
Unified Requirements Modeling for Environmental Systems
Jonas Helming, Maximilian Koegel, Bernd Bruegge

Institut für Informatik
Technische Universität München

{helming, koegel, bruegge}@in.tum.de

Brian Berenbach
Siemens Corporate Research

Princeton, NJ

brian.berenbach@siemens.com

ABSTRACT
Building environmentally friendly software and hardware systems
is about understanding and respecting the requirements that are
imposed by climate change or regulation. This is especially true,
as those systems often require inter-disciplinary collaboration
between domain experts who might not have a software or
systems engineering background. Existing requirements models
lack in three dimensions supporting this objective: First, they do
not integrate approaches to explicitly model environmental
requirements and possible hazards. Second, they do not provide
visualizations that are intuitively understandable by non-system
engineers. Third, there is no integrated tool-support for
requirements modeling in a globally distributed set-up.

We propose a unified requirements modeling language (URML)
to address these problems. URML supports integrated
requirements modeling as well as the cross-disciplinary
visualization of environmental requirements, regulations and
hazards. Furthermore we describe UNICASE, a tool for
collaboration on these models allowing the visualization of
traceability from climate critical requirements to their
implementation in the system.

Categories and Subject Descriptors
D.2.2 [Requirements/Specifications]: Languages, Tools

Keywords
Requirements engineering, modeling, software engineering,
systems engineering.

1. INTRODUCTION
Understanding the requirements and their interrelations for
complex systems has always been a critical success factor for
software and system projects [1]. The ongoing trend to focus on
environmental sustainability (e.g. carbon neutrality) adds a new
dimension of complexity to the problem of requirements analysis.
More concrete environmental sustainability and the mitigation of
environmental hazards add new requirements or even new types
of requirements to a project. These requirements are highly
interrelated with existing system requirements, in fact they are
often conflicting. As an example, the non-functional requirement
“high maximum speed for a car” may conflict with the
environmental requirement of low carbon emissions. We claim, it
is necessary to enable a dialog and understand the
interdependencies between all the requirements. In the GEMS [2]
system we already used a high level modeling language [3] to
express the requirements in a way that could be understood by
domain experts from multiple disciplines such as mechanical
engineering, chemistry and computer science. The power of

modeling languages has evolved significantly since then, leading
to languages such as UML [4] and SysML [5]. In contrast to UML
or SysML, URML offers explicit traceability between
requirements from different domains. For example it offers
traceability between business goals, product features, functional
requirements, possible threats and possible hazards and their
mitigation. The analysis of climate critical requirements usually
involves the collaboration of domain experts from a range of
different disciplines such as carbon emission exports and software
engineers. Therefore it is necessary to integrate quality assurance
for the requirements model. For this purpose URML provides
executable validation rules. For example it can be checked
whether critical environmental risks have been assigned sufficient
mitigations. Furthermore a multi-disciplinary approach of
requirements engineering requires a commonly understandable
visual syntax. “Historically, SE researchers have ignored or
undervalued the role of visual syntax” [6]. “The Details of
Conceptual Modeling Notations are generally shrouded in
mystery” [7]. URML focuses on visualization, which is intuitively
understandable by non-software engineers and therefore fosters
inter-disciplinary collaboration.
Although URML defines a language to express, validate and
interrelate requirements, it does not provide tooling or an
implementation. UNICASE is a platform for building modeling
applications with tooling for traceability, visualization, validation
and collaboration. Therefore we propose UNICASE as a platform
for the implementation of URML.

2. UNIFIED REQUIREMENT MODELING
The Unified Requirements Modeling Language (URML) has been
initially proposed in [8] and refined in [9]. The basic idea is to
create a single, traceable and consistent requirements model
instead of relying on thousands of pages of text with manually
created traceability links. Requirements are captured in a visual
language following the principles for cross-disciplinary use [6].
URML contains not only diagrams but also semantics defining the
relationships between requirements and rules for creating
diagrams and textual artifacts. It incorporates elements of:

o Goal Modeling
o Use cases (including UML related artifacts)
o Feature Modeling
o Hazard Analysis
o Threat Modeling
o Other requirements related visual modeling techniques

Figure 1: Example for a requirements model in URML

A unified requirements model is a model that has been created
using the URML. In such a model, all related requirements are
intrinsically visible to all the stakeholders without manual tracing.
The requirements created and their relationships are inherently
unambiguous, and can be reviewed by all stakeholders with
minimal language or cultural issues. The models scale nicely and
manage crosscutting requirements, such as climate critical
requirements. Furthermore, project plans, requirement
specifications and tests can be generated directly from the model.

3. UNICASE
UNICASE is a platform based on Eclipse to support the
implementation of model-based tools focused on research in that
area [10]. As all artifacts in UNICASE are part of a unified model,
we will refer to them as model elements. UNICASE offers
support for collaboration on model elements and versioning [11].
This supports multi-disciplinary and distributed projects. Model
elements can be associated to each other by model links offering
explicit traceability as required by URML. As an example a
model element representing a hazard can be linked to a model
element representing an actor, modeling that the hazard threads
that actor. UNICASE provides an initial set of model elements
from two domains, the system model and the project model.
Model elements from the system model describe the system under
construction, such as functional requirements, sustainability
requirements, and potential hazards. Model elements from the
project model describe the on-going project, such as tasks, bug
reports, the organizational structure, iterations or meetings. This
helps to coordinate a distributed project and offer traceability, e.g.
from requirements driven decisions made in meeting to the
affected model elements. The underlying model of UNICASE is
easily extensible by defining new model elements or links
between them. Therefore our proposed model could be extended,
e.g. to implement new elements of URML. UNICASE offers
generic editors for browsing and modifying model elements: (1) A
tabular view, showing a filtered and sort able list of model
elements, (2) A tree-based view, showing the containment
structure of the model, (3), A form-based editor to visualize and
modify the content of one model element and its references (4) A
diagram view, showing graphical representations such as UML
diagrams. Additionally UNICASE can be extended by model
specific views, e.g. a task view showing all tasks of a certain
developer. Furthermore UNICASE offers support for tool
instrumentation and project analysis based on history data [12].

4. CONCLUSION
In this paper we presented the ongoing project of creating a
Unified Requirements Modeling Language for modeling
requirements for complex systems including environmentally
critical requirements. We are currently mining existing
approaches of requirements engineering to include and integrate
their ideas and concepts in URML. The goal is a taxonomy for a
unified requirements model. Based on this taxonomy we want to
enhance URML with missing concepts, such as product line
modeling. Further we want to research in detail, how
environmentally critical requirements can be better supported by
the model and how decisions and conflicts can be better
supported. We plan to demonstrate those concepts with a
prototype based on UNICASE. Evaluated concepts shall have
influence on commercial requirements tool vendors to better
support multi-disciplinary projects.

5. REFERENCES
[1] R.N. Charette, Why software fails, IEEE spectrum, vol. 42,

2005, pp. 36.
[2] B. Bruegge, E. Riedel, G. McRae. T. Russel, Developing

GEMS: An Environmental Modeling System, Journal for
Computational Science and Engineering, IEEE, pp.55-68,
September 1995.

[3] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,W.
Lorensen, Object-Oriented, Modeling and Design, Prentice
Hall, Englewood Cliffs, NJ, 1991.

[4] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling
Language User Guide, Addison-Wesley, 2005.

[5] OMG, The system modeling language SysML,
http://www.omg.org/spec/SysML/1.1/, 2008.

[6] D.L. Moody, The “Physics” of Notations: Toward a
Scientific Basis for Constructing Visual Notations in
Software Engineering, IEEE Trans. on Software
Engineering, 2009, pp. 756–779.

[7] S. Hitchman, The Details of Conceptual Modelling Notations
are Important-A Comparison of Relationship Normative
Language, Comm. of the Association for Information
Systems, vol. 9, 2002, pp. 10.

[8] B. Berenbach, M. Gall, Toward a Unified Model for
Requirements Engineering, ICGSE, 2006, pp. 237-238.

[9] B. Berenbach, T. Wolf, A unified requirements model;
integrating features, use cases, requirements, requirements
analysis and hazard analysis, ICGSE, 2007, pp. 197-203.

[10] B. Bruegge, O. Creighton, J. Helming, M. Koegel, “Unicase
– an Ecosystem for Unified Software Engineering Research
Tools,” Workshop Distributed Software Development -
Methods and Tools for Risk Management, Bangalore, India:
2008, pp. 12-17.

[11] M. Koegel, J. Helming, S. Seyboth, Operation-based conflict
detection and resolution, 2009 ICSE Workshop on
Comparison and Versioning of Software Models,
Vancouver, BC, Canada: 2009, pp. 43–48.

[12] M. Koegel, Y. Li, H. Naughton, J. Helming, Towards a
Framework for Empirical Project Analysis for Software
Engineering Models, ASE VASE Workshop, Auckland, New
Zealand: 2009.

