
Green Software Architectures: A Market-Based Approach

Govindaraj Rangaraj
The University of Birmingham

Birmingham, United Kingdom B15 2TT
goHvin.acs@googlemail.com H

Rami Bahsoon
The University of Birmingham

Birmingham, United Kingdom B15 2TT
rH.bahsoon@cs.bham.ac.ukH

1. INTRODUCTION
Software systems architects are continually faced with the
challenge of scaling up software systems architectures to sup- port
constantly growing load of users’ processing needs and data.
Scaling up the architectures to meet these needs does certainly
introduce additional energy cost. For example, to meet the
scalability requirements, additional hardware and software
resources may need to be deployed. Reducing the energy
demands in such architectures while meeting the scalability
requirements, are always challenging. We explicate the attention to
power as an architectural constraint/property that need to be
analyzed in relation with scalability. Current research and practice
to distributed software architecture approaches are green-unaware.
They don’t provide the primitives for reasoning and managing
power consumption. We argue that the software engineering
should be green aware, where the software engineering and
design activities should not only be judged by their technical
merits, but also by their contributions to energy savings. In
particular, the software system architecture appears to be the
appropriate level of abstraction to address green-aware concerns.
Software architectures should be green-aware, providing power
management mechanisms as part of the architecture primitives.
Furthermore, it looks plausible to leverage on advances in self-
management software architectures [2], where self-managing
power could be separated from the core system functionalities.
We argue that there is a pragmatic need for new software
architectural layer, which could be easily integrated with
existing styles for self-managing the trade-offs between scalability
and power. The power consumption can be minimized by only
provisioning the required amount of resource at any given point of
time. For example, architecture can be scaled only when the
demand for the resource increases. Classical market-based
economic theory is appealing for addressing this problem
effectively in the context of supply/demand.

In this paper, we describe a standalone architectural layer for
self-managing power consumption in a software system. This
layer can be integrated with existing power-unaware architectures
styles. The layer makes a novel use of the classical supply and
demand, market-based economic theory, keeping the dynamic
energy management process simple, intuitive, and appealing. It
optimizes energy utilization of a runtime architectural instance by
dynamically monitoring and matching the resource requirements
(demand) with the resource availability (supply) in relation to
various scalability scenarios. By scaling up/down the resource
availability to match with its demand, we can avoid unnecessary
wastages of power due to inaccurate resource provisioning.
Experimental results shows that our framework improves the power
savings, for a web based client-server architecture while
maintaining the desired scalability requirements of a system.

2. PROPOSED APPROACH
Our proposed solution is a conceptual architectural level framework
for automatic power management using market economic theory as
depicted in figure 1. In next subsections, we present a brief
overview of supply demand theory and describe the proposed
architecture.

2.1 Economic theory. A market economy is described using
two terms: Demand and Supply. Demand is defined as the quantity
of goods consumers are willing to buy. Supply is defined as the
quantity of goods the suppliers are willing to produce. Inflation
scenario occurs when the supply of a good could not meet the
demand. Similarly, a recession scenario occurs when the sup- ply is
in excess with demand. In order to keep the economy in
equilibrium (neither inflation nor recession), the supply should
always be matched with the demand. At this point, all the goods
supplied are consumed, without any wastage.

2.2 Proposed Architecture. We build on an analogy w i t h the
classical economic theory of 2.1. Figure 1 depicts the
architecture of our pro- posed model. As shown in the figure,
the economic layer of our framework is composed of four
components. The Supply Manager (SM) and Demand
Manager (DM) components deal with the supply i.e.
resource a v a i l a b i l i t y and demand i.e. resource
r e q u i r e m e n t concerns of a system. (The r e s o u r c e
availability can be defined as number of nodes in a cluster
and the resource requirements can be defined as number of
incoming requests per second.) The Supply/Demand
Coordinator (Coordinator) controls these two components to
reach the equilibrium state where the resource availability
matches its demand. In this state, unnecessary wastage of
power due to resource over-provisioning can be avoided. For
example, the Coordinator notifies the SM to decrease the
resource availability whenever the resource demand decreases
and vice versa. The a d d i t i o n a l strategic planning
component is responsible for handling change management in
the framework. The t r a n s l a t i o n a l layer is used to map
the abstract architectural concerns with its implementation
concerns. The system layer represents the underlying run-
time architectural instance which is being power managed.
The sensors and actuators, attached to the system, monitor
and control the system specific values. A detailed view of
the components of economic layer is given below:

Demand Manager: It collects the resource demand in-
formation of the underlying system through the sensors. For
example, the resource demand of client server architecture can
be determined by the number of pending requests in the queue.
This information is collected for a specified time interval,
consolidated and transformed into an abstract index value
called demand index. The d e m a n d index is analogous to
the number of goods demanded in the context of economic
theory.

The demand index for a web based client- server architecture
can be calculated as follows: number of pending
requests/(number of active nodes * 100). This component also
performs actions on the underlying system such as blocking
the incoming requests from distributing to the server for
processing, upon receiving notification from the
Coordinator.

Supply Manager: It collects the resource availability
information of the underlying system through the sensors.
For example, the resource availability of cluster based client-
server architecture can be determined by the number of
active nodes and their respective loads in the cluster. This
information is collected for a specified time interval,
consolidated and transformed into an abstract value called
supply index. The supply index is analogous to the number of
goods supplied in the context of economic theory. The
supply index for a web based cluster server is calculated by
the ratio of cumulative available capacity of the cluster in
percent- age (%) and the total capacity of the cluster in
percentage (%). It also performs actions such as increasing or
decreasing resource levels, on the underlying system, upon
receiving notification from the Coordinator.

Supply/Demand Coordinator (Coordinator):
The coordinator is the abstract component which acts as a
mediator between the SM and DM by continuously
monitoring the supply and demand indices. It consists of
predefined configurations of what action to be taken when
the demand index varies relative to the supply index. It
obtains the index values from both SM and DM, compares
them, chooses an appropriate action (to match the supply
with the demand) and controls the SM and DM to execute
the action. For example, whenever it encounters an
inflation or recession constraint, it compares the supply and
demand indices, decides whether to increase or decrease the
resource supply and notifies the SM and DM to take action
accordingly.

Strategic Planner: This c o m p o n e n t produces
change management plans upon request from Coordinator.
For example, it reconfigures the framework when the
underlying system is integrated with external resource, on
the fly, to meet unanticipated demand. It can also recreate
failed components of the framework to address the fault-
tolerance.

Figure 1: Economic framework

3. Working Scenarios
We describe an architecture scenario, which utilizes the
proposed power management layer. We use an instance of
client server architecture which consists of a serverCluster of
replicated nodes to meet the scalability requirements. The
client requests are sent to the server for processing through a
request queue. Power saving can be achieved in such an
environment by provisioning the resource according to the
demand i.e. by dynamically switching off some of the nodes
under lighter load conditions to save power. Likewise, scaling
up can be achieved by dynamically switching on some of
the nodes under burst load conditions. Our proposed
framework automates this process efficiently and dynamically
using supply and demand theory. The DM controls the
demand layer of the cluster which is its request queue. The
SM controls the supply layer of the cluster which is the
ServerCluster itself. Both the lay- ers should have
respective sensors and actuators attached to them for
monitoring and controlling the changes respec- tively. The
DM monitors the request queue and calculates the demand
index. Similarly, the SM monitors the load in each cluster
node and calculates the supply index at regular intervals. The
SM and DM regularly update the latest in- dex values to the
Coordinator which keeps tract of the same, anticipating for
constraint violations.

Inflation Scenario: An inflation scenario occurs when
the supply index value reaches below 0.2 (80% of the re-
sources are utilized in the cluster). When the inflation
constraint is flagged, the Coordinator compares the supply
index with demand index to see if the demand index exceeds
supply index by more than 0.2 (0.2 is the threshold differ-
ence between supply and demand index configured in the
Coordinator, but it can be varied according to the underly-
ing system), which means that the supply cannot meet the
demand requirements. If this condition occurs, the Coordi-
nator starts self adaptation process by notifying the SM to
increase the supply and wait for an acknowledgement from
SM upon completion of the action. It also notifies the DM to
decrease the demand temporarily, as overloading the cluster
may increase the response time.

After receiving notification, the SM controls the under-
lying cluster (with the help of the actuator) to activate a
new node and DM controls the request queue of the un-
derlying cluster (with the help of actuator) to stop sending
the low priority requests to the cluster. Once a new node is
activated, SM updates the Coordinator with an acknowledg-
ment and the new supply index value which is (200-85)/(200)=
0.575. The Coordinator in turn compares this with the new
demand index obtained from DM which is 110/(2*100)=
0.55. Since the difference is now below 0.2, it updates the
demand manager to normalize the demand distribution (start
distributing the low priority requests). Thus, minimal
resource configuration is sufficient for the architecture at
initialization in order to save power. The architecture can
be scaled dynamically in the later stage as the demand
increases.

Recession Scenario: Recession scenario occurs when
the supply index goes above 0.4 (only 60% of the cluster load is
utilized). Let us assume that there are three active nodes in
the cluster which are running respectively at 40%, 50% and
60% of the load. Assume that the number of requests that
are queued in the system at present is 60. Demand index
at this point is 60/(3*100) = 0.2 and the supply index is
((100-40) + (100-50) + (100-60))/300 = 0.5.

As the supply index is above 0.4, a recession constraint is
flagged in the Coordinator. When the recession constraint is
flagged, the Coordinator compares the two indices to see if
demand index exceeds the supply index by 0.2, which means
there is excess resource available. If this condition occurs, the
Coordinator starts the self-adaptation process by notifying
the SM to decrease t he supply a n d waits for the
acknowledgement. After receiving the notification, the SM
deactivates a node which is running at 40% load by
transferring its load into other nodes with 20% each. Now,
the new supply index is (100-(50+20)) + (100-(60+20)) /
200 = 0.25 and the new demand index is 60/(2*100) = 0.3.
The d i f fe rence is activated simultaneously which reduces
the activation time by almost half and hence improves the
overall performance. Similarly, it notifies the SM to scale
down the resources further when the demand index decreases
rapidly. Deactivating simultaneous nodes without any delay
will result in significant power saving. It also shows how
effectively our framework responds to burst increase in the
demand by scaling the architecture at higher rate. These different
scenarios clearly shows the effectiveness of our approach in
managing the trade-offs between scalability and power.

 Higher inflation/lower recession scenarios:
After notifying the SM to increase the supply due to an
inflation constraint, the coordinator continues monitoring
the latest supply and demand indices. If the demand index
grows at a higher rate, for example, when the new
supply cannot match the current demand, it notifies the
SM to scale up the resource further without waiting for the
acknowledgment for the previous notification.

4. Conclusion and Further References

We have reported on ongoing work on Green Software
Architectures. Further references of the work can be found in
[1] with discussion of closely related work and evaluation of
the approach. We are further extending the work to address
green-aware concerns in various software architectural styles.

In conclusion, green-aware constraints such as power brings
new challenges to the way we systematically develop,
maintain, manage, evolve, and scale software architectures.
The paper discusses a dynamic self-management software
architecture framework for power based on economic
theory. We have discussed various scenarios to demonstrate
the effectiveness of our approach in saving power using
supply/demand theory.

Different power un-aware architectures can benefit from
our approach with minimal modification. Many modern
architectural paradigms, such as cloud, which has clear
separation of supply and demand, can also benefit from our
approach. As a part of our future research, we are looking
at relating other architectural dependability requirements
with power. We are also working on extending the
functionality of DM to raise inflation or recession scenarios
to improve the overall self adaptation process.

The research will raise the understanding of evolution
trends in dynamic systems, and improve their quality and
robustness through dependability and power measurement
and control. More widely, we hope the research results will
feed into long-term vision of helping in reducing power
consumption and CO2 emissions in ICT infrastructures.

5. References
[1] G. Rangaraj and R. Bahsoon(2010). A Market-based Approach for

Self-Managing Power in Software Architectures – in submission. Technical
Report, School of Computer Science, University of Birmingham, CSR-10-
01.

[2] J. Kramer and J. Magee. Self-managed systems: an
architectural challenge. In FOSE ’07: 2007 Future of Software
Engineering, pages 259–268, 2007.

 [3] V. Nallur and R. Bahsoon(2010). Design of a Market-Based
Mechanism for Quality Attributes Tradeoffs of Services in the Cloud, To
appear, in the Proceedings of the 25th ACM Symposium of Applied
Computing (ACM SAC 2010), 2010.

