
Aim for the eagle: Making the best use of our
software research skills to fight climate change

Jon Pipitone, Jorge Aranda
Department of Computer Science

University of Toronto
40 St. George St.
Toronto, Canada

(jp, jaranda)@cs.toronto.edu

Valeria Cortés
Office of Student Life
University of Toronto

21 Sussex Ave.
Toronto, Canada

val.cortes@utoronto.ca

Abstract—Climate change poses great challenges to the
viability of our civilization, and if we are to overcome these
challenges we need to bring the best of our abilities to the
table. In this paper we propose a set of guidelines for software
researchers concerned about doing the right thing for the
planet.

“Aim for the eagle, you may bag the pheasant, but you
won’t eat crow.” —Anonymous

I. INTRODUCTION

Climate change is the greatest threat currently facing
humanity. As the call for participation to this workshop
reminds us [3], unless urgent and drastic cuts are made
to our greenhouse gas emissions, global warming is likely
to trigger a number of tipping points with catastrophic
consequences to our society and the planet’s ecosystems.
Therefore, the problem of climate change requires imme-
diate action from everyone, including ourselves. All of us
should bring the best of our abilities to the table.

Software researchers, in particular, have a set of skills
that are much needed to address the problem. We are
experts at abstraction, at computational thinking, and at
modeling complex systems, among other things, and the
software that we build and study runs the modern world.
The sooner we take action to apply our knowledge and
ability to the service of humankind, the better our chances
to mitigate climate change.

In our case, we must acknowledge that our research is our
best and only tool to make a difference. With such an urgent
threat at hand, we may feel compelled to act outside of
our familiar capacities as researchers: to engage in political
action, or even to consider leaving academia itself in order
to attack the problem directly. This would be a mistake. We
believe that we must put all our efforts into our research,
where they will be of most use, and disregard other avenues
as distractions. In this position paper we discuss our ideas

on how to be most effective in selecting and conducting
our research.

II. GUIDELINES

Applying software research to a different domain may
appear to be a daunting prospect, but it actually does not
require us to change our research approaches, as the same
general problems occur in every field of study. The only
important consideration is to identify our intellectual assets,
and intelligently choose research projects to maximize our
potential for impact. In the following sections we propose
guidelines and recommendations that clarify how best to
undertake the switch to software research on climate change
issues.

A. Scope

Think really big. Avoid projects targeted at specific
stakeholders and that may have only an immediate impact.
Instead, select projects which have the greatest potential
applicability and highest potential future returns, even if
the immediate benefits are unclear. The greatest strides in
science are taken by such pursuits. For example, Babbage’s
Analytical Engine was never built, but decades later its
design ideas had a groundbreaking impact on the architec-
ture of modern computers. Similarly, Leonardo’s inventions
(his helicopters, submarines, etc.) are, centuries later, rec-
ognized by their prescience and their influence in modern
life. Amazingly, some of his inventions have recently been
built and shown to work – a marvel considering he only
ever produced sketches of his machines. Our point is that
only by choosing to do such ambitious, blue-skies research
can we hope to have as large an impact as our eminent
predecessors. Most importantly, it is only this kind of
research which will lead to solutions grand enough to topple
the climate change goliath.



In practice, this means we need to apply our community’s
key intellectual assets, abstraction and generalisation, when
crafting our research agendas. As software researchers, we
have expertise in abstract thinking as well as the design,
management, and refactoring of complex information sys-
tems and generic frameworks. With these assets we are well
positioned in the fight against climate change because at
some level of description everything is a system – be it
an information system, networks of computers, the social
networks we are all part of (our families and circles of
friends), our bodies, or even the fragile and complex web
of interactions that make up our biosphere. Software is
simply an instance of a domain in the much broader domain
of systems to which our expertise applies. We are systems
researchers!

As such, to make a contribution we need only apply
the techniques we have for software systems to any other
system. A few examples illustrate this point.

1) The use of design patterns for policy-making: Modern
law- and policy-making produces such complex and mas-
sive tomes of interconnected pieces that it is impossible for
anybody to fully understand them and their implications.
Fortunately, software researchers have been there before.
We can use our knowledge of software design patterns and
apply it to the design of laws and policies for the betterment
of society. Imagine a tool, not unlike existing software
IDEs, for the development of legislation. It would feature
refactoring tools for extracting common law elements, re-
solving conflicts between existing and proposed legislation,
or modifying law constructs for future extensibility.

Applying design patterns to law will also enable poli-
cymakers to use a more advanced vocabulary to discuss
their work: we can easily picture them talking about using,
for instance, the Decorator or the Facade patterns in a
particularly complicated piece of legislation, or of applying
Abstract Factories for the creation of local laws that also
adhere to a global framework. Using design patterns in this
context would make the creation of climate laws a snap,
leading to the speedy signing of urgently needed policies
for carbon regulation.

2) The use of model-driven development for climate
simulations: The climate modeling community still seems
trapped in 20th century technology with its use of legacy
programming languages and rudimentary design tools. We
know from recent studies [4] that much of the scientists’
time is spent running arcane verification and validation tests
simply so to prove to themselves that their sloppy code does
what they intended it to! We can apply our cutting edge
model-driven technology to speed up their development
processes and ensure correctness. Our modeling languages
excel at capturing the essence of complex models such as

those used in climate research. Climatologists could create
their climate models in a customized version of UML, and
with the push of a button the underlying computational code
would be automatically generated and optimized for their
hardware settings. Scientists could explore their research
questions much more quickly and, as an added benefit,
their automatized computer models would become free of
suspicion from climate change deniers.

3) The use of fault prediction mechanisms for “re-
wiring” our understanding of climate change: As humans,
we carry several well-documented cognitive biases. In par-
ticular, we are notoriously bad at coming to grips with the
dynamics of climate change: for instance, we find it difficult
to understand that cutting our emissions now will not stop
global warming for a few more decades, or that climate and
weather are two very different concepts and a snowstorm
is no indication that climate change has stopped.

This points to inherent “faults” in the design of our
minds — and as software researchers we know much about
predicting and detecting the localization of such faults. We
can look at the brain as a very intricate hardware/software
system, with connections between neurons acting as the
system’s call graph and their synapses as its execution
paths. Therefore, with more and more detailed CT scans,
we will be able to construct a map of the brain, and
then use our already mature fault prediction mechanisms
(based on cohesion, coupling, method size, and other such
metrics) to point to the areas of our brains in most need
of intervention. Based on our findings, neurologists could
eventually “rewire” our brains, leading to an improvement
in our understanding of climate change dynamics and,
therefore, to immediate action to tackle this challenge.

We think that the beauty of these proposals lies in the
fact that we, as software researchers, can make use of our
intellectual expertise by applying our ideas to domains we
know little about, and still have a, possibly, groundbreaking
impact in the near future. Since all systems are essentially
equivalent, our insights from the software realm are imme-
diately transferable to other domains.1

B. Stakeholders

In order to use our abstraction expertise successfully, we
must be careful to maintain an appropriate distance from
the specific needs of individual stakeholders or situations
we are researching. If you have to work for a particular user
(perhaps because of requirements of your research funding),
we advise that you do not waste your time trying to figure
out their specific challenges: this will only bog you down

1Although, of course, some implementation details would still need
to be worked out.



with minutia and will hurt the world-wide applicability of
your ideas.

Consider that most of the critical issues blocking action
on climate change have obvious software solutions, such
as the need for generic tools to manipulate and process
data in order to aid decision making and communication,
to name an example out of many. Additionally, software is
everywhere; it influences and mediates every decision we
make, from our choice of breakfast cereal in the morning
to which gas station we choose to fill up at. Therefore,
since we are experts at tool making, we should focus our
energy on making tools we know are appropriate for the
general task, and reach out to stakeholders only to fine-
tune or validate our work.

Similarly, avoid falling in the trap of working for groups
with political motivations, such as local environmentalist
organisations or political parties. This may sound harsh. No
one can deny that they are full of perfectly well-intentioned
people, but their day-to-day involvement with these issues
means that they often can’t see the forest for the trees, and
you may find yourself developing a similar shortsightedness
if you collaborate with them extensively. Besides, these
groups tend to include politically biased individuals, and
we, as scientists, need to maintain our objectivity and our
independence from political agendas as much as possible:
being at the grassroots level means getting your hands
dirty. As well, to put it frankly, there are very few funding
opportunities in such involvements.

Furthermore, it is not even clear what productive involve-
ment with such groups would look like. Research strategies
like Action Research [1], [2] and Participatory Design [5]
could perhaps give them some immediate benefit, and they
could give you a few interesting insights to report to our
community, but these insights are a long way from having
the potentially groundbreaking impact of the ambitious,
universal projects we endorse.

Finally, collaboration with undergraduate student projects
and with university staff initiatives should ideally be kept
at a minimum. Undergraduate students may be passionate
about this cause, but this passion may be overwhelming
and lead to involvement with activist groups, which we’ve
shown to be in detriment of our work. As for university
staff, beyond good will all they can offer is contacts in
the community and programs to develop soft skills such as
teamwork and conflict resolution [6] —perhaps valuable to
your inner development, but not relevant to the cause of
fighting climate change.

C. Applicability

As researchers, we work purely in the realm of ideas. We
achieve our greatest impact when we focus solely on the

creation and dissemination of novel ideas, and let people
with other skills (and with incentive structures that reward
nitty-gritty work!) worry about implementation details and
detailed field trials. We suggest that the ideal work dynamic
is one where researchers come up with an idea, explore
it, prepare a prototype or proof-of-concept if they must,
publish, and move on to the next success.

This suggestion goes hand-in-hand with our recommen-
dations on scope: here we are suggesting that once you
have planted the seeds for a revolution you should move
on. We need to come to terms with the fact that technology
transfer usually takes about 25 years. If we stick around
that long with a single project, we won’t be successful
researchers –and we need that success to get more grants,
tackle greater and greater research questions, and live up to
the huge demands that climate change poses to every one
of us.

III. CONCLUSIONS

Abstraction, detachment from policy making and ac-
tivism, and academic aplomb in the face of poor prospects
for the applicability of our ideas are the best assets we can
use as software researchers to fight climate change, this
most urgent threat to the viability of our civilization.

Hopefully it is clear by now what we are up to in
this position paper. We believe climate change is a seri-
ous issue, and we believe that software researchers have
the opportunity to be of benefit, but only as long as
we focus on tractable projects grounded with plenty of
stakeholder involvement. To continue this discussion, please
visit: http://groups.google.com/group/se-for-the-planet

We would like to acknowledge the helpful discussion and
feedback from Jono Lung, Joseph Pipitone, Neil Ernst, and
Steve Easterbrook.

REFERENCES

[1] D. Avison, F. Lau, M. Myers, and P. A. Nielsen. Action research.
Communications of the ACM, 42(1):94–97, 1999.

[2] D. V. Craig. Action Research Essentials. John Wiley and Sons,
2009.

[3] S. Easterbrook, K. Mens, and S. Zschaler. 2nd
workshop on software research and climate change;
http://www.cs.toronto.edu/wsrcc/index.html, 2010.

[4] S. M. Easterbrook and T. C. Johns. Engineering the software for
understanding climate change. IEEE Computing in Science and
Engineering, 11(6):65–74, 2009.

[5] F. Kensing and J. Blomberg. Participatory design: Issues and
concerns. Computer Supported Cooperative Work, 7(3-4):167–185,
1998.

[6] S. R. Komives and W. Wagner. Leadership for a Better World.
Jossey-Bass, 2009.


