
Refactoring Infrastructure: Reducing emissions and energy one step at a time
Chris Parnin, Carsten Görg {vector,goerg}@cc.gatech.edu

PROPOSAL
Infrastructure is strangely mundane and invisible to the ca-
sual observer yet fundamental and permeable throughout ev-
ery aspect of society. Infrastructure includes everythingour
businesses and homes depend on everyday yet we give little
thought in passing: the plumbing and water filtration plants
providing fresh water, the electricity delivery networks pro-
viding power, farming and transportation networks provid-
ing food, and furnaces and insulation providing warmth.

In the coming years, rapid climate change and unsustainable
energy resources may require companies, city planners, and
government officials to enact large-scale changes to society
and the underlying infrastructure. Changes to infrastructure
from the top-down can be a notoriously difficult proposition
as unexpected interactions and consequences could cause
skyrocketing cost and frequent disruptions to service. Fur-
ther, infrastructure is an entity that not one person controls
and requires the coordination of many to make a change –
often in a bottom-up manner. In support of this task, we pro-
poseinfrastructure refactoring: a set of tools for applying
function-preserving changes to infrastructure without dis-
ruption to those services, while changing the internal work-
ings. Such a kind of toolkit would allow engineers and offi-
cials to identify the impact of a proposed change to existing
infrastructure, outline the steps for making and testing the
change, and to support planningwhat-if scenarios for decid-
ing the most suitable technologies for a local region.

Software developers and researchers have several decades of
experience in enacting large-scale changes to complex sys-
tems. The strategies, lessons and tools we have identified
and developed in support of these efforts also have direct ap-
plications and analogies to adapting the infrastructure that
society depends on. One technique in particular,refactor-
ing, has been widely adopted in practice and has received
direct tool support in programming environments. Refac-
toring is the process of changing the structure of a program
without changing the way that it behaves. In his book on the
subject, Fowler catalogs 72 different refactorings, ranging
from localized changes such asExtract Local Variable, to more
global changes such asExtract Class. Based on his experience,
Fowler claims that refactoring provides significant benefits:
it can help programmers add functionality, fix bugs, and un-
derstand software.

There are several analogies between the process of refac-
toring software and refactoring infrastructure. For exam-
ple, Fowler describescode smells, a set of symptoms in-
dicative (but not confirmatory) of the presence of certain
design problems, as an indication of when to perform cer-
tain types of refactorings. In place of code smells,energy
smells, can be used to identify problematic energy usage
patterns and suggest possible transformations to those prob-
lems. As we have several metrics and visualizations for find-
ing code smells, similar ones can be devised for detecting en-
ergy smells in building and city plans. Another analogy is as

programmers are well-supported with automated refactoring
tools in their programming environments, planners could be
well-supported with automated refactoring tools for adapt-
ing buildings and cities. When viewing plans of buildings
and cities, a rich set of refactoring transformations would
allow planners and engineers to quickly apply, plan and ana-
lyze energy-reducing changes to buildings and cities. These
tools would allow planners to detect problems, evaluate sev-
eral options, and select the best course of action for their
regional needs. Yet another analogy the software engineer-
ing community can offer: as we have collected a catalog of
refactorings for capturing collective knowledge and building
a common vocabulary, a catalog of infrastructure refactor-
ings can also facilitate officials in knowing the options they
have available and in providing a framework for tools and
procedures when transforming infrastructure.

Current trends in energy distribution suggest that making
changes to infrastructure will not simply be isolated to a few
centralized locations, but rather require the coordination and
cooperation of many decentralized locations. For example,
Lichtblick (a German eco-supplier of electric energy) and
Volkswagen are planing to deploy 100,000 miniature com-
bined heat and power plants in private households within the
next year. These miniature plants are powered by natural gas
and can produce the same amount of energy as two nuclear
power plants. There are numerous benefits for decentraliza-
tion: use of waste heat for heating, more flexible demand
driven energy production, less emissions than coal power
plants; however, this wide-spread deployment will need the
support of tools and shared know-how to happen effectively.
By leveraging a mature infrastructure refactoring toolkitin-
spired from software engineering, many households could
apply anIntroduce Mini-Power Plantrefactoring.

In summary, contributions software engineering can make
toward addressing climate change challenge include:

∙ a catalog of function-preserving but emission-and-energy-
reducing transformations to infrastructure,

∙ metrics and visualizations techniques for identifying en-
ergy smells,

∙ automated tools for transforming models of infrastruc-
ture.

CHALLENGES
To make these strategies and tools usable, we have to over-
come several challenges.

An immediate concern is to what extent we have models of
existing infrastructure that are suitable for automated anal-
ysis. Certainly, at least blueprints and topographical maps
exist for much of the infrastructure; however, extra effort
may be required to annotate and import this information into
a form suitable for analyzing and simulating changes to it.

1



In addition to modeling infrastructure, city planners and of-
ficials may need more extensive test cases to evaluate pro-
posed changes to a system such as handling peak loads, fail-
ing gracefully with degradation, and meeting safety regula-
tions. In the same way we analyze control and data depen-
dencies in software, we must devise analysis techniques for
identifying risks and impact to other dependencies of infras-
tructure such as increased water demands a new component
may impose.

Although there are many analogies we can derive from soft-
ware engineering, we have to address important differences
in how software changes and infrastructure (much of it phys-
ical) changes. Unlike software, a change to infrastructure
often cannot be instantaneous – not only because of phys-
ical constraints but also caused by constraints arising from
coordination with other organizations and stakeholders. In
response, tools may need to focus on generating workflows
that help officials manage the schedule and procedures for
making a change (who do I call to make this happen?).

Numerous contextual and regional information need to be
gathered and provided to local officials as part of develop-
ing their models. Many decentralized and alternative en-
ergy sources require local information such as average sun-
light length and orientation or wind strength and direction.
An even simpler constraint is shape and variation in roof
tops. For instance, a university or company such as Mi-
crosoft owns hundreds to thousands of buildings, each hav-
ing a distinct architecture. If such an organization wantedto
apply a refactoring such asIntroduce Solar Thermal Water Heating,
then it needs models that would easily handle variations be-
tween their buildings in order to evaluate the effectiveness of
the proposed change.

Discussion points for the workshop:

∙ What would a description for aIntroduce Solar Thermal Water
Heaterrefactoring look like?

∙ Brainstorm an initial catalog of infrastructure refactor-
ings.

∙ To what extent models of existing infrastructure can and
should be built to support refactoring?

2


	Proposal
	Challenges

