
In search for green metrics

Juha Taina
University of Helsinki, Department of Computer

Science
Juha.Taina@cs.helsinki.fi

Pietu Pohjalainen
University of Helsinki, Department of Computer

Science
Pietu.Pohjalainen@cs.helsinki.fi

1. INTRODUCTION
Software will play an ever-increasing role in our defense
against climate change. Since software systems are present
in practically every field in the world, also software is present
everywhere. From the climate change point of view, good
software helps to reduce greenhouse gas emissions, such as
carbon dioxide or ozone, while bad software causes to in-
crease the emissions.

In principle the division to good and bad software is easy.
First, implement and install software, second execute soft-
ware, and third measure how much software helped to de-
crease or caused to increase carbon dioxide emissions. In
practice, the division is not at all clear. In our earlier paper
[1] it was analysed how large a carbon footprint a software
package produces. The results were surprisingly small. The
carbon footprint of a software package is negligible in most
cases compared to other issues. For example, traveling easily
dominates development footprints. Software development is
more than just writing code. It requires office space, machin-
ery, traveling, and other resources that are idle most of the
time. The idle times need to be included in the development
metrics.

The carbon footprint of software usage is not a clear metric
either. The primary consumed resource of software is CPU
cycles. We can estimate how many cycles a software pack-
age requires in its life cycle, and how large a footprint each
cycle creates by multiplying the average cost of producing
electricity with the average power consumption of a CPU cy-
cle. Some might say that such an estimate is good enough,
but when considering the system’s overall effect, the esti-
mation is but too meek. Software is more than consumed
cycles. For this reason, we need established metrics that
measure the indirect effects of software.

Usually software is part of a software system with a goal.
The software helps the system to reach the goal. The indi-
rect effects of a software package define two things: 1) how

well software helps the system to reach the goal, and 2) how
environment-friendly the goal is.

For example, let us have software that helps to reduce 10%
of a carbon plant’s emissions, without reducing its power
output. Obviously this is good software since it helps the
system (power plant) to reach its goal with smaller emission
cost. However, it is not at all clear that it is green software
since the system itself is not green.

On the other hand, let us have software that controls a pack
of windmills. The software does its job but is not very ef-
ficient. Due to its lack of efficiency the windmills are not
always working at maximum efficiency. Obviously this soft-
ware is not helping the overall system to get its full potential
but the system itself is very environment-friendly.

In both of these cases, the system’s goal is to produce elec-
tricity. In the coal-burning power plant’s case, the variable
cost in terms on carbon dioxide is high, while in the wind-
powered plant the variable cost is close to zero.

In absolute terms of saved carbon dioxide tons, the first
software package was clearly better than the second, since
it unambiguously reduces the emissions in a running power
plant. However, in the terms of absolute number of carbon
dioxide tons, the second software system is better than the
first one, as the variable cost in emissions is an order of
magnitude lower. Overall, it is not at all clear which software
of these two was greener.

Currently, we do not have an established framework for es-
timating or measuring the effects of software systems’ effect
on climate change. As a large number of software projects
are starting or already ongoing with the target to reduce
emissions, we need to be able to quantify these projects’
expected effects.

Once we have good metrics to measure software greenness,
we can decide which software projects are the best for the
climate. Such metrics would help to decide which projects
deserve funding and perhaps how much funding each ac-
cepted project would get. We are still a long way from this
goal.

2. REFERENCES
[1] J. Taina. How green is your software? Submitted to the

33rd Software Engineering Workshop, 2009.


