
To Make SOLWEIG User-Friendly – A climate design tool
DEEPAK JESWANI DEWAN, ROGARDT HELDAL, FREDRIK LINDBERG, SOFIA THORSSON

Chalmers University of Technology University of Gothenburg
Gothenburg Gothenburg
Sweden Sweden
+46 31 772 5408 +46 31 786 4733
dipujd@gmail.com, heldal@chalmers.se fredrikl@gvc.gu.se, sofiat@gvc.gu.se

The aim of this work is to build an architecture around “SOLWEIG – a climate model made in
MATLAB” [1,3], which makes it extensible and user-friendly. This is a joint project between the Software
Engineering Group at Chalmers University of Technology and Urban Climate Group at University of
Gothenburg. SOLWEIG is a radiation model that can make climate estimations (such as sunshine
durations, shadow patterns and daily shading) and analyse the complex interaction between urban design
and the thermal environment. It was developed by the Urban Climate Group, Department of Earth
Sciences, University of Gothenburg, Sweden.

Background: SOLWEIG comes from the acronym SOlar and LongWave Environmental Irradiance
Geometry. It is a software solution that estimates spatial variations of three-dimensional radiation fluxes
and mean radiant temperature (Tmrt) in complex urban settings. The Tmrt is one of the most important
meteorological factors that govern human energy balance and the thermal comfort of man outdoors. It can
be defined as: “The sum of all short and long wave radiation fluxes (both direct and reflected), to which
the human body is exposed” [1]. The SOLWEIG model bases its origins from a sustainable urban design
perspective, with the aim of determining how the radiation fluxes and the Tmrt can affect the health and
wellbeing of the humans in a concrete urban setting along a concrete day. The model is targeted to the
researchers of the subject as well as architects and urban planners.

SOLWEIG bases its calculations on a map, which represents spatial variations of urban geometry, called
DEM (Digital Elevation Model) [2]. The Tmrt is derived from this data plus some other inputs, “such as
direct, diffuse and global shortwave radiation, air temperature, relative humidity and geographical
information (latitude, longitude and elevation)” [3]. In order to show the results, the model generates three
different types of outputs: Maps, Diagrams, and Data files. Maps: a set of twenty-four figures that show
the spatial variations of the Tmrt for each hour of a concrete day plus one more that contains the average of
all this information. Diagrams: three graphical diagrams that show the spatial variations of the Tmrt and
both the short and long wave radiation fluxes in a concrete point of the DEM. Data files: a text file of all
modelled parameters from one specified location within the model domain which are stored in the user’s
computer.

Aims: The SOLWEIG model has given impressive results [1]. However, it is difficult to use by anyone
else than the Urban Climate Group in Gothenburg, since the model is using command-line interface. In
addition to a difficult user interface, SOLWEIG lacks an explicitly stated process. Furthermore, any
mistakes made on the interface when typing or loading a file forces the user to restart the whole model
again. In the same way, the user has to restart (and thus retype) the model every time some new results are
needed to be obtained.

We wanted to make a tool which can be shared with researchers outside the Gothenburg Urban Climate
Group, architects and urban planners. In addition, we wanted the tool to be available without the need for
buying a license. This gave some extra constraints in building our tool. For the development of the tool,
three requirements have been taken as targets: user friendliness, extensibility, and usability.

Method: The main method has been the meetings between the four authors from which the targets of the
graphical interface were obtained. These targets have been: user-friendly interface, extensibility of the
code, and usability of the whole tool. They have been solved by developing and analysing some technical
documents that have defined the structure (both the external and the internal one) of the interface. It is
worth to mention that a Model-View-Controller architecture has been applied, since it covers the
extensibility target and facilitates the achievement of the other two ones. In order to measure the
fulfilment of user friendliness and usability, the tool was evaluated by seventeen subjects who were both
familiar and unfamiliar with SOLWEIG.

Results: We have implemented the tool using Java [5] because of the powerful graphical library called
Swing that contains the necessary features to get a very user-friendly interface. In addition, it is freeware
and only requires a virtual machine installed in the computer of the end user in order to be able to execute
any Java applications. Regarding the connection with the SOLWEIG model (which is written in
MATLAB), the tools MATLAB Compiler and MATLAB Builder JA [4] have been used to obtain a Java
version of the model, so that the graphical interface can execute the MATLAB functions by making use of
a MATLAB runtime engine called MATLAB Compiler Runtime. This application can be deployed
royalty-free along with the graphical interface. Therefore in this way the graphical interface can take
advantage of MATLAB matrices processing and plots of DEMs in order to get the fastest and efficient
simulation of the model; while, regarding the distribution of the application, it can be shared with
researchers, architects and urban planners without the need of buying a license.

Our choice of framework has permitted us to make a powerful user interface which supports the user in
obtaining results from SOLWEIG. The process has been made explicit, the user knows all the time what to
do next. In addition, default values have been given for several of the arguments. If the user wants to
execute SOLWEIG repeatedly with new data, they do not need to start from the beginning. Of course, one
needs to start from the beginning if a new DEM is required, since the whole process depends on the DEM.
The results from our seventeen subjects can be considered as satisfactory, as most of the questions
answered by the testers have had a positive feedback. This tool is a crucial step to allow sharing the model
with the users, such as architects and urban planners, in a visual and friendly way and without involving
any costs, as it is completely free. This project was a success due to the close collaboration between the
Software Engineering Group and Urban Climate Group. The SOLWEIG model is used by different
research groups for example in China, Italy, UK and Germany.

Conclusion and Future Work: The challenge of this project was to introduce software engineering
practices into the domain of urban climate. As a software engineering department we know how to build
system requiring only a few people over a period of a year or two. The type of collaboration we have done
in this project can benefit non-IT research groups such as the Urban Climate Group to obtain complete
tools to support their work and other groups which would like to use the tool. There should be better
support for this type of cross-discipline projects in the academia. In a couple of weeks we will upgrade to
version 2.0 which will include a vegetation scheme. We will also make it more user friendly so that the
user can choose different kind of outputs (e.g. .jpg).

References:

[1] SOLWEIG: SOLWEIG 1.0 – Modelling spatial variations of 3D radiant fluxes and mean radiant
temperature in complex urban settings. 2008. International Journal of Biometeorology. 52:697–
713.Fredrik Lindberg, Björn Holmer and Sofia Thorsson.
[2] DEM (Digital Elevation Model): http://en.wikipedia.org/wiki/Digital_elevation_model
[3] MATLAB programming language: Numerical Computing with MATLAB. 2004. Cleve Moler.
[4] MATLAB Builder JA: http://www.mathworks.com/products/javabuilder/
[5] Java programming language: The Java Language Specification, Third Edition. 2005. James Gosling,
Bill Joy, Guy Steele and Gilad Bracha.

