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ABSTRACT
Machine readable passive tags for tagging physical objects
are ubiquitous today. We propose Motion Codes, a passive
tagging mechanism that is based on the kinesthetic motion of
the user’s hand. Here, the tag comprises of a visual pattern that
is displayed on a physical surface. To scan the tag and receive
the encoded information, the user simply traces their finger
over the pattern. The user wears an inertial motion sensing
(IMU) ring on the finger that records the traced pattern. We
design two motion code schemes, Asterisk and Obelisk that
rely on directional vector data processed from the IMU. We
evaluate both schemes for the effects of orientation, size, and
data density on their accuracies. We further conduct an in-
depth analysis of the sources of motion deviations in the ring
data as compared to the ground truth finger movement data.
Overall, Asterisk achieves a 95% accuracy for an information
capacity of 16.8 million possible sequences.

Author Keywords
Motion Code, Machine Readable Tags, Ring, QR Code

INTRODUCTION
Machine readable tags such as QR codes, magnet stripes, and
RFID tags lend a digital identity to physical objects or serve
as physical hyperlinks to digital data. They are immensely
useful for commercial applications for tracking and rapid iden-
tification, as well as for consumer use via smartphone apps.
We propose an alternative tagging scheme called motioncodes
that is based on kinesthetic motion of the user’s hand. The
user traces their finger on a pattern (a motiontag) displayed on
a physical surface to get the encoded information. The motion
tag is a passive visual pattern that can simply be printed out on
paper and affixed onto any surface. The user wears an inertial
motion sensing unit (IMU) that records the traced pattern.

Motion codes’ IMU-based scanning enables low-power, low-
cost, lightweight scanning that can be easily incorporated
into miniature wearable devices such as smartwatches and
smartrings. Optical scanning of visual markers using cameras
requires higher power and bulkier hardware. Further, motion
tags are passive, inexpensive to mass-produce, and can be
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Figure 1. User traces the finger on a motion code while wearing an IMU
ring to get encoded data. Figure shows our two proposed schemes: (left)
Asterisk: User starts at center and traces outward & inward in the num-
bered order. (right) Obelisk: User traces the path. (Basis Angle: 45°)

easily augmented on to various surfaces. In this paper, we use
a finger-worn IMU ring to scan the motion tag. Scanning of
machine readable tags adds to the repertoire of tasks that mul-
tipurpose smartrings are increasingly becoming popular for,
including notifications, authentication, and fitness tracking.

We propose two motion code schemes - Asterisk and Obelisk.
The two schemes demonstrate the trade-off between accuracy
and speed: Asterisk is more accurate while Obelisk is faster
to perform. We evaluate both schemes for the effects of ori-
entation, size, and data density on their accuracies. Overall,
the Asterisk coding scheme with an information capacity of
16.8 million unique sequences achieved a 95% accuracy with a
scanning time of 10s. The Asterisk scheme with 100k unique
sequences achieved 96% accuracy with a scanning time of 7s.
The Obelisk scheme with 12.5k unique sequences achieved a
95% accuracy with a scanning time of 5.5s.

The primary contribution of this paper is that it is the
first exploration of motion-based passive tagging. The sub-
contributions are - (a) the design and implementation of two
motion code schemes; (b) the evaluation of their performance
which shows that motion codes are feasible and useful with
high accuracy and capacity; (c) an analysis of motion code
accuracy that uncovers the sources of error, and; (d) example
scenarios and extensions for motion codes.

RELATED WORK
Physical Tags for Identification
Physical tagging techniques can consist of active or passive
tags. While active tags have their own battery and a transmitter,
passive tags have no battery. Passive RFID, magnetic stripe,
or NFC [3] are popular passive tags differing in their scan-
ning range. However, these tagging mechanisms have higher
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installation costs and cannot be generated and distributed elec-
tronically. Optical tags (like 1D barcodes, 2D QR codes) are
passive tags that do not have these limitations, can be sim-
ply printed out and are consequently in popular use. Another
optical approach is using invisible ink for tags visible only un-
der UV light [14]. Recently, techniques to embed 3D printed
objects with unobtrusive optical tags readable using compu-
tational [16] or terahertz imaging [29] have been proposed.
However, these have special installation and scanning require-
ments. Acoustic barcodes [13] propose patterns of physical
notches engraved into a surface, which when swiped using a
fingernail produces a sound that can be reduced to a unique
acoustic ID. This is close to our work in that it requires user
interaction with the code. However, etching notches into phys-
ical objects again leads to installation overheads. Further, they
require the user to have long nails or to retrieve a pen.

Finger-worn Sensors
Existing works have put cameras [6, 18], magnets [12, 7, 4],
vibration motors [11], infrared reflectors [10, 9, 21], touch
sensors [25, 24], and inertial motion units (IMUs) [15, 19] on
the finger. These sensors have been used for detecting finger
gestures on 2D surfaces [15, 31], in air [19, 12], on other
fingers [7, 6], or on the ring itself [24]. Magic Finger [31]
and 3DTouch [19] place optical flow sensors (like the ones in
optical mice) on the finger-tip to track finger displacement on
a surface. LightRing [15] overcomes the finger-tip placement
and places it on the proximal phalange closer to the real-world
use. However, it is limited in that it can only perform local
tracking of the finger within a 3-5cm circle. Since IMUs
cannot measure displacement accurately, they have mostly
been used for detecting orientation or coarse gestures such as
jerks, taps, swipes [2, 30] or walking steps [22]. For motion
code detection, we use the directional velocity derived from a
9 degrees-of-freedom (dof) IMU.

Motion Menus and Motion Correlation
Motion gestures have mostly been used with external tracking
of hands and fingers. Internal motion tracking has been used
for enabling motion marking menus [20, 5] that utilize tilt.
Oakley et al [20] use 3 pitch tilts of a smartphone for a 4-
item menu. Bailley et al [5] show accurate working of 7 roll
angles with a 2-level menu for 49 items (sequences). Motion
correlation is a related technique where users match their
motion with that of an onscreen object to select it. Most work
in this space focuses on matching gaze motion with the object
motion’s shape or rhythm [28, 8, 26] or on matching arm
motion detected by computer vision for a limited number of
distinct motion patterns (10-20). Technically, WaveTrace [27]
is closest to our work, using a smartwatch IMU’s yaw-pitch
data for correlating user’s hand movement with the on-screen
rotating object’s x-y coordinates for up to 8 distinct motion
patterns. Motion codes use a finger-worn IMU’s yaw-pitch-
roll and directional motion data for detecting a distinct tracing
motion for a static pattern where distinct motion patterns are
in the order of millions. To our best knowledge, this is the first
ever investigation into motion based tagging.

MOTION CODES
Motion codes simply encode a particular piece of information
which is sent in form of the IMU readings by the user to the
ring when they trace a pattern. The basic usage scenario for
a motion code is this: The user is wearing an IMU ring on
the index finger. The user spots a motion code pattern on a
physical surface, walks up to it and traces the pattern with
their index finger. The ring decodes the motion data into the
associated information and then (or directly) transmits the
information to a smartphone or the cloud where the user can
access it later. While in our current implementation, users
wear rings, motion codes could possible be made to work with
other devices such as smartwatches.

Desired Usability & Functional Properties
Motion codes should satisfy the following properties to ease
usability: 1) The motion code pattern should span a small area
to avoid large hand movements that are physically demand-
ing. 2) Even though placing the ring at the tip will make the
detection a lot easier, the ring should be worn at the proximal
phalange, to resemble daily use. Motion codes should satisfy
the following functional properties to ensure its utility: 1) The
encoding should focus on maximizing information capacity
for the smallest durations. 2) Decoding should be independent
of finger or ring orientation, working for scenarios where the
finger is at different angles from the surface or at different
angles with respect to the real world, and the ring is at any
rotated position on the finger. 3) Assuming an evenly planar
surface, decoding should be independent of surface orienta-
tion and be consistent across vertical and horizontal surfaces.
4) False Positives: Since fingers move randomly all the time,
the ring needs to know when the user intends to scan an actual
pattern. We propose two motion code schemes - Asterisk and
Obelisk, that offer different usability tradeoffs.

Design Approach & Hardware
We designate a hard physical button on the ring that the user
presses with the thumb of the same hand just before and after
drawing the pattern to indicate detection start/stop. For the
pattern, we initially sought to have freeform 2D curves. How-
ever, computing vector displacement from acceleration and
orientation data is highly error-prone. We use a discrete ap-
proach where the patterns consist of a series of linear strokes.
The first stroke is considered the base stroke and the angles
between the subsequent strokes and the first stroke encode the
information. We detail this process in the next section.

To build the ring (Figure 2), we used BNO055 [1], a 9 dof
sensor which was mounted on an Arduino Pro Micro and
attached to a velcro ring with the physical button. We use
the open source BNO055 library [23] to get the smoothed
linear acceleration (acceleration− gravity) and orientation
(yaw, pitch, roll) of the ring.

ASTERISK
Figure 3 shows a sample Asterisk motion code pattern. To
scan an Asterisk pattern: (1) the user places the index finger
at the center spot, (2) clicks the ring button to start tracking,
(3) then runs the finger on the line (performs a stroke) labeled
0, (4) pauses momentarily at the end of the line’s solid part,
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Figure 2. The 9dof motion sensing ring. The user clicks the button to
start scanning a code, traces the pattern, and clicks again to stop.

(5) strokes inwards back to the center, (6) momentarily pauses
again and repeats 3-6 for every line following the numbering
order. Upon returning to the center after line 8, the user clicks
the button to stop tracking, and lifts off the finger.

Encoding
In a simple barcode, the bar width is the basis of informa-
tion with b = 2 possible widths. For an encoding with n bars
(size), the number of possible sequences are 2n. In Aster-
isk, the basis is the angle of a line relative to the first line
(line 0). Figure 3 shows the encoding with b = 8 possible
values: 0°, 45°, 90°...315° in the sequence with n = 8 digits
(8 lines after the first one). For instance, line 1 can have 8
possible angles relative to line 0 , so will line 2, and so on.
Notice that the encoding allows for overlapping lines. This
results in an information capacity of 88 = 16.8 million possible
sequences (24 bits). Figure 3 shows a pattern corresponding
to one of those sequences and the expected pairs of stroke
vectors to be decoded from the motion data. We fixed line 0 to
always be a downward vertical line to make the starting stroke
symmetric for both left and right-handed users.

Since the minimum relative angle is 45°, the margin of error
for a stroke is within 22.5° on either side. For instance, if
the angle of the stroke for line 1 (~s1) is decoded to be a value
>=67.5° and <112.5, then it is considered as 90°. We call
this as the basis angle which forms the b = 360/(basis angle)
possible sequences. Thus, lower the basis angle, higher is the
number of possible sequences for the same size n. However,
this would also mean a lower margin of error, requiring the
decoding to be more accurate.

User Guidelines
There are two sources of error which the decoding software
cannot control: (1) the IMU’s internal noise, and (2) the user’s
stroking errors. Because users can trace the pattern with vary-
ing velocities, varying pauses, and varying finger and arm joint
motion over the course of a pattern, it is difficult to handle
every variation. We therefore prescribe a simple stroking pro-
tocol with two guidelines for the user to follow when tracing
out the pattern: (1) The user should move in quick bursts of
motion from one vertex to the next punctuated by momentary
pauses at each vertex without lifting the finger up. We refer
to this motion between two vertices as a stroke. (2) The user
should avoid using the finger joints for movement and use the
wrist, elbow and shoulder joints instead. Since the ring is at
the proximal phalange, finger movements which involve the
two distal phalanges and no (or very little) movement of the
proximal one cannot possibly be detected by the ring and is
therefore limited. The guidelines are not overtly strict and

Figure 3. (left) An asterisk pattern with basis angle 45° and size n = 8.
(right) The expected sequence of stroke direction vectors for this pattern.

allows for variations in the quickness of movement, duration
of pauses, and finger movements.

Preliminary Usability Evaluation
We conducted a preliminary evaluation with 3 participants (1
female, age 17-20) where they traced 10 patterns on paper.
We found that they were easily able to understand and follow
the guidelines. Participants’ hands sometimes occluded the
number labels which led them to pause longer and twist their
fingers to peek at the numbers. We therefore added the dotted
segments to each line (Figure 3). This ensured less occluded
number labels while keeping the trace length same.

Decoding
We now describe our algorithm to decode motion data between
the two button clicks into a pattern. The algorithm assumes
that it is decoding an Asterisk pattern with a predefined basis
angle and size. The inclusion of a pattern’s scheme, basis
angle and size inside the pattern itself is a subject for future
work. The motion data between the two clicks consists of a
stream of linear acceleration and orientation values sampled
at 100Hz. Our goal is to compute the direction vectors for all
n+1 strokes and then calculate their relative angle with respect
to the first stroke vector. For this, we first need to segment the
data into n+1 strokes. As a first step, the algorithm discards
all patterns with durations > 2(n+1) or < (n+1)/3 seconds.
Figure 4 shows a block diagram of the Asterisk decoding
algorithm. Let’s take a step-by-step look.

World Acceleration (Figure 5a): The relative angle to first
stroke ensures that the algorithm is independent of the initial
finger or ring orientation and independent of surface orienta-
tion as long the physical surface is flat. However, finger or ring
orientation may change while tracing. We make the decoding
independent of finger or ring orientation changes by converting
the accelerometer’s linear acceleration into absolute accelera-
tion with respect to the real world (world acceleration) using
the yaw, pitch, and roll. Next, we apply a low-pass filter to
filter out the high frequency noise (Figure 5b).

Velocity: Next, we compute velocity (Figure 5c) and pass it
through a high-pass filter to remove the drift Figure 5d.
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Figure 4. Decoding algorithm block diagram for Asterisk

Peak Detection: As a succession of quick movements and
pauses, strokes are characterized as peaks in the velocity mag-
nitude stream as seen in Figure 5e. We run a peak detector to
detect n+1 peak-pairs that correspond to the n+1 line pairs
(Figure 5f). The algorithm identifies values that are greater
than the 10 nearby values within 100ms on either side. This
weeds out peaks from jerks in finger motion during a single
stroke. Assuming that the quick movements of a user are
performed with reasonably consistent speeds across all lines,
the detector removes any peaks that are less than 10dB of the
maximum peak velocity to remove any spurious peaks due to
low velocity noisy data when the finger is paused. We now
detect the outward-inward peak-pairs: starting from the first
two peaks, if the distance between them is <2s and if the angle
between them is 180° with a total error margin of 30°, they
marked as the first peak-pair and the process repeats for the
next two. If not, the second and the third peak are tested sim-
ilarly and so on until the end. At the end, if there are <n+1
peak pairs, the pattern is discarded as corrupt. If there are
>n+1 peak-pairs, the top n+1 by magnitude are picked.

Stroke Direction Vectors: The peak is the point of maximum
velocity of a stroke. A stroke’s direction, however, will be
defined by the complete movement from one vertex to the
next. To approximate this, we take an average of k velocity
vectors at either side of a peak (including the peak). This k
should be large enough for estimating the stroke’s direction,
but small enough to not exceed the range of that stroke. After
conducting experiments with varying speeds, this was fixed
at k = 7. Thus we have n+ 1 stroke direction vector pairs
~s0.1, ~s0.2, ~s1.1, ~s1.2... ~sn.1, ~sn.2.

Relative Angles: The decoder calculates the relative angle
between strokes ~s0 and ~si by averaging the relative angles
of outward and inward strokes: angle between ~s0.1 & ~s1.1
and between ~s0.2 & ~s1.2 (computed using dot product). This
minimizes the effect of a deviated outward or inward finger
movement. All n relative angles are rounded to the nearest
possibility (e.g. for a 45° basis angle, a 68° relative angle is
rounded off to 90°).

Our algorithm minimizes the following errors : (1) accidental
button clicks & incomplete trials, (2) ring or finger orienta-
tion changes without displacement, (3) variations in stroke
velocities & pause durations, (4) accidental jerks, (5) small
deviations in outward or inward movement.

OBELISK
There are two primary issues with Asterisk - (1) Getting a
single angle requires two lines, out and back in. (2) As evident
in the usability evaluation, the occluded numbering caused
problems for the users and reduced the speed. We designed
Obelisk to tackle these two issues.

Figure 5. An example of velocity peak detection for an Asterisk pattern.

Figure 1(right) shows a sample Obelisk motion code pattern.
The user starts by (1) placing the index finger at the red spot,
(2) clicks the button to start tracking, (3) then strokes along the
first line, (4) pauses momentarily at the circle (vertex), (5) then
repeats 3-4 for every line until the end, (6) clicks the button
to stop tracking, and lifts off the finger. Obelisk allows the
user to simply follow a single path thus precluding the need
for double movements and numbering. To make sure that the
user does not face a situation where two lines emerge from a
single vertex, we discard all such cases from the encoding, as
well as cases when a vertex falls on a previous line.

Encoding
In Obelisk, the basis is again the angle of a line relative to the
first line. However, since Obelisk does not allow coinciding
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vertices, a 180° angle relative to the previous line, is not a pos-
sibility and so base for Obelisk is b = (360/(basis angle))−1.
Thus, for a basis angle of 45°, we have 7 possibilities. Figure
1 shows an example with n = 8. Note that for the kth line,
if an angle leads to the next vertex coinciding with a prior
line, that possibility is also discarded. However, intersections
between two lines without the coinciding vertex is allowed.
Upon running a 100k random generation session, 75% of the
sequences satisfied this criteria and so the number of possible
sequences is .75bn= approx. 4.3 million for n = 8, b = 7.

Decoding
The Obelisk decoder follows a similar approach to Asterisk.
For peak detection, after removing low-velocity peaks, it picks
the top n+1 peaks. For relative angle, it measures the angle
between a stroke and the first stroke. The relative angle in
Obelisk can also be measured with respect to the previous
stroke as opposed to the first stroke of a pattern. This will
remove the dependency of every stroke’s accuracy exclusively
on the first stroke. Here, a stroke’s accuracy will be dependent
partially on all prior lines instead of just the first one. While
this may result in a worse performance, it could be beneficial
in cases where the user drifts away more and more every
subsequent stroke, possibly trying to rush through the pattern.
The same measurement can also be applied to Asterisk, but
makes less sense there. We explore this in our experiment.

EVALUATION
We conducted a study to evaluate the accuracies under different
conditions. Aside from the SCHEME (Asterisk and Obelisk),
we considered 3 independent variables that could influence
both IMU and user error: (1) BASIS ANGLE (or ANGLE): A
lower basis angle increases the number of possible sequences,
but also leaves a lower margin of error. We selected three basis
angles for evaluation: 45°, 36°, 30° resulting in bases b of 8,
10, 12 respectively. (2) LINE LENGTH (or LENGTH): Tracing
a line with a longer length would take more time and therefore,
a shorter length for each line is desirable. The question is, is
there a lower limit beyond which a decrement in length affects
the performance? We therefore evaluated two line lengths:
3cm and 1.5cm. Given that average finger width lies around
1cm, 1.5cm is an effective test for lower limit. For Asterisk,
a lower length might also lead to higher occlusion affecting
speed & accuracy. (3) ORIENTATION: We evaluate the codes
on both horizontal (H) and vertical (V) surfaces to test if our
algorithm is agnostic of orientation. Thus, a total of 2x3x2x2=
24 conditions were evaluated. We fixed the size n = 8 (so a
total of 9 lines including line 0) which allowed for a large
number of possible sequences within reasonable durations.
This also allows us to study performances for smaller sizes by
limiting the analysis to < n lines.

Our evaluation intended to investigate the following metrics:
(1) Pattern Accuracy: The average % of patterns that were
performed completely correctly. We evaluate how pattern accu-
racy varies under the effects of our independent variables. (2)
Pattern Duration: The average pattern tracing time from the
starting button click until the stopping button click. (3) Stroke
Deviation: The deviation of the stroke and its comparison with
the ground truth touch data. (4) Error Detection & Correction.
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Figure 6. Mean pattern accuracy % for Horizontal & Vertical orienta-
tion for all conditions. A_3_45- Asterisk 3cm 45°. Error Bars 95% CI.

Further, we investigated the possibility of potentially incon-
sistent performance between patterns of the same encoding
scheme because strokes pertaining to a certain angle (wrt the
prior stroke) may be error prone (for instance participants may
neglect pausing for 0° angles wrt the previous line in Obelisk).
We investigate this issue in our evaluation. For each condition,
a participant performed 10 randomly generated motion code
patterns (trials) for a total of 240 trials per participant. How-
ever, if a randomly generated 3cm Obelisk pattern’s vertical
span exceeded beyond the 19cm tablet touchscreen length, it
was replaced with another pattern.

Experiment Design
The experiment followed a within-subjects design for all 4
factors. SCHEME and ANGLE were fully counterbalanced,
and ORIENTATION and LENGTH were partially counterbal-
anced (2 permutations: H1.5, H3, V1.5, V3 and V3, V1.5,
H3, H1.5) to result in a Latin square design of size 12
(2 SCHEMES x 3 ANGLES x 2 ORIENTATION-LENGTHS).

The user wears the ring and performs the gestures on a touch
tablet which is on a horizontal table or fixed vertically against
a wall. Participants sat during the whole study. The height of
the tablet for the vertical orientation was adjusted depending
on the participant’s sitting height. While the gestures could
have been performed on any surface, the tablet allows us to
get the ground truth touch data so that we can distinguish
between user errors and algorithmic errors. The touchscreen
also consisted of 2 buttons: Next and Discard.

12 participants (5 female, 7 male, 2 left-handed, age 22-49,
µ = 29.3) took part in the study. Left-handed participants wore
the ring in their left index finger. Initially, the participants were
explained the concept and the motion code scheme for the con-
dition they were going to perform first. They were then asked
to trace the pattern according to the guidelines. After clicking
the button at the end, they pressed Next to move to the next
trial. If they thought they made a mistake, they were asked to
press the Discard button and redo the trial. The participants
performed five practice trials and were corrected upon any pro-
cedural errors they made. They went through a similar explana-
tion and practice before the first time they performed the other
motion scheme. They were given a 1min break after every 20
trials and a 5min break whenever the next condition was for a
different scheme from the previous. The study lasted 90mins.
Overall, we had 2 SCHEMES x 3 ANGLES x 2 LENGTHS x
2 ORIENTATIONS x 10 trials x 12 users = 2880 trials.
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Figure 8. Mean pattern duration (s) % per SCHEME per LENGTH per
ANGLE. Error Bars: 95% CI.

RESULTS
In all, 109 of 2880 trials (3.8%) were discarded and redone
(around 9 of 240 per participant). Most of these errors were
a result of participants doing trials one after the other - for
instance, pressing Next without clicking the ring button or due
to finger slipping while trying to trace a pattern hurriedly.

Pattern Accuracy
We conducted a four-way repeated measures ANOVA on the
pattern accuracy and found main effects for SCHEME, LENGTH,
and ANGLE. We also found 2-way interaction effects of
SCHEME*LENGTH, SCHEME*ANGLE, and LENGTH*ANGLE.
No 3-way or 4-way interaction effects were found. Impor-
tantly, no main effect or interaction effect involving ORIEN-
TATION was found. Figure 6 shows that the horizontal and
vertical accuracies for all 12 condition are very similar. Simi-
lar results were obtained for time which we discuss later. Thus,
both Asterisk and Obelisk can be used in either orientation
without loss of accuracy or speed. Logically, both schemes
should also work for slanted surfaces, but this needs to be
confirmed in an evaluation.

Because of the 2-way interactions, we computed simple main
effects for SCHEME, LENGTH, & ANGLE. Table 1 shows the
statistical test results for significant main & interaction effects,
and for the simple main effects. Figure 7 shows the mean
pattern accuracy % per SCHEME per LENGTH per ANGLE.
The accuracy for Asterisk 3cm 45° is 95% which is highly
encouraging. Plus, Asterisk 3cm’s accuracy remains >90%
even at 36° & 30°. (Table 1: ANGLE A 3cm) shows that these
differences are not significant.) Thus Asterisk 3cm enables a
much higher information density (128) without a major loss of
accuracy. 1.5cm 45° accuracy lowers statistically, but remains
at 90%. For 36° & 30°, however, Asterisk dips significantly
and fails to maintain its performance. Obelisk’s accuracy is

Pattern Accuracy Effect F value p value η2

SCHEME F(1,11) = 64.003 <0.001 0.853
LENGTH F(1,11) = 65.886 <0.001 0.857
ANGLE F(1,11) = 67.982 <0.001 0.861
SCHEME*LENGTH F(1,11) = 11.159 <0.01 0.504
SCHEME*ANGLE F(1.3,13.9) = 12.851 <0.005 0.539
LENGTH*ANGLE F(2,22) = 9.934 <0.005 0.475
SCHEME 3cm 45° F(1,11) = 4.304 >0.05 0.281
SCHEME 3cm 36° F(1,11) = 66.863 <0.001 0.859
SCHEME 3cm 30° F(1,11) = 22.701 <0.005 0.674
SCHEME 1.5cm 45° F(1,11) = 22.198 <0.005 0.669
SCHEME 1.5cm 36° F(1,11) = 43.917 <0.001 0.8
SCHEME 1.5cm 30° F(1,11) = 33.636 <0.001 0.754
LENGTH A 45° F(1,11) = 5.755 <0.05 0.343
LENGTH A 36° F(1,11) = 3.940 >0.073 0.264
LENGTH A 30° F(1,11) = 13.048 <0.005 0.543
LENGTH O 45° F(1,11) = 28.061 <0.001 0.718
LENGTH O 36° F(1,11) = 80.817 <0.001 0.88
LENGTH O 30° F(1,11) = 38.938 <0.001 0.78
ANGLE A 3cm F(2,22) = 15.553 >0.05 0.203
Pairwise 45:36, 45:30, 36:30 >.05,>.05,>.05
ANGLE A 1.5cm F(2,22) = 15.553 <0.001 0.586
Pairwise 45:36, 45:30, 36:30 >.05,<.005,<.005
ANGLE O 3cm F(2,22) = 18.945 <0.001 0.633
Pairwise 45:36, 45:30, 36:30 <.01,<.005,>.05
ANGLE O 1.5cm F(2,22) = 45.026 <0.001 0.804
Pairwise 45:36, 45:30, 36:30 <.005,<.001,<.005

Table 1. Statistical test results (Main, interaction, and simple main ef-
fects) for Pattern Accuracy. A-Asterisk, O-Obelisk. SCHEME*ANGLE is
with Greenhouse-Geisser correction since sphericity was not satisfied.

generally lower than Asterisk. For 3cm 45°, it is at 88% and
not significantly different (Table 1: SCHEME 3cm 45°). But,
it dips significantly for 36° & 30°. The accuracies plummet
for 1.5cm. Thus, considering raw accuracy without error
correction, the promising patterns are Asterisk 3cm 45°, 36°,
30°, and to a lesser extent Asterisk 1.5cm 45° and Obelisk 3cm
45°. We also computed accuracies using the previous stroke
instead of the first stroke and found no significant differences
and very similar mean values for all conditions.

Pattern Duration
We again conducted a four-way repeated measures ANOVA
on the pattern duration and found main effects for SCHEME,
and ANGLE, and an interaction effect of SCHEME*ANGLE. No
other effects were found. Because of the 2-way interaction,
we computed simple main effects for SCHEME & ANGLE. Ta-
ble 2 shows the statistical test results. The mean durations
for Asterisk 3cm are 10.3s, 10.8, and 10.9s (Figure 8). This
implies that every stroke took half a second on average. Ex-
pectedly, Obelisk takes significantly less time (approx. 7s)
than Asterisk for all angles. Surprisingly, length did not affect
the durations for either Asterisk or Obelisk. This means that
1.5cm is worse on accuracy and does not do better on speed
either and can be safely rejected as an option. Participants
reported that for 1.5cm, the movement was more controlled to
avoid overshooting into the next line. Table 2 shows that while
angle had a main effect, the pairwise comparisons are mostly
not significant. This implies that the angle could potentially
be reduced even further without affecting the duration. All
participants, barring one, reported that they preferred Obelisk.
One participant said that he liked Asterisk since all motion
was in a small, fixed region.
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Pattern Duration Effect F value p value η2

SCHEME F(1,11) = 43.437 <0.001 0.798
ANGLE F(1,11) = 3.619 <0.05 0.248
SCHEME*ANGLE F(2,22) = 8.100 <0.005 0.424
SCHEME 45° F(1,11) = 33.117 <0.001 0.751
SCHEME 36° F(1,11) = 53.337 <0.001 0.829
SCHEME 30° F(1,11) = 39.637 <0.001 0.783
ANGLE Asterisk F(2,22) = 6.149 <0.01 0.359
Pairwise 45:36, 45:30, 36:30 >.05,<.05,>.05
ANGLE Obelisk F(2,22) = 2.170 >0.05 0.165
Pairwise 45:36, 45:30, 36:30 >.05,>.05,>.05

Table 2. Statistical test results for Pattern Duration.

The accuracies slightly dipped with every additional line (Fig-
ure 9) and the time taken increases by approx. 0.5s for Obelisk
and by 1s for Asterisk. Thus, coding schemes with a smaller
number of lines (n) will have better accuracy and lower time.
Asterisk 45° maintains an accuracy > 95% till line 8, enabling
a capacity of 88=16.8 million unique sequences (24 bits) while
taking 10.3s. Asterisk 36°’s accuracy falls below 95% beyond
line 5 and enables a capacity of 105 = 100k unique sequences
(16.6 bits) while taking 7.5s. Obelisk 45° is more suited for
applications that require lower capacities and faster scanning
time, enabling a 95% accuracy for a sequence of size 5 with
12k capacity (13.6 bits) in 5.5s.

To investigate the possibility of strokes of certain angles (wrt
the previous stroke) being more inaccurate than others, we an-
alyzed the stroke accuracy by angle. We found no significant
or visible differences in any of the 12 conditions. Thus, all pat-
terns within a specific encoding have consistent performance
regardless of the angles contained.

DISCUSSION OF PATTERN ACCURACY
We now do an in-depth discussion to understand the sources
of error and their alleviation.

Overshooting & False Starts
Overshooting a vertex seems to be a primary cause for the ob-
served differences in conditions. After overshooting, the user
simply moves from this overshot position to the next vertex in
a straight line. This corrective movement results in a deviated
vector. For the same overshot position, the straight line to the
next vertex will result in a considerably higher deviation for
the 1.5cm LENGTH, compared to 3cm (Figure 10(left)). This
causes the drop in accuracy. Overshooting also causes the
differences in Asterisk and Obelisk. In Asterisk, overshooting
in the outward direction does not cause any deviation, only
in the inward. And thus the out,in average reduces this devi-
ation. In Obelisk, overshooting is an issue for every stroke
causing higher deviation and reduced accuracy. A related
issue present only for the first stroke, but which affects all
subsequent strokes is the false start: if the user starts at a point
slightly displaced from the exact center, then the stroke to the
next vertex will be deviated from line 0, causing a deviation in
the first line. Again, due to the same reasons as overshooting,
a false start results in more deviation for 1.5cm and Obelisk.

80%

85%

90%

95%

100%

1 2 3 4 5 6 7 8
Number of lines

A_3_45 A_3_36 A_3_30 O_3_45

Figure 9. Accuracy at the nth line for all Asterisk 3cm conditions and
Obelisk 3cm 45° condition. (The other conditions are not illustrated due
to their low accuracies). This shows that encodings with smaller sizes
will have higher accuracies. (Note that the vertical axis starts at 80%).
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Stroke Accuracy
Pattern Accuracy

Figure 10. (left) Illustrates the higher deviation angle in 1.5cm because
of overshooting. User overshoots to B, then tries to go to the next vertex.
~BD to ~AD has a larger deviation than ~BC to ~AC. (right) Stroke level ac-
curacy % for 3cm conditions compared to pattern-level accuracy. Error
Bars: 95% CI.

This hypothesis is confirmed by looking at the touch data from
the touchscreen. Figure 11 shows the mean deviation in de-
grees of the user’s strokes for touch and motion data. The
orange line at the bottom shows the TouchVertices deviation
in degrees. This is calculated using only the points where
the user paused on the touchscreen after a quick stroke. For
example, if user pauses at P1, then strokes and pauses at P2,
the TouchVertices direction vector is P2-P1 which is then used
to get the TouchVertices deviation. This directly reflects over-
shooting. As the figure shows, the TouchVertices deviation
increases from 3cm to 1.5cm for both Asterisk and Obelisk.
Similarly, Obelisk 3cm shows higher TouchVertices deviation
than Asterisk 3cm and same for the 1.5cm conditions.

This deviation is mirrored in the StrokeVelocity deviation (blue
line at the top), which is the stroke velocity vector’s deviation
from its expected angle with respect to the first stroke velocity
vector. However, how did the StrokeVelocity deviation be-
come so large compared to TouchVertices? This is because
the user’s stroke not only deviates at the vertices but also in
the middle. The stroke velocity vector is calculated around
its peak which lies somewhere in the middle. To confirm
this, we look at TouchStroke deviation which is calculated by
averaging the deviations of all the points of a stroke on the
touchscreen between (and including) the two vertices. Touch-
Stroke deviation (green line in the middle) is much closer to
StrokeVelocity deviation and explains the gap.

However, after the Asterisk 3cm conditions, StrokeVelocity de-
viation moves away when the overshooting deviation happens
in 1.5cm or Obelisk. This increase in StrokeVelocity deviation
slope compared to Touch slopes (from O_3_30 to O_1.5_45,
for example) is because while StrokeVelocity deviation for
every stroke also incorporates deviations due to false starts, the
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Figure 11. Mean deviation in degrees of the user’s strokes for all con-
ditions. StrokeVelocity: Deviation of a stroke’s relative angle from the
line’s real angle. TouchStroke: Total Deviation of the stroke vector cal-
culated from all the touch points from one vertex to the next, from the
real line. TouchVertices: Deviation of the stroke vector calculated from
the touch points only at the vertices of a line, from the real line. Error
Bars: 95% CI.

touch deviations do not as they are calculated relative to the
fixed line on the touchscreen and not the user’s touch points
of that line. Since false starts also affect 1.5cm and Obelisk
more, it translates to the StrokeVelocity deviation line moving
away. A second reason is that participants were more prone to
distal-phalange finger movement in 1.5cm (since it’s a smaller
distance) and in Obelisk. This was of course captured in the
touch data, but not in the motion data.

However, the proximity in deviation values for Asterisk 3cm
conditions show that in the absence of overshooting, false
starts, and distal phalange movements, our decoding algo-
rithm reproduces the user’s movement directions almost per-
fectly and there are no hidden factors that are not addressed
or not explained. This modeling of the deviation performance
has some optimistic implications - (1) Longer lengths will
have even better accuracy. And so long as a length increment
does not significantly increase duration, both Asterisk and
Obelisk will benefit from it. (2) A motion coding scheme that
minimizes the effects of overshooting and false starts will have
a better accuracy.

Stroke Accuracy
The deviation increments due to overshooting and false starts,
however, do not explain the exponential plummet in pattern ac-
curacy. This is because, it only takes a single incorrect relative
angle to render the whole pattern incorrect. Figure 10(right)
shows the mean stroke accuracy (% of strokes correctly per-
formed) for the 3cm conditions. We see that a linear decrease
in the stroke accuracy triggers an exponential decrease in pat-
tern accuracy. For Obelisk 3cm 30°, a 90% stroke accuracy
translates to a 61% pattern accuracy. Thus, the majority of
dips in accuracy are explained by magnification of small er-
rors to big errors: small false starts and overshooting, result
in higher deviations, higher deviations result in occasional
strokes’ relative angles to exceed their margin of error, and
a single such exceedance in a pattern results in an incorrect
pattern, rendering other correct strokes useless. While longer
length and better motion coding scheme designs will attack the
roots of the problem, the stroke accuracy graph also implies
that detection and correction of single or double stroke errors
will also impact pattern accuracy.

O_3_30O_3_36O_3_45A_3_30A_3_36A_3_45
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1 digit error
correction

Detection of 2
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Figure 12. The mean pattern accuracy % after Hamming(8,4) correc-
tion of 1-digit error (in orange), and the additional % of 2-digit detected
errors (in green at the top)

Error Detection & Correction
We now look at how error detection and correction can im-
prove the reliability of Asterisk and Obelisk. This involves
using some digits of a message as error-correcting check dig-
its, and the rest as data digits. We calculate the Hamming
distance between the decoded octal (base 8, 45°), decimal
(base 10, 36°), and duodecimal (base 12, 30°) digits and the
corresponding expected sequence. This is essentially the num-
ber of erroneous strokes (or digits) in a pattern. According to
the extended Hamming code (8, 4) [17], for an 8-digit message
(like ours), 1-digit error correction and 2-digit error detection
is possible using 3 check digits and four data digits.

Figure 12 shows (in orange) the mean pattern accuracy % upon
correction of a single stroke error for the 3cm conditions. All
Asterisk conditions and Obelisk 45° now have a >95% pattern
accuracy. Further, the figure shows the % of 2-digit errors that
can be additionally detected (but not corrected). Thus, Obelisk
36° has 90.8% accuracy and a further 3.8% error detection,
making the undetected errors <5%.

However, this does mean that the code’s information density
will reduce exponentially. E.g., Asterisk 30° reduces to (124 =
20736) sequences (14.3 bits). Since Asterisk 3cm’s accuracy
and duration were not significantly affected by lowering basis
angles, angles<30° may increase the information density of
1-digit error corrected Asterisk codes and merit investigation.

If we focus only on 1-digit error detection, we only need a
single parity digit. This implies that Asterisk 36° will enable
107 =10 million unique sequences (23.3 bits) with a <2%
undetected error rate (93% accuracy+5.3%detected errors).
Similarly, Obelisk 45° will enable 0.75∗97 =823k sequences
(19.7 bits) with a <5% undetected error rate. Real-time error
detection can be performed to inform users (via ring vibrations
or audio) so that they can repeat the trace.

IN-AIR EVALUATION
So far, we have discussed touch-tracing of motion codes. We
now explore the possibility of in-air scanning of motion codes.
Users may want to scan a motion code from a distance. Further,
physically touching a surface might not be preferred by users
in certain contexts. In our preliminary explorations, in-air
tracing proved to be highly imprecise for 36° and 30°. We con-
ducted a small evaluation for 45° Asterisk and Obelisk with the
3cm stroke length. The patterns were displayed on a vertical
touchscreen at the same height as earlier and the participants
were seated 50cm away from it. Participants were not allowed
to use any armrest. The schemes were counterbalanced. For
each scheme, participants performed 20 randomly generated

Session 13: Bodies and Sensing UIST 2018, October 14–17, 2018, Berlin, Germany

732



patterns in air. One change that was made to the Obelisk pat-
tern was that if a randomly generated pattern’s onscreen length
on either of the left or right side of the origin exceeded 9cm,
that pattern was replaced with another. This was done so that
the user does not stretch the hand too far out of their comfort
zone. The rest of the procedure including the decoding algo-
rithm was similar to the earlier study. 8 participants (2 female,
all right-handed, age 22-30, µ = 27.5), all different from prior
study took part. The study lasted 20mins. Overall, we had
2 SCHEMES x 20 trials x 8 users = 320 patterns.

Results
The in-air accuracy of Asterisk came out to be 95.0% (95%
CI [86.3, 103.7]), while for Obelisk it was 81.2% (95% CI
[71.3, 91.2]). The difference was statistically significant
(F(1,7) = 15.400, p < .01, η2

p = .688). The mean dura-
tions were slightly higher (Asterisk: 11.4s, 95% CI [9.4, 13.4],
Obelisk: 8.9s, 95% CI [8.0, 9.8]). Notice that the accuracy
of in-air 45° Asterisk is almost equal to the on-surface ac-
curacy of 45° 3cm Asterisk. Asterisk in air does not suffer
from occlusion which might have helped in getting a compa-
rable performance. Obelisk’s performance, however, is not
maintained. One reason is that even with the smaller patterns,
user’s hand still gets stretched out and it’s difficult to judge
and perform exact strokes.

With 1-digit error correction, the accuracies jumped to 98.7%
for Asterisk and 96.9% for Obelisk, thus matching Obelisk
45°’s on-surface corrected performance. Further, the unde-
tected error % were around 1% for both. This shows that most
errors in Obelisk were single stroke errors. One big advantage
of in-air stroking was that since the user’s fingers were not
resting on a surface, they rarely performed distal-phalange
movements. Secondly, for Asterisk, the occlusion problem
was almost non-existent.

Our in-air study did not handle all in-air scenarios including
larger codes at a distance and on-display at various angles with
respect to the user. However, it does indicate overcoming of
a very crucial limitation: the requirement of physical contact
with the surface of the code. The user’s performance will
not be affected if instead of touching the surface they simply
hover over it and perform the strokes. This should be true even
for 36° and 30° as long as the finger hovers right next to the
surface. Larger distances, lower basis-angles and other in-air
scenarios merit a separate exploration.

SUMMARY & IMPLICATIONS
We now summarize the takeaways from our evaluation: (1) As-
terisk provides higher accuracy for higher information capaci-
ties than Obelisk. Considering 95% accuracy as the threshold,
Asterisk 45° provides 16.8 million unique sequences (24 bits)
in 10.3s and Asterisk 36°, 100k sequences (16.6 bits) in 7.5s.
Obelisk is faster than Asterisk owing to its single stroke design,
but only provides a maximum of 12k sequences (13.6 bits) for
95% accuracy in 5.5s. (2) Error correction takes Asterisk to
a near-perfect accuracy but for only 20736 sequences (14.3
bits). A suitable middle-ground is error detection which leads
to a <2% undetected error rate for Asterisk with 10 million
sequences (23.3 bits) while requiring the user to redo the trace

Figure 13. Application Scenarios: (left) Using with gloves. (mid) Use on
portable objects. (right) 3D Printed grooved Obelisk

5% of the time. (3) Obelisk’s accuracy for 36° and lower is
too low for practical use. (4) Asterisk’s accuracy does not go
down with basis angle, and therefore smaller basis angles hold
promise for both a fast and high information code. (5) Asterisk
45°’s in-air accuracy shows that users do not necessarily have
to touch the surface, but can hover over it and scan the pattern
without loss of accuracy. Obelisk 45°’s in-air accuracy is low,
but improves to 96.9% with error correction. (6) Both Asterisk
and Obelisk were agnostic to vertical vs. horizontal surface
orientation (in addition to being agnostic of finger and ring
orientation). This should hold true for slanted surfaces without
loss of generality. (7) Longer lengths reduce deviations and
therefore improve accuracy. The 1.5cm stroke length offers no
speed advantage in addition to being significantly less accurate
than 3cm for both Asterisk and Obelisk. (8) Since Obelisk will
be less affected by the increased duration of a longer stroke,
lengths >3cm may result in boosting its accuracy and merits
investigation. (9) The stroke velocity vector faithfully repro-
duces the actual motion directions, but gets deviated due to
overshooting and false starts. Asterisk is less prone to these
deviations due to its double-stroke design. Future motion code
designs should aim to minimize these issues while avoiding
redundancy.

EXAMPLE SCENARIOS AND APPLICATIONS
Motion codes enable easy walk up & scan which can be useful
in a variety of scenarios. For example, art pieces in a museum
can be accompanied with motion codes that link to audio
information that the user can listen to. In such a case, the user
installs the museum audio app in their ring that recognizes the
code upon tracing. Motion codes would be even more useful
in museums (and other art installations) where cameras are not
permitted and therefore optical QR codes are not an option.
Such audio linking could be useful in various other scenarios,
such as for product details in a retail store, for encoding audio
labels in children’s toys (for instance human anatomy model
toys), or in books with supplemental audio.

Motion codes also support on-the-go usecases. For example,
coffee cups can contain motion codes as part of a loyalty re-
wards program which the users can scan (Figure 13 (middle)).
Since motion codes depend on the IMU readings, users can
scan them without taking their gloves off, further boosting
usability in on-the-go use (Figure 13 (left)).

Obelisk codes can be engraved into surfaces (Figure 13
(right)). Since Obelisk is self-guiding, they could potentially
be scanned by visually impaired users who are unable to use
optical codes. However, this requires a serious investigation
into the self-guiding design of the code such that the accuracy
of decoding is maintained.
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Figure 14. Motion codes with interactive actions. (left) User can trace
this motion code which is linked to audio information and then choose
their preferred language. (A motion code that enables multi-step ac-
tions.)

Since a motion code is already visible, it can be transformed
into an optically scannable code by adding position, alignment
and quiet zone markings to the pattern. This would result in a
hybrid optical-motion code that can be scanned both optically
and via motion. The users can then choose their preferred way
of scanning. For instance, this provides the users an option to
scan a distant code optically, and a proximate code via motion.

Motion Codes enable a unique form of interactivity where
each line is an interactive step. This can be utilized to enable
novel passive tags that enable multi-choice actions. For in-
stance, users can scan an audio-linked tag and then choose
their preferred language (Figure 14(left)). Another example is
to use it for leaving quick product ratings, for example, after a
restaurant meal, the user can scan the code and choose a rating
from 1 to 5. Such interaction can be expanded to multiple
steps (Figure 14 (right)) for richer options.

UTILITY, LIMITATIONS AND IMPROVEMENTS
Utility and comparison with QR codes
Most participants liked the simple walk-up-and-scan approach
of the motion code. They liked that this did not require them to
reach for their phone into the pocket. One participant indicated
that they can hold bags in both hands and still wiggle-out the
thumb, index finger to perform the scan which could be very
handy. Some participants mentioned that it is a very useful
functionality to have if they are already wearing smartrings,
but they won’t wear a smartring only for using this. Most
participants indicated they would want durations to be short.
However, opinions were split on the acceptable durations, from
2-3s to 7-8s. One participant compared it with a QR code,
mentioning that as long as the duration is lower than the time
it takes to get the phone out & scan, they would use it.

As we mentioned earlier, motion codes may be more pertinent
than QR codes in certain contexts - places where cameras are
not allowed, dark environments or for visually impaired users.
Further, motion codes can function as hybrid optical-motion
codes allowing users to choose their scanning method on the
fly. Motion codes can also enable newer interactions such
as scanning and invoking action in a single trace. However,
as we discuss next, we also recognize that for mass adoption
usecases, motion codes need to match or override QR code
performance.

Limitations
Our current implementation of motion codes has a few limita-
tions. The motion code only encodes the data without encod-

ing the parameters of the encoding scheme such as basis angle
and size. Such information may be needed if the decoding
app needs to support motion codes with different parameters.
However, this is easily solvable by encoding this information
as part of the first line in the code. Secondly, our motion codes
are not resistant to distal phalange movements and cannot han-
dle smooth motion traces that are without momentary pauses
between strokes. This problem is more difficult and requires
more advanced signal processing algorithms. This is related
to the issue of extracting reliable displacement data which can
massively boost the data density. An IMU sensor with a higher
sampling rate (BNO055 allows 100Hz) and position detection
algorithms that can work well. Thirdly, button clicking adds
an extra step. There are three ways to approach replacing the
click with gestural delimiters: a unique start/stop pattern, tap-
ping (double/triple), or implicit detection where the decoder
continually runs and deems specific peak sequences to be valid
motion code traces. This requires further exploration.

We have talked about IMU errors and user stroking errors. A
third indirect source of error that affects both is environmental
error, caused from uneven surfaces or scanning while moving.
The current algorithm assumes the code to be on a smooth sur-
face which is fixed. Uneven, rough surfaces will lead to lower
accuracy. Similarly, scanning while walking or inside a mov-
ing subway introduces an uneven external acceleration which
affects accuracy. Motion coding schemes and algorithms that
are tolerant to these issues is an open problem for future work.

Finally, motion codes as a concept is not limited to Asterisk
or Obelisk, to IMUs, or to finger wearables. We hope that
our work encourages explorations into varied motion coding
schemes that rely on different sensing solutions and explore
other wearable devices such as smartwatches. Overall, we can
summarize future work into three broad threads - Technical:
improve information density, speed, sensing methods, and
applicability for curved and in-air tracing; Interaction possibil-
ities: hybrid codes, interactive actions etc.; Utility: for specific
application areas or users (museums, visually impaired use).

CONCLUSION
We proposed motion codes that are passive, inexpensive tags
that can be decoded using low-power, miniaturizable hard-
ware that can be worn on the finger. We described the desired
usability and functional properties of motion codes, based
on which we design two motion code schemes, Asterisk and
Obelisk. We implemented and then evaluated both against
varying lengths, orientations, and information densities. We
reported on the resulting accuracies and durations and investi-
gated error detection and correction. We conducted an in-depth
analysis of motion deviations. We further reported on an in-air
motion code evaluation. Finally, we summarized our findings,
discussed example applications, and limitations and improve-
ments. We believe that motion codes is highly useful concept
and our work traces the first line in their investigation.
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