfare of alternative a is given by swg(a,u

I) = ω>uI

where ω> = e>(I−W + D)−1D.

Once again, in (scoring-rule based) voting contexts one can
view the global empathetic model as trading off one’s own
satisfaction for a winning alternative with the “overall” sat-
isfaction of one’s neighbors (not merely their intrinsic pref-
erence). Fig. 1(c) illustrates the distinctions: when either
Borda or plurality is used as scoring rule in this example,
alternative c wins under the global model, a wins in the in-
trinsic model, and b wins in the local model. We discuss
weight computation in Sec. 3.

Nonnegativity, normalization, and positive self-loop are
not the only (collective) conditions under which fixed-point
utilities are guaranteed to exist. Viewing the network as a
Markov chain, if one assumes the process is aperiodic (i.e.,
the greatest common divisor of all directed cycle lengths
is 1) and irreducible (i.e., any node is reachable from any
other node with non-zero probability) [25, 32], fixed point
solutions are also guaranteed to exist. One might also adopt
a weaker variation of our assumptions by imposing positive
self-loop only on a subset of agents: this would suffice if all
closed strongly-connected partitions of the network have at
least one node with positive self-loop [21]. However, we be-
lieve our assumptions—and in particular, positive self-loop
over all individuals—are appropriate in most social choice
settings.

4Consider two individuals j and k, with wjj = wkk = 0,
wjk = wkj = 1, uIj (a) = 0.1, and uIk(a) = 1. The induced
system does not have a unique fixed-point solution.
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Figure 1: A social network with ranked preferences, with weights under the local and global empathetic
model. Using Borda or plurality-based utility, the consensus winner is different in each model: a under
intrinsic; b under local empathetic; c under global empathetic.

2.4 Related Models and Concepts
The term empathy is used in several different ways in

the literature [17]. Sometimes it refers to “seeing the world
through the eyes of others” without being affected by this
view, and such preferences [6] or “extended sympathy” [37,
3] is used to frame interpersonal comparison of utilities [23,
6]. However, our model is more consistent with an affective
understanding of another, and having concern for that per-
son’s welfare [29], or having “other-regarding” preferences
[26]. Empathy has recently drawn attention in neuroeco-
nomics and social neurosience [39] to study the extent people
can place themselves in the position of others and share an-
other’s feelings. This further motivates computational study
of empathy and its application to social choice.

The impact of others’ actions and utilities is considered in
some economic models (see, e.g., accounts of envy, sympa-
thy/empathy in various contexts [30, 26, 6]). Most closely
related to our work is the model of Maccheroni et al. [30],
who establish the axiomatic foundations of interdependent
“other-regarding” preferences in which the outcome expe-
rienced by others affects the utility of an agent. In their
general formulation, the utility of an agent for an act in-
corporates both its subjective expected utility for that act
and an expected externalities function over the agent’s per-
ceived social value of its own act and others’ acts. While the
general form of these externalities can model our notion of
empathy, the specific axioms proposed for the application of
their model (e.g., their anonymity axiom prevents the agent
from distinguishing which of its peers attains a specific out-
come) preclude its direct application to our setting.

Our work bears some connection to models of opinion for-
mation and social learning in social networks [24; 1, Ch.8].
However, that work focuses on convergence of consensus
(and correct) opinion among individuals with different ini-
tial opinions as individuals learn from one another. Our
empathetic model can be viewed mathematically as a spe-
cial case of a general model due to Friedkin and Johnson [20]
(other special cases include [15, 19]). Our goal in empathetic
social choice is of course different: we capture preference in-
terdependence in our model as a form of empathy, and focus
on algorithms and mechanisms to implement a social choice
function, not propagate beliefs.

Empathetic utilities can also be viewed as a form of net-
work externality in an agent’s utility function, though unlike
typical models of externalities, an agent’s utility depends on
the utility of her neighbors for the chosen alternative rather

than the behavior of, or the (direct) allocation made to, her
neighbors. Bodine-Baron et al. [7] study stable matchings
(e.g., of students to residences) with peer effects that in-
duce local network externalities. Brânzei and Larson address
coalition formation on social networks where agent utility for
a coalition depends on either her affinity weights [11] or dis-
tance to others in a network [12]. Maran et al. [31] study
preference aggregation in combinatorial domains given the
presence of social influence. Finally, auction design in social
networks with externalities is studied in [22].

Boldi et al. [8] study delegative democracy, where an in-
dividual can either express her preferences directly, or to
delegate her vote to a neighbor. In our model, individuals
do not delegate their votes: we simply consider the depen-
dency of their preferences on those of others.

Our empathetic model bears some resemblance to cer-
tain centrality measures in social and information networks,
which use (self-referential) notions of node importance. Some
well-known examples include eigenvector centrality [9], hubs
and authorities [27] and PageRank [34]. Apart from concep-
tual differences and the fact that we address decision (social
choice) problems, a key technical distinction is the use of
self-loops in our empathetic model, which allows each node
to contribute intrinsic utility to its fixed-point value.

3. COMPUTING WINNERS
To compute the social welfare maximizing alternative, in

both the local and global empathetic models, recall that so-
cial welfare can be expressed as sw(a,uI) = ω>uI(a) for a
suitable weight vector ω. Given vectors uI(a) for any a ∈ A,
we can compute the optimal option a∗ = arg maxa∈A ω>uI(a),
in O(nm) time. So we focus on: (i) computation of ω in each
model; and (ii) for the global model, a method for computing
a∗ without full computation of ω.

In the local model, ω> requires only a single vector-matrix
multiplication, ω> = e>W, in time O(n2). However, social
networks are generally extremely sparse, with the number
of incoming edges to any node j bounded by some small
constant c. In such sparse networks, ω can be computed
in O(n) time since ωj is simply the sum of j’s incoming
edge-weights; and a∗ can be determined as above in O(nm)
time. Thus the complexity of computing optimal alterna-
tives in the local empathetic model is no different than that
of straightforward SWM or (weighted) voting.

In the global model, ω> has a more complicated expres-
sion: ω> = e>A−1D where A = I −W + D (see Cor. 1).



The difficulty lies largely in matrix inversion: A−1 can be
computed via Gauss-Jordan elimination, which has complex-
ity O(n3). This implies that straightforward computation of
a∗ requires O(n3 + nm) time. In general, matrix inversion
is no harder than matrix multiplication [14, Thm. 28.2], but
its complexity cannot be less than O(n2) since all n2 entries
must be computed. Therefore, straightforward computation
of a∗ in the global model cannot have complexity less than
O(n2 + nm).

For large n (e.g., voting in large cities, Facebook, Twitter),
algorithms that scale linearly (or better) in n are needed.
Many iterative methods have been proposed for matrix in-
version and solving linear systems (e.g., Jacobi, Gauss-Siedel)
which have O(n) complexity (in sparse systems) per iter-
ation and tend to converge very quickly in practice. We
now describe one technique that exploits a standard Jacobi
method for computing a∗ in the global model.

We consider a simple iterative method for computing u(a).

Let u(t)(a) be the vector of the estimated utilities of a after
t iterations.

Theorem 1. Consider the following iteration:

u(t+1)(a) = (W −D)u(t)(a) + DuI(a).

Assuming nonnegativity, normalizaton, and positive self-loop,
this method converges to u(a), the solution to Eq. 4.

For each j ∈ N , the method computes:

u
(t+1)
j (a) = wjju

I
j (a) +

∑
k 6=j

wjku
(t)
k (a), (5)

where u
(t)
j (a) is agent j’s estimated utility for a after t iter-

ations. This scheme has a natural interpretation: suppose
that each agent repeatedly observes her friends’ revealed
utilities, and updates her own utility for various options in
response. This process will converge—even if the updates
are “asynchronous.” Under this iterative process, the local
empathetic model provides a first-order approximation to

the global model—simply let u
(0)
k (a) = uIk(a). Critically,

the error in the estimated utilities at the tth iteration can
also be bounded:

Theorem 2. In the iterative scheme above,∥∥∥u(a)− u(t)(a)
∥∥∥
∞
≤ (1− w̃)t

∥∥∥u(a)− u(0)(a)
∥∥∥
∞
,

where w̃ = min1≤i≤n wii.

Hence, societies in which individuals have self-loops with
relatively large weight (i.e., less empathy) converge to fixed-
point utilities faster than societies with greater empathy.

This error bound allows one to bound the error in esti-
mated social welfare if the utilities of all options are esti-

mated this way. Let sw (t)(a) =
∑
j u

(t)
j (a).

Theorem 3. Assume uIj (a), u
(0)
j (a) ∈ [c, d], for all j. Then∣∣∣sw(a)− sw (t)(a)

∣∣∣ ≤ n(d − c) (1− w̃)t, for all t, under the

conditions above, where w̃ = min1≤i≤n wii.

As a result, we know that (under the same assumptions):

Proposition 2. If sw (t)(b)−sw (t)(a) ≥ 2n(d−c) (1− w̃)t

then sw(b) > sw(a).

We can exploit Prop. 2 in a simple algorithm called it-
erated candidate elimination (ICE) for computing a∗. The

intuition is simple: we iteratively update the estimated util-
ities of the subset C ⊂ A of options that are non-dominated,
and gradually prune away any options that are dominated
by another until only one, a∗, remains. ICE first initializes

C = A and u
(0)
j (a) = c for all j ∈ N , a ∈ A. An iteration of

ICE consists of: (1) updating estimated utilities using Eq. 5
for all j and a ∈ C; (2) computing estimated social welfare of
each a ∈ C; (3) determining the maximum estimated social

welfare ŝw (t); (4) testing each a ∈ C for domination, i.e.,

ŝw (t) − sw (t)(a) ≥ 2n(d − c) (1− w̃)t; and (5) eliminating
all dominated options from C. The algorithm terminates
when one option a∗ remains in C. ICE runs in O(tm|E|)
time, where t is the number of iterations required; and if
the number of outgoing edges is bounded, O(tmn). As we
demonstrate below, ICE converges quickly in practice.

4. EMPIRICAL RESULTS
We describe experiments on randomly generated networks

and intrinsic preferences to analyze our algorithms, and to
contrast the decisions that result under non-empathetic (stan-
dard), local empathetic, and global empathetic models.
Experimental Setup. We assume that individual intrin-
sic utilities arise from an underlying preference ordering over
A. In all experiments, we draw a random ordering for each
agent j using either: the impartial culture, in which all rank-
ings are equally likely; or the Irish voting data set, which we
explain in detail below. To draw connections to voting meth-
ods, j’s utility for a is given by the Borda or plurality score
of a in its ranking. As utilities, these embody very differ-
ent assumptions: Borda treats utility differences as smooth
and linear, whereas plurality utility is “all or nothing.” We
generate random social networks using a preferential attach-
ment model for scale-free networks [5]:5 starting with n0

initial nodes; we add n nodes in turn, with a new node con-
nected to k ≤ n0 existing nodes, where node i is selected as a
neighbor with probability deg(i)/

∑
j deg(j). We set n0 = 2

and k = 1 in all experiments. We: “direct” the graph by
replacing each undirected edge with the two corresponding
directed edges; add a self-loop to each node with weight α;
then distribute weight 1 − α equally to all other out-going
edges. Parameter α ∈ (0, 1] represents the degree of self-
interest, and 1 − α the degree of empathy. Unless noted,
all experiments have n = 1000 agents (nodes), α = 0.25,
and are run over 50 random preference profiles on each of
50 random networks (2500 instances).
Performance Metrics. To examine the importance of
modeling empathy in social choice, we distinguish actual
user preferences—referred to as the true model—from how
preferences are modeled in a group decision-support system—
namely, the assumed model. Specifically, we let the true and
assumed models be any of our intrinsic (non-empathetic),
local or global models (9 possible combinations). We are
interested in the extent to which these models disagree in
their decisions, and the loss in social welfare that results
from such disgareement. If these measures are large, it
indicates that, in situations where empathetic preferences
exist, ignoring them by using classical preference aggrega-
tion techniques will lead to poor decisions. Specifically, we
measure the percentage of decision disgareement (DD) (over
2500 instances for a fixed setting) in which the the true and

5This is only one of many models that can be used. Results
are similar for other types of networks.



true model
assumed model

intrinsic local global

intrinsic
— 1.4(9.9) 1.1(8.0)
— 28.4(100) 22.6(100)

local
2.9(19.3) — 0.1(3.2)
28.5(100) — 1.2(86.9)

global
1.8(12.7) 0.1(2.7) —
22.3(100) 1.1(97.0) —

Table 1: Avg. (max.) RSWL (1st rows) and NSWL
(2nd rows): Borda, m = 5.

true model
assumed model

intrinsic local global

intrinsic — 57.76 50.48
local 58.12 — 11.72

global 50.84 11.72 —

Table 2: Percentage decision disagreement: Borda,
m = 5.

assumed models propose different optimal decisions. We
also measure the average loss in social welfare arising from
making decisions using an assumed model that differs from
the true model. Let sw t(·) and swa(·) be social welfare
under the true and assumed models, respectively, and at
and aa be the corresponding optimal options (or winners).
Rather than directly comparing social welfare under various
models, we define relative social welfare loss (RSWL) to be
[sw t(at)− sw t(aa)]/sw t(at) (we often report it as a percent-
age). RSWL, by scaling differences in social welfare, helps
calibrate the comparison between experiments. We can nor-
malize RSWL by considering the range of possible social
welfare values actually attainable. Let alternative a− have
minimum social welfare under the true model. Normalized
social welfare loss (NSWL) is [sw t(at)−sw t(aa)]/[sw t(at)−
sw t(a−)]. This offers a more realistic picture of loss caused
by using an inconsistent assumed utility model (by compar-
ing it to the loss of the worst possible decision under the
true model).
Impartial Culture. We first consider RSWL and NSWL
for all nine combinations of assumed and true utility mod-
els. We fix m = 5 options and use Borda scoring. Average
(maximum) losses are reported in Table 1 while the decision
disagreement percentage is shown in Table 2. While RSWL
is relatively small on average (though maximum losses are
quite large), this is largely due to the uniformity of prefer-
ences generated by impartial culture (all options have the
same expected score). By normalizing, we obtain a more ac-
curate picture of the loss incurred by using non-empathetic
voting: average normalized loss shows that the“controllable”
error is quite large, especially when comparing the “stan-
dard” intrinsic model to either of the empathetic models.
Moreover, the intrinsic model chooses the incorrect alterna-
tive in over half of all instances in both cases. Interestingly,
assuming either the local model or global model when the
true model is the other gives reasonable results: this means
that the local model offers a good first-order approximation
to the global model (see Sec. 3).
Irish Voting Data. Impartial culture is often viewed as an
unrealistic model of real-world preferences. For this reason,
we tested our methods using preferences drawn from 2002
Irish General Election, using electoral data from the Dublin

true model
assumed model

intrinsic local global

intrinsic — 27.3 / 46.1 22.3 / 39.0
local 28.0 / 46.3 — 5.6 / 8.6

global 22.9 / 39.3 5.5 / 8.6 —

Table 3: Percentage decision disagreement, plural-
ity/Borda: West Dublin, m = 9.
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Figure 2: RSWL and decision disgreement (DD), plu-

rality.

West constituency, which has 9 candidates and 29, 989 bal-
lots of top-t form, of which 3800 are complete rankings.6 We
assign full rankings, drawn randomly from the set of 3800
complete rankings to nodes in our network. Decision dis-
agreement under both plurality and Borda scoring (Table 3)
is quite high, ranging from 22-46%. Average NSWL (not
shown) is not as high as with impartial culture (from 1-3%,
with maximum loss around 40%).
The effect of m. Fig. 2 shows the average RSWL and deci-
sion disagreement (DD) for three “true vs. assumed” models
as we increase the number of alternatives m using plurality
scoring. We observe that average RSWL increases with m
and approaches 70% when m = 200, while the optimal de-
cision is rarely made. NSWL for the instrinsic model (not
shown), even at m = 5, averages 20–30%. With Borda scor-
ing, the effect of m is much less pronounced because of rel-
atively small utility differences (or smoothing) between ad-
jacent candidates (intrinsic loss ranges from 20-30% across
all values of m), but the pattern decision disagreement is
almost identical to plurality.
Self-loop weight α. Varying the self-loop weight α has a
significant effect on NSWL and decision disagreement when
true utility is global but intrinsic utility is assumed. Table 4
shows that, for both Borda and plurality, increasing α (i.e.,
decreasing overall degree of empathy) decreases both NWSL
and DD. Similar trends hold for the local model. We also
used a model in which nodes have different self-loop weights,
drawing each node’s α from a (truncated) Gaussian. As we
vary the mean µ, we see a similar trend in Table 5.
The impact of directionality. The results above use
networks with bi-directional edges (by replacing each undi-
rected edge with two directed edges). To explore how di-
rectionality impacts NSWL, we consider networks with a

6We have obtained the original data sets from
www.dublincountyreturningofficer.com.



α 0.05 0.1 0.25 0.5 0.75

Borda 26.0 / 58.7 25.0 / 55.8 22.2 / 53.0 15.1 / 42.5 7.3 / 28.8
Plurality 28.8 / 59.8 26.7 / 58.1 22.7 / 53.8 16.9 / 46.9 7.8 / 31.3

Table 4: Average NSWL/decision disgreement: global vs. intrinsic, varying α.

µ 0.05 0.1 0.25 0.5 0.75

Borda 27.6 / 59.2 24.3 / 54.9 21.3 / 52.3 15.6 / 42.5 8.1 / 31.1
Plurality 27.2 / 58.6 24.5 / 55.5 23.3 / 54.7 16.5 / 46.1 8.0 / 31.5

Table 5: Average NSWL/decision disgreement: global vs. intrinsic, α drawn from truncated Gaussian with
mean µ and std. dev. 0.1.
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hierarchical orientation, as often found in economic (e.g.,
supply chain), organizational (management/employee struc-
ture), and even some social networks (e.g., forms of status,
following, etc.). We replace each undirected edge in the pref-
erential attachment network with a directed edge from the
“younger” node to the “older.” The older node reciprocates
with a directed edge to the younger with probability γ. If
γ = 1, our standard bidirectional network results (as above);
when γ = 0 we obtain a completely hierarchical network.

Fixing m = 10, Fig. 3 depicts NSWL for both Borda and
plurality as γ varies. Networks that are more hierarchical
have higher NSWL for the global vs. intrinsic models, in-
dependent of the scoring rule, while NSWL for local vs. in-
trinsic is almost constant. However, plurality seems more
susceptible to increasing loss due to hierarchical structure
than Borda for all three combinations. Unlike earlier re-
sults, when the network is very hierarchical (e.g., γ = 0),
the global and local models do not approximate each other
well.
Number of Iterations of ICE. Finally, we examine how
the self-loop weight α affects the expected number of iter-
ations required by the ICE algorithm. We fix m = 5, and
vary α. Fig. 4 illustrates estimated social welfare for each
alternative in one representative run (α = 0.25, Borda scor-
ing): this instance of ICE converges in 24 iterations, with
computation time under 2 ms, despite the large number of
voters. Alternative a4 is eliminated at iteration 16, a5 at
17, a1 at 20, and a2 at 24, leaving a3 as optimal. Note that
the relative order of the alternatives is unchanged after 6
iterations, suggesting early termination as a robust means
of approximation. Table 6 shows the average number of it-
erations for various α, for Borda and plurality. In all cases,
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Figure 4: Estimated social welfare vs. iterations of
ICE (one sample run).

α 0.05 0.1 0.25 0.5 0.75

Borda 104.1 51.4 19.5 8.7 4.7
Plurality 98.7 48.6 18.6 8.3 4.6

Table 6: Average number of iterations, varying α.

the number of iterations is small relative to network size.
ICE is quite insensitive to the scoring rule, and termination
time declines dramatically with increasing α.

5. CONCLUDING REMARKS
We have presented a novel model for social choice, combin-

ing intrinsic and empathetic preferences, the latter reflecting
one’s desire to see others satisfied with a chosen alternative.
Using a social network to measure degree of empathy, our al-
gorithms allow efficient computation of optimal decisions by
weighting the contribution of each agent, and have a natural
interpretation as empathetic voting when scoring rules are
used. Critically, individuals need only specify their intrin-
sic preferences (and network weights): they need not reason
explicitly about the preferences of others.

This model is a starting point for the broader investiga-
tion of empathetic preferences in social choice. We are ex-
ploring more realistic processes for simultaneous generation
of networks and preferences that better explain preference
correlation (see, e.g., our ranking network framework [36]).
Methods to assess the prevalence of empathetic preferences,
the extent to which social network structure reflects such
preferences, and how they can be discovered effectively, are
critical. Testing our model, and these extensions, on large



data sets is of course critical to validating the existence of
empathy of this form. Our model can be applied to match-
ing, assignment, and other group decision problems, each
requiring its own algorithmic developments. Other impor-
tant directions include: voting schemes where agents spec-
ify tradeoffs between intrinsic and empathetic preference in
a qualitative fashion; and analysis of manipulation in the
context of such externalities in voting.
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APPENDIX
A. LINEAR ALGEBRA BACKGROUND

We here first provides relevant definitions and results used
in our proofs.

Definition 1. Spectrum σ(A). The set of eigenvalues of
n× n matrix A is called its spectrum σ(A).

Definition 2. Spectral Radius ρ(A). Let A be an n×n
matrix with real or complex eigenvalues σ(A). Then the
spectral radius of A is ρ(A) = max

λ∈σ(A)
|λ|.

Definition 3. M-matrix . A matrix A in the form of
A = sI−B is an M-matrix if s ≥ ρ(B) and B ≥ 0.

Proposition 3 (Nonsingular M-matrix [32]). If s >
ρ(B) in an M-matrix A = sI − B, then A is nonsingular
and A−1 ≥ 0

Note that an M-matrix can be either singular or non-
singular. Therefore, the condition s > ρ(B) in Prop. 3 is
necessary to guarantee the nonsingularity of an M-matrix.7

Theorem 4 (Gerschgorin Circles [32]). The eigen-
values of matrix A ∈ Cn×n are contained in ∪ni=1Gi where
Gi is the Gerschgorin circle defined by:

Gi =
{
c ∈ C

∣∣|c− aii| ≤ Ri} where Ri =
∑

0≤j≤n
j 6=i

|aij |

We exploit induced matrix norms in our analysis for conver-
gence rate of our iterative method for fixed-point utilities.
For a given vector norm ‖.‖, the induced norm for n × m
matrix A ∈ Cn×m is:

‖A‖ = max {‖Ax‖ : x ∈ Cm and ‖x‖ = 1}

= max

{
‖Ax‖
‖x‖ : x ∈ Cm and x 6= 0

}
We here focus on the p-norm matrix norm ‖.‖p which are

induced by p-norms in vector spaces. More precisely, the
p-norm of matrix A is

‖A‖p = max
x 6=0

‖Ax‖p
‖x‖p

where the p-norm ‖x‖p of vector x ∈ Cn is:

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

p-norm matrix norms have several important properties: (1)
they are submultiplicative: ‖AB‖p ≤ ‖A‖p‖B‖p. A conse-
quence of this consistency property is that, for any square
matrix A, ‖Ak‖p ≤ ‖A‖kp. (2) By definition, they are com-
patible: ‖Ax‖p ≤ ‖A‖p‖x‖p where A ∈ Cn×m and x ∈ Cm.

For the cases where p = 1 or p = ∞, the matrix p-norm
can be computed easily. The 1-norm for matrix A is simply
the maximum absolute column sum of A:

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij | (6)

7In some references (e.g.,[32]), an M-matrix is defined with
s > ρ(B). By this definition, an M-matrix is non-singular.

The ∞-norm for matrix A is simply the maximum absolute
row sum of A:

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij |. (7)

We review the Jacobi iterative method and its conver-
gence criteria and rate. Iterative methods offer practical
advantages for solving linear systems [35]. A linear system
is formally defined as follows: Given an n×n real-valued ma-
trix A and a real n-vector b, the problem is to find n-vector
x ∈ Rn such that Ax = b.

The Jacobi method [35] is an iterative method for solving
linear systems. Consider this decomposition A = Λ − E −
F where Λ is the diagonal matrix of A, E is the strictly
lower triangular matrix of −A, and F is the strictly upper
triangular matrix of −A. Note that we assume that the
diagonal entries of A are all non-zero. Each iteration of the
Jacobi method takes the form of:

x(t+1) = Λ−1(E + F)x(t) + Λ−1b (8)

Theorem 5 (Convergence of Iterative Methods [35]).
Let an iterative method take the form of xt+1 = Gxt + f
where G is an n × n iteration matrix and f is an n-vector.
It converges if and only if ρ(G) < 1.

Corollary 2 (Jacobi Convergence). The Jacobi it-
erative method converges to the solution of linear system
Ax = b if ρ(G) < 1 where G = Λ−1(E + F).

Proof. The proof of convergence is trivial and immedi-
ately follows form the Theorem 5 by letting G = Λ−1(E+F)
and f = Λb. Now, we prove that the Jacobi method con-
verges to the solution of the linear system. Since it con-
verges, let x∗ = limt→∞ x(t). From Equation 8, we have:

lim
t→∞

x(t+1) = lim
t→∞

Λ−1(E + F)x(t) + Λ−1b

=⇒ lim
t→∞

x(t+1) = Λ−1(E + F)
(

lim
t→∞

x(t)
)

+ Λ−1b

=⇒ x∗ = Λ−1(E + F)x∗ + Λ−1b

=⇒ Λx∗ = (E + F)x∗ + b

=⇒ (Λ−E− F)x∗ = b

=⇒ Ax∗ = b

So x∗ is the solution of the linear system.

B. PROOFS
To prove Prop. 1, we first show

Lemma 1. Assuming nonnegativity, normalizaton, and pos-
itive self-loop, ρ(B) < 1 where B = W −D.

Proof. By the definition of W and D, it can be seen
that B = W − D is a matrix with bii = 0 and bij = wij
for all i, j ∈ N and i 6= j. Using the Gerschgorin Circle
Theorem (Thm. 4), we have σ(B) ⊂ ∪ni=1Gi where

Gi =
{
c ∈ C

∣∣|c− bii| ≤ Ri} and Ri =
∑

0≤j≤n
j 6=i

|bij |.

As bii = 0 and bij = wij for i 6= j, we have:

Gi =
{
c ∈ C

∣∣|c| ≤ Ri} where Ri =
∑

0≤j≤n
j 6=i

|wij |.



Note that each Gi is a closed disk in C which is centered at 0.
So ∪ni=1Gi is the union of closed disks of various radii but the
same center of 0. Since the number of these disks is finite, we
can cover all these closed disks with a closed covering disk
defined by

{
c ∈ C

∣∣|c| ≤ Rmax
}

where Rmax = maxni=1Ri.
Without loss of generality, let l = arg maxiRi. So, we have

σ(B) ⊂ ∪ni=1

{
c ∈ C

∣∣|c| ≤ Ri} ⊆ {c ∈ C∣∣|c| ≤ Rl}
From this, it follows that:

|λ| ≤ Rl, ∀λ ∈ σ(B) =⇒ max
λ∈σ(B)

|λ| ≤ Rl =⇒ ρ(B) ≤ Rl.

UsingRl =
∑
j 6=l |wlj | and normalization assumption

∑
j wlj =

1, we have ρ(B) ≤ 1 − wll. Since wll > 0 by self-loop posi-
tivity, we have ρ(B) ≤ 1− wll < 1.

Proof of Prop. 1. Using Eq. 2, we can write:

u(a) = (W −D)u(a) + DuI(a)

=⇒ u(a)− (W −D)u(a) = DuI(a)

=⇒ (I− (W −D))u(a) = DuI(a)

So it is sufficient to show that (I−(W−D))−1 exists to prove
that u(a) = (I−W + D)−1Du(a) exists and is unique. We
need to show that I− (W−D) is nonsingular to guarantee
the existence of (I− (W −D))−1.

Let B = W−D. By definitions of W and D, the matrix
B has bii = 0 and bij = wij for all i, j ∈ N and i 6= j. By
nonnegativity assumption, we have wij ≥ 0, so B ≥ 0. By
setting s = 1, (I−(W−D)) = (sI−B) which is an M-matrix
(See Definition 3). Using Lemma 1, we have ρ(B) < 1. Since
s = 1, then ρ(B) < s. By Proposition 3, it follows that
(I− (W−D)) is nonsingular and (I− (W−D))−1 ≥ 0.

Proof Proof of Theorem 1. From Eq. 2, we observe
that u(a) is the solution of the linear system Au(a) = b with
A = I− (W −D) and b = DuI(a). The Jacobi method is:

u(a)(t+1) = Λ−1(E + F)u(a)(t) + Λ−1b

Since A = I− (W−D), we have that Λ = I and E+F =
W −D. As b = DuI(a), we have:

u(a)(t+1) = I−1(W −D)u(a)(t) + I−1DuI(a)

=⇒ u(a)(t+1) = (W −D)u(a)(t) + DuI(a)

From Lemma 1, we have ρ(W − D) < 1. Then, us-

ing Corollary 2, we have shown that u(t+1)(a) = (W −
D)u(t)(a) + DuI(a) converges to u(a) which is the solution
to the linear system.

Proof of Theorem 2. Using Eq. 2 and u(t)(a) = (W−
D)u(t−1)(a) + DuI(a), we can write u(a)−u(t)(a) = (W−
D)(u(a) − u(t−1)(a)). By induction on t, we have u(a) −
u(t)(a) = (W −D)t

(
u(a)− u(0)(a)

)
. Thus, we have∥∥∥u(a)− u(t)(a)

∥∥∥
∞

=
∥∥∥(W −D)t

(
u(a)− u(0)(a)

)∥∥∥
∞

≤
∥∥(W −D)t

∥∥
∞

∥∥∥u(a)− u(0)(a)
∥∥∥
∞

(by compatibility)

≤ ‖W −D‖t∞
∥∥∥u(a)− u(0)(a)

∥∥∥
∞

(by consistency)

=

(
max
1≤i≤n

n∑
j=1

|wij − dij |

)t ∥∥∥u(a)− u(0)(a)
∥∥∥
∞

(∞-norm)

=

 max
1≤i≤n

n∑
j=1
j 6=i

|wij |


t ∥∥∥u(a)− u(0)(a)

∥∥∥
∞

(by defn. of D)

=

 max
1≤i≤n

n∑
j=1
j 6=i

wij


t ∥∥∥u(a)− u(0)(a)

∥∥∥
∞

(by nonnegativity)

=

(
1− min

1≤i≤n
wii

)t ∥∥∥u(a)− u(0)(a)
∥∥∥
∞

(by normalization)

Letting w̃ = min1≤i≤n wii, we have shown that∥∥∥u(a)− u(t)(a)
∥∥∥
∞
≤ (1− w̃)t

∥∥∥u(a)− u(0)(a)
∥∥∥
∞
.

Lemma 2. Assume nonnegativity and normalization, and
consider the iterative updating scheme: u(t)(a) = (W −
D)u(t−1)(a)+DuI(a). If ∀i ∈ N , uIi (a) ∈ [c, d] and u

(0)
i (a) ∈

[c, d], then ui(a)(t) ∈ [c, d], ∀i ∈ N and ∀t ∈ N. Moreover,
we have ui(a) ∈ [c, d], ∀i ∈ N .

Proof. We first prove the first part of the lemma by in-
duction on t. The base case is t = 0 for which it is given

that u
(0)
i (a) ∈ [c, d], ∀i ∈ N . The induction hypothesis

is that u
(t)
i (a) ∈ [c, d] for all ∀i ∈ N . There are two useful

inequalities which follow immediately from the induction hy-

pothesis: maxi∈N u
(t)
i (a) ≤ d and mini∈N u

(t)
i (a) ≥ c. We

can write the updating scheme for each individual i ∈ N
and the alternative a ∈ A as follows:

u
(t+1)
i (a) = wiiu

I
i (a) +

∑
k 6=i

wiku
(t)
k (a) (9)

where u
(t)
i (a) denotes the utility of individual i for alterna-

tive a after t iterations. Using this equation and the two
inequalities mentioned above, we will first show the upper

bound of d and then the lower found of c for u
(t+1)
i (a),

∀i ∈ N , and fixed a. For the upper bound, we can write
the following:

u
(t+1)
i (a) ≤max

i∈N

{
u
(t+1)
i (a)

}
= max

i∈N

wiiuIi (a) +
∑
k 6=i

wiku
(t)
k (a)


≤max

i∈N

{
wiiu

I
i (a)

}
+
∑
k 6=i

max
i∈N

{
wiku

(t)
k (a)

}
≤wii max

i∈N

{
uIi (a)

}
+
∑
k 6=i

wik max
i∈N

{
u
(t)
k (a)

}
≤wiid+

∑
k 6=i

wik max
i∈N

{
u
(t)
k (a)

}
≤wiid+

∑
k 6=i

wikd

=d
∑
k

wik = d.

Similarly, for the lower bound:



u
(t+1)
i (a) ≥min

i∈N

{
u
(t+1)
i (a)

}
= min
i∈N

wiiuIi (a) +
∑
k 6=i

wiku
(t)
k (a)


≥min
i∈N

{
wiiu

I
i (a)

}
+
∑
k 6=i

min
i∈N

{
wiku

(t)
k (a)

}
≥wii min

i∈N

{
uIi (a)

}
+
∑
k 6=i

wik min
i∈N

{
u
(t)
k (a)

}
≥wiic+

∑
k 6=i

wik
{
u
(t)
k (a)

}
≥wiic+

∑
k 6=i

wikc

=c
∑
k

wik = c.

So we have shown that c ≤ u(t+1)
i (a) ≤ d, ∀i ∈ N and a ∈ A,

so proving the first part of the lemma.
Now, we will prove the second part of lemma by showing

that ui(a) ∈ [c, d], ∀i ∈ N and a ∈ A. Fix an arbitrary i ∈
N . The sequence u

(t)
i (a) with t = 0, 1, 2, . . . is a convergent

sequence which converges to ui(a) = limt→∞u
(t)
i (a) (based

on Theorem 1). Note that, from the first part of this lemma,

we have u
(t)
i (a) ∈ [c, d] for any t ∈ N ∪ {0}. So we can see

u
(t)
i (a) is a convergent sequence on the closed set [c, d]. As

[c, d] is closed, the limit point of u
(t)
i (a) sequence which is

ui(a) must belong to [c, d]. As i and a are chosen arbitrarily,
we have ui(a) ∈ [c, d].

Proof of Theorem 3. Let w̃ = min1≤i≤n wii. Using
Theorem 2, we can write

∥∥∥u(a)− u(t)(a)
∥∥∥
∞
≤ (1− w̃)t

∥∥∥u(a)− u(0)(a)
∥∥∥
∞

=⇒∣∣∣ui(a)− u(t)
i (a)

∣∣∣ ≤ max
i

∣∣∣ui(a)− u(t)
i (a)

∣∣∣
≤ (1− w̃)t

∥∥∥u(a)− u(0)(a)
∥∥∥
∞

=⇒
n∑
i=1

∣∣∣ui(a)− u(t)
i (a)

∣∣∣ ≤ n (1− w̃)t
∥∥∥u(a)− u(0)(a)

∥∥∥
∞
.

(10)

By Lemma 2, we know that ui(a) ∈ [c, d]. Based on this

and the assumption that u
(0)
i (a) ∈ [c, d] , it follows that

|ui(a)−u(0)
i (a)| ≤ d− c. So we can continue Inequality (10)

as follows:

n∑
i=1

∣∣∣ui(a)− u(t)(a)
∣∣∣ ≤ n (1− w̃)t

∥∥∥u(a)− u(0)(a)
∥∥∥
∞

≤ n(d− c) (1− w̃)t . (11)

By Lemma 2, we know that ui(a) ∈ [c, d] and u
(t)
i (a) ∈ [c, d],

∀t ∈ N ∪ {0}. By the triangle inequality, we have:

n∑
i=1

∣∣∣ui(a)− u(t)
i (a)

∣∣∣ ≥ ∣∣∣∣∣
n∑
i=1

(
ui(a)− u(t)

i (a)
)∣∣∣∣∣

=

∣∣∣∣∣
n∑
i=1

ui(a)−
n∑
i=1

u
(t)
i (a)

∣∣∣∣∣
=
∣∣∣sw(a)− sw (t)(a)

∣∣∣ . (12)

By Inequalities (11) and (12), we conclude that∣∣∣sw(a)− sw (t)(a)
∣∣∣ ≤ n(d− c) (1− w̃)t ,

where w̃ = min1≤i≤n wii.

Proof of Proposition 2. Using the triangle inequality
and the inequality presented in Theorem 3, we can write:

sw (t)(b)− sw (t)(a)

= sw (t)(b)− sw(b) + sw(b)− sw (t)(a) + sw(a)− sw(a)

≤ |sw (t)(b)− sw(b)|+ sw(b) + |sw(a)− sw (t)(a)| − sw(a)

≤ n(d− c)(1− w̃)t + sw(b) + n(d− c)(1− w̃)t − sw(a)

= 2n(d− c)(1− w̃)t + sw(b)− sw(a).

Using this and sw (t)(b)− sw (t)(a) ≥ 2n(d− c)(1− w̃)t, we
have 2n(d− c)(1− w̃)t ≤ 2n(d− c)(1− w̃)t + sw(b)− sw(a).
This implies sw(b) ≥ sw(a).

C. THE ICE ALGORITHM
The pseudo code for our ICE algorithm is presented below.

Algorithm 1: Iterated Candidate Elimination (ICE)

input : Social graph G, intrinsic utilities uIi (a) ∈ [c, d],
∀i ∈ N and ∀a ∈ A.

output: Consensus winner a∗.

Initialize u
(0)
i (a)← c, ∀i ∈ N and ∀a ∈ A;

// C is the possible winner candidate set

C ← A;
w̃ = min1≤i≤n wii;
t← 0;
while size(C) > 1 do

t← t+ 1;
foreach a ∈ C do

sw (t)(a)← 0;
foreach j ∈ N do

u
(t)
j (a)←
wjju

I
j (a) +

∑
k:ejk∈E,j 6=k

wjku
(t−1)
k (a);

sw (t)(a)← sw (t)(a) + u
(t)
j (a);

ŝw (t) ← maxa∈C sw (t)(a);
foreach a ∈ C do

if ŝw (t) − sw (t)(a) ≥ 2n(d− c) (1− w̃)t then
C ← C − {a}

return a∗ ∈ C


