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Abstract 

An increasing percentage of the data needed by 
business applications is being generated in XML 
format. Storing the XML in its native format will 
facilitate new applications that exchange 
business objects in XML format and query 
portions of XML documents using XQuery.  This 
paper explores the feasibility of accessing 
natively-stored XML data through traditional 
SQL interfaces, called Relational Over XML 
(ROX), in order to avoid the costly conversion of 
legacy applications to XQuery.  It describes the 
forces that are driving the industry to evolve 
toward the ROX scenario as well as some of the 
issues raised by ROX.  The impact of 
denormalization of data in XML documents is 
discussed both from a semantic and performance 
perspective. We also weigh the implications of 
ROX for manageability and query optimization. 
We experimentally compared the performance of 
a prototype of the ROX scenario to today’s SQL 
engines, and found that good performance can be 
achieved through a combination of utilizing 
XML's hierarchical storage to store relations 
"pre-joined" as well as creating indices over the 
remaining join columns.  We have developed an 
experimental framework using DB2 8.1 for 
Linux, Unix and Windows, and have gathered 
initial performance results that validate this 
approach. 

1. Introduction 

After two decades of commercially-available products, 
relational database systems (RDBMSs) supporting the 
SQL query language standard are an unqualified 
commercial success, with a huge industry-wide 
investment in applications such as Enterprise Resource 
Planning (ERP) [SAP04, PSW04, ORC04] and Customer 
Relationship Management [SIB04, ORC04] that query an 
RDBMS with SQL.  As the acceptance and sources of 
XML documents have proliferated, many commercial 
relational database systems have adapted by developing 
techniques for storing XML documents in relational 
systems by shredding documents into relations [EDO01, 
SB00, SQX04] and/or by storing each document as an 
unstructured, large object (LOB) [EDO01].  However, 
shredding and recomposing all documents, many of which 
will never be retrieved, is unduly expensive.  
Alternatively, searching XML documents stored as LOBs 
is prohibitively slow.  As more enterprises exchange 
business objects, such as purchase orders, in XML format, 
applications will increasingly need to efficiently query 
portions of XML documents via the emerging XQuery 
standard [BCF03]. This will lead to storing the data in 
some native XML format that efficiently supports 
XQuery.   

Legacy relational interfaces and native XML storage 
appear to be on a collision course that raises many 
interesting questions.  Can the relational and XML data be 
treated separately, storing each in the appropriate type of 
repository?  In other words, will data from relational 
sources be queried exclusively by SQL, and XML data 
exclusively by XQuery? Or will databases of the future 
have to be hybrids, storing both relational and XML?  Or 
will we just convert relations into XML objects and store 
everything in XML format?  Regardless, what is to 
become of the “legacy” applications written in “good old” 
SQL that need access to data that increasingly originates 
as XML data?  Do they need to be re-written, or can XML 
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repositories support both XQuery and SQL?  Will there be 
evolution, or a revolution? 

We are convinced that XML adoption must 
necessarily be an evolution – that existing relational 
applications are too big and complicated to convert them 
all rapidly or inexpensively from SQL to XQuery.  We 
also project that the data accessed by these SQL 
applications will increasingly come from XML sources 
and need to also be accessible via XQuery, and hence will 
be stored in native XML format.   

This paper therefore explores how to efficiently 
support Relational Over XML (ROX), i.e. the existing 
SQL interface to a native XML store.  We postulate a 
database containing a blend of both tables and XML 
documents, with an increasing percentage of XML 
documents over time.  The ROX scenario limits our 

consideration to SQL queries as input that return rows as 
output, in order to support legacy applications, even 
though the system is very likely to also support XQuery 
interfaces to the same database.  

The ROX scenario alone raises many important issues.  
Perhaps the most important is whether ROX can perform 
as well as today’s SQL engines.  What is the impact of the 
obvious expansion of data caused by tags and other 
structuring information?  How much should XML 
documents be normalized, and does the denormalization 
supported by XML help or hinder performance?  Or is 
normalization of data obsolete with the advent of XML? 

The remainder of this paper is organized as follows.  
The next section summarizes the evolution of XML data 
management.  Section 3 discusses issues involving query 
semantics of SQL and XQuery, tradeoffs for selecting an 
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appropriate XML schema, and performance concerns.  
We present our ROX experimental design in Section 4, 
and the results of those experiments in Section 5.  Our 
conclusions and directions for future research comprise 
the last section. 

2. The Evolution of XML Data Management 
Systems 

Storing and processing XML data have been a focus of 
the database research community for much of the last 
decade. Several XML data management systems have 
been proposed, most based on various degrees of 
adaptation and reuse of relational technology. There are 
two main reasons for reuse of relational technology. First, 
adaptation is presumably less expensive and allows faster 
time to market than development from scratch. The other 
reason is that such hybrid systems are capable of storing 
both relational (structured) and XML (semi-structured) 
data. As most applications are likely to operate over both 
types of data, the new generation of databases will need to 
support both allowing the application to access a single 
data repository.  

Several different architectures have been proposed for 
building a hybrid XML-relational database, as illustrated 
in Figure 1. Chronologically, the first attempts were based 
on reusing the whole RDBMS stack when processing 
XQuery queries: from the SQL query language to the 
relational data storage. In this XML-Over-Relational 
(XOR) approach, the XML documents are shredded into 
atomic values that are then stored in relational tables. 
XQuery queries are translated into SQL queries to be 
evaluated by the existing query processor. Several 
research prototypes have explored this scheme, such as 
LegoDB [BFH00], and XPeranto [SKS01], and several 
products offer different shredding and XPath querying 
capabilities based on this approach [EDO01, MSF00]. 
The advantage of this architecture is that it requires 
almost no modification of existing database engines. As 
such, an XQuery implementation can easily be adapted to 
several different DBMS systems.  However, as the 
XQuery language has evolved into an elaborate and 
complex standard, it has become clear that translating 
XQuery queries into SQL queries is a daunting task. 
While shred-and-query systems claim compatibility with 
a subset of the language, none has managed to produce a 
fully compliant XQuery implementation.  

Next in the timeline were systems that are on the other 
side of the architectural spectrum, named Co-processor 
Architecture in Figure 1(b). Here, XML is stored as 
unparsed text in VARCHAR or LOB columns of 
relational tables. The XML data is opaque to the RDBMS 
and only the storage layer is re-used. The XML data is 
queried using an XQuery processor that is external to the 
database and invoked much like a user-defined function. 
The communication between the two processors is using 
textual or equivalent format. The SQL and the XQuery 

processors can be developed separately and interchanged. 
This solution is attractive for its relative simplicity and 
modularity. 

Most of today’s commercial systems support this type 
of XML manipulation using stored procedures to invoke 
an external XQuery processor [EDO01, MSF00], in 
conjunction with XOR support. However, due to the loose 
coupling of the query processors, usually the entire XML 
document is brought into memory before processing, 
severely limiting the size of the data and optimization 
possibilities 

Several systems have been reported that support only 
XQuery. Systems such as Niagara [NDM01] and Timber 
[JAK02] break the XML document into nodes and store 
the node information in a B+-tree, with all document 
nodes stored in order at the leaf level.  This allows for 
efficient document or sub-tree reconstruction by a simple 
scan of the leaf pages of the tree. In Niagara, additional 
inverted list indexes are created to enable efficient 
structural join algorithms for ancestor/descendant paths. 
However, these systems do not support SQL or relational 
storage. 

More recently more native storage of XML documents 
has been proposed in [KM99] and [ZKO04]. In our work 
we take a similar approach where the XML data is stored 
as in a native tree format in which document nodes are in 
most cases clustered together on a page. Bulk processing 
is performed using indexes, while the storage is optimized 
for fast navigation to evaluate the non-index portions of 
the query. Parent-child traversal does not require a join 
between different tables. Since most XPath expressions 
require parent-child traversal, this scheme allows for 
efficient access to the data. The details of the storage are 
beyond the scope of this paper. We use this model as an 
example to explore the consequences of representing 
relational data with hierarchical trees.  

At this point we consider where will the system 
architecture move beyond today’s state of the art? Can we 
project the direction of the path based on the evolution so 
far? Is the current situation similar to the introduction of 
the relational database systems compared to IMS? We try 
to analyze the issues from several angles and answer to 
these questions. 

One probable direction in the short term is the side-by-
side architecture, as shown in Figure 1(c). In this 
architecture there is a tighter coupling between the query 
processors than in the architecture based on shredding. 
Query fragments can be translated from one language to 
the other and exchanged using internal data structures that 
may not adhere to the language semantics. Such a 
mechanism improves the efficiency of the translation and 
allows more degrees of freedom in the evaluation. For 
example, when returning values from XQuery to SQL, as 
required when evaluating SQL/XML, queries might 
require that an element is constructed by an embedded 
XQuery query and then shredded by an SQL table 
function. Instead, the optimizer can re-write such queries 
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so that rows of values are returned from the XQuery 
processor directly into the SQL processor, although rows 
are not part of the Query Data Model.  

While more efficient than the first two architectures, 
the side-by-side architecture introduces many 
complexities. It requires that various system components 
have compatible definitions on both sides of the system. 
For example, the catalogue description of internal objects 
such as indexes and materialized view definitions need to 
be matched to both the SQL and XQuery queries. While 
these issues pose interesting research challenges, we view 
this architecture only as a partial solution that will be 
simplified and eventually morph into the Relational over 
XML architecture shown in Figure 1(d) where the 
primary processing is performed by an XQuery engine 
with native XML storage model. In its engine all 
transformations are governed by the XQuery language 
specification and the Query Data Model. The SQL 
support is divided between a thin parse-and-rewrite layer 
and a library for support of the SQL functions and 
operators that cannot be mapped to the XQuery functions 
and operators. 

The ROX architecture is at the opposite extreme of the 
solution space when compared to the first XQuery query 
processor designs, in which the XQuery processor was a 
thin layer over SQL database systems. The obvious 
question is what makes this architecture viable if the 
opposite solution has not been implemented in any of the 
major database products? Furthermore, in terms of 
development cost, this architecture requires a complete 
XQuery engine that is adapted to run SQL queries, 
seemingly a much more demanding path than the opposite 
route.  

As XQuery and the QDM data model conceptually 
subsume the SQL language and the relational model, 
implementing SQL on top of an XQuery engine poses 
significantly lesser challenge than the opposite.  We also 
believe that this architecture will not be achieved by 
developing an XQuery engine from scratch. Existing 
relational engines will be morphed into this architecture 
possibly through the intermediate stages represented by 
the other architectures depicted in Figure 1. It seems to us 
that, beyond the initial releases of the commercial 
database products for XML data management, the main 
forces in the database engine evolution will be to increase 
the performance and reduce the complexity of the 
relational-XML engines. These two forces will be the 
major factors in the appearance of the ROX architecture, 
shown in Figure 1(d). 

3. ROX Model Issues 

While unable to implement a complete ROX 
architecture, we single out three issues that are crucial to 
demonstrate the viability of the infrastructure and explore 
in more details each. We first overview the language 
semantics issues and how the semantics differences 

between SQL and XQuery impact the ROX architecture. 
Then we turn our attention to the data layout and 
normalization related issues as posed by the nested XML 
data model. Finally we consider the performance impact 
of an XML native format, query optimization issues, and 
XML data manageability.  

3.1.   Language Semantics 

The main difficulty in running SQL queries over an 
XQuery implementation is providing semantically correct 
answers to the queries. Although SQL and XQuery have 
similarities, there is an abundance of differences. First of 
all, the languages are defined over different data models. 
The SQL language is defined over the relational model 
[SQL98], while the XQuery language is based on the 
Query Data Model [FMM03] that represents XML data as 
typed trees.  SQL queries operate over column values, 
while XQuery manipulates ordered, heterogeneous 
sequences of values and node references. While a detailed 
description of the differences is beyond the scope of this 
discussion, in general, QDM is much more elaborate than 
the relational data model. This is the core reason why 
XQuery-to-SQL translation is unsuitable as a basis for a 
fully functional XQuery system.  

The languages also differ in their operational 
semantics. The most quoted difference is the document 
order preservation of XQuery vs. unordered semantics of 
SQL. Furthermore, each language standard contains 
precise descriptions of the language operators. These 
specifications seldom match.  For example, the 
comparison operators in SQL use 3-value logic, operating 
over Boolean operands and returning true, false or NULL. 
The same XQuery operators (general comparison) operate 
over sequences of nodes or values and return true and 
false. There is no NULL value defined in the XQuery data 
model. Another discrepancy stems from the different 
definitions of the basic data types as decimals and date-
time. As many of the built-in functions operate over such 
values, they might potentially return different results.  

Despite these differences, XQuery is designed to be 
able to manipulate structured data along with unstructured 
[CFF03]. Therefore, there is an overlap in the 
functionality of SQL and XQuery. While different in data 
model and semantics, when constrained over structured 
data,  many XQuery operations have semantics close to 
that of SQL, and under certain cardinality constraints 
match the SQL semantics. For example both XQuery and 
SQL numeric operations are based on the IEEE standard 
and seem to be reconcilable. Furthermore the XQuery 
arithmetic operators treat empty sequences in the same 
manner as SQL operators treat the NULL values. This is 
also true for the XQuery value comparison operators (eq, 
gt, neq, etc.) which have 3-value logic (returning empty 
sequence if any of the operators is an empty sequence) as 
the comparison operators of SQL. Translating the SQL 
comparison operators into XQuery value comparison 
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operators, we can achieve the same semantics as in SQL. 
This allows pushdown of simple arithmetic and 
comparison predicates from SQL to XQuery. While the 
XQuery Boolean operators operate using 2-value logic, it 
is simple to implement 3-valued Boolean operators in 
XQuery that have same semantics as the SQL operators. 
With such a small implementation effort, a large class of 
SQL predicates over numeric types and strings can be 
translated into equivalent XQuery predicates.  However, 
based on the current standards proposal for XQuery, it 
seems that it will not be possible to translate all SQL 
functions to existing XQuery functions.  We envision this 
necessary for SQL datatypes that are not subsumed into 
XQuery datatypes, such as types representing date-time 
and timestamps [SQX04]. 

3.2.   Normalization 

One of the key benefits of a native XML store is not 
having to normalize the elements that make up a business 
object by shredding them into tables.  For example, 
consider a common business object -- a purchase order, 
which might contain some customer elements and one or 
more line items describing each object being purchased:  
 

 
Figure 2 – Purchase order in XML format 

 
Since the purchase order arrives in XML format, it is 
tempting to store the entire document as it comes into the 
system, to minimize any processing.  But is that the right 
thing to do?  Does the nesting of XML documents make 
normalization of objects in databases obsolete?  And if 
not, what elements should be normalized and which 
should not? 

The answer is that normalization is still needed in 
XML databases, for the same reason it was needed in 
relational databases:  redundancy of data and update 
anomalies [DAT03].  In the above example, the line items 
nested within an order are wholly owned by that order, so 
they cannot suffer the update anomalies of shared sub-
objects.  However, the customer information is a bit more 
subtle.  It is likely to be shared by many other orders, so 
keeping it with each purchase order would both be 
unnecessarily redundant and risk update anomalies.  For 
example, the customer address is on the purchase order, 
but it's probably the same address as on hundreds of other 
orders from the same customer.  But if it suddenly 
changed, this order might be sent to the address that was 
in effect at the time the order was made, rather than the 
address in effect when the order is shipped.  Similarly for 
other attributes of the customer.  So pretty clearly the 
customer information should be normalized.  However, 
some elements of the customer are really elements of the 
interaction of the customer and this order.  For example, 
the order_discount element might depend upon the size of 
the overall order and how valued this customer is.  Hence 
it cannot be normalized out of the purchase order.  

The good news is that native storage of XML 
documents permits denormalization when it makes sense 
semantically (sub-objects are not shared), while still 
retaining the option to normalize data, i.e. when sub-
objects may be shared and hence risk update anomalies. 
 The database designer is thus free to do what best models 
the data, rather than forcing the design into a large 
number of overly-normalized, homogeneous tables.  And, 
as we shall see later, denormalization can also have 
performance benefits by obviating the need for some joins 
when the data is queried.  

Today’s relational engines use data redundancy in 
form of pre-joined relations to speed up evaluation of 
queries [HAL01].  Materialized view techniques will also 
be important in XML databases in general and with the 
ROX model in particular. In section 5.3, we show that 
data nesting that matches the query structure allow for 
much better evaluation times.  As opposed to relational 
systems in which the materialized, pre-joined views are 
flat tables, an XML engine allows these to be in non-first 
normal form, similar to the proposal of [SPS87].  

3.3.  Performance 

To achieve good query performance for the ROX model, 
we must consider several issues.  The storage of the XML 

<order> 
  <date>12 July 2003</date>  
  <customer>  
   <ID>43839</ID> 
   <name>Slaghorn Bolts</name>  
   <contact>Joyce Smith</contact>  
   <address> 
    53495 N. First St. 
    Cleveland, OH 45678 
   </address>  
   <order_discount> 
    0.10 
   </order_discount>  
  </customer>  
  <line_item>  
   <part_ID>RYZ04856-8945</part_ID>  
   <quantity>33</quantity>  
   <discount>0.12</discount>  
  </line_item>  
  <line_item>  
   <part_ID>KFE389745-2248</part_ID>  
   <quantity>15</quantity>  
   <discount>0.05</discount>  
  </line_item>  
  <line_item>  
   <part_ID>OI230988-2833</part_ID>   
   <quantity>100</quantity>  
   <discount>0.21</discount>  
  </line_item>  
</order> 
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tree could be sorted in either depth-first (document) or 
breadth-first order.  The depth-first order is advantageous 
when the goal is efficient reconstruction of the XML.  
However, if our XML documents have several levels of 
hierarchy, queries referencing only data at the top levels 
of the document will suffer. 

Another concern is the overhead of storing the 
structure of the document inline with the data being 
represented.  Although it is possible that the stored XML 
document conformed to a stated XML schema, in general 
our storage format must allow for XML documents which 
lack a predefined schema.  This storage overhead forces a 
native XML store to consume more space for representing 
a certain dataset than the relational storage.   The absence 
of an XML schema also forces data in the document to be 
stored as text, which also adds storage overhead. 

To facilitate efficient selection and value-based joins 
between XML documents, an XML index is required.  As 
with relational systems, such an index will allow us to 
find documents which contain a certain value in a certain 
location. Many indexing strategies for XML have been 
proposed, such as inverted lists of elements for structural 
joins and path indexes.  

3.4 Optimization 

Compiling SQL queries on XML documents presents new 
challenges for query optimization. Although 
denormalized data in the form of materialized views and 
join indexes is already widely exploited by relational 
query optimizers, both the query and the denormalized 
data are defined in relational terms, usually SQL.  In 
ROX, the optimizer must now match joins and predicates 
in the SQL query to XPath expressions that define the 
schema of XML documents (presumably the XML 
documents manipulated by ROX will have a schema with 
sufficient homogeneity to permit a tabular view of them).  
Join predicates between documents must also be folded 
into predicates at various points of an XPath expression, 
depending upon the join order.  In our experiments, 
discussed below, we performed this mapping manually to 
avoid the challenge of automating it. Having documents 
with various schemas – or even no schema at all! – mixed 
together in the same repository, called “schema chaos”, 
negates the homogeneity that simplified the cost model 
and the database statistics on which relational 
optimization depended. And though the denormalization 
of XML documents reveals correlations among objects, it 
is not at all clear what database statistics are needed to 
summarize those correlations and how those statistics can 
be exploited to accurately estimate the number of 
documents satisfying a particular SQL query.  And this 
doesn’t even consider the considerable challenges of 
optimizing XQuery queries!    

3.5 Manageability 

Will a database of XML documents be easier or more 
difficult to manage than relational tables?   

Some would argue that management of XML 
repositories should be child’s play.  Since real-world 
objects no longer need to be normalized into 
homogeneous collections of rows (tables), the XML 
repository can be reduced to a single, virtualized heap of 
heterogeneous objects (documents), creating the relational 
equivalent of the Universal Relation [MUV84].  In lieu of 
perhaps tens of thousands of normalized tables, there 
would be only one collection of documents to configure, 
backup, recover, reorganize, collect statistics on, etc. 
Database design would be trivial, normalization would be 
unnecessary, and one index over this entire collection 
would suffice to find any object in the database -- the 
“Google model” applied to databases! 

On the other hand, management of modern databases 
entails far more than just deciding what tables and indexes 
to create.  As argued in Section 3.2 above, some 
normalization will still be required to avoid update 
anomalies, so logical database design may be less 
constrained but certainly not obviated. Eventually, XML 
systems will permit the definition of the XML equivalent 
of materialized views, and deciding which to create will 
surely be no easier than it is now for relational systems.  
Even if all documents are in one monolithic collection, 
administrators will probably have to define arbitrary 
boundaries within that collection for administration 
purposes, so that pieces can be maintained while the rest 
of the database is available for querying and updating, 
much as the rows of large tables are usually divided into 
ranges for administrative purposes [IBM01].  And given 
the increased challenges posed by optimizing queries 
against these heterogeneous collections (see previous 
section), it is likely that the database statistics required for 
optimization will be far more extensive than for relational 
systems.  For performance reasons, we might still want to 
cluster related documents together to exploit the larger 
pre-fetching chunks that relatively slower disk arms 
necessitate, or possibly de-cluster them to spread access 
among multiple arms for greater I/O parallelism, rather 
than simply append each new document to the end of the 
heap. 

4. Design for Experimentation 

In Section 2, we described a number of architectural 
alternatives for a mixed SQL and XQuery system, 
including the ROX model.  We now provide a description 
of the implementation we chose for our experimental 
framework. 

A full implementation of the ROX architecture would 
require a fully-functional XQuery DBMS, upon which a 
thin SQL-to-XQuery translation layer would sit.  
However, building a system like this would take a 
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significant number of person-years to implement. Instead, 
we took advantage of a prototype XML store available to 
us and implemented a much simpler mapping layer.  This 
experimental architecture is described in detail in the 
following sections. 

4.1 SQL to XQuery translation using the XML 
Wrapper 

For our experiments, we modified an existing product 
called the XML Wrapper, which is part of the IBM DB2 
Information Integrator, version 8.1. The unmodified XML 
Wrapper provides a mechanism for presenting relational 
views of XML data stored as text files on disk.  Each 
relational view defined over an XML document is called a 
nickname, and utilizes syntax similar to the CREATE 
TABLE statement. 

In Figure 3 we show a possible CREATE 
NICKNAME statement that DB2 would use in 
conjunction with the XML Wrapper to query the XML 
document shown in Figure 4. The product version of the 
XML Wrapper uses the Xerces [XER03] XML parser and 
the Xalan [XAL03] XPath evaluator to find data in the 
XML document(s). Both Xerces and Xalan are 
subprojects of the Apache XML project [APX04]. The 
wrapper queries the XML and creates relational rows 
conforming to the CREATE NICKNAME statement to 
hand back to the database engine. 

Because XML allows hierarchical nesting of elements, 
entities may be stored physically together in the same 
document.  For example, you might store a Customer with 
all of the Orders he has placed as child elements of the 
Customer.  To exploit this, the XML wrapper allows 
special columns to be specified as the PRIMARY_KEY 

or FOREIGN_KEY for a nickname.  For example, a 
column ‘fk’ in a nickname for ORDERS may be defined 
as the FOREIGN_KEY of the PRIMARY_KEY column 
‘pk’ in a nickname for CUSTOMER.  When a SQL query 
references these two nicknames with an equality join 
predicate between fk and pk, the wrapper knows that any 
Order information returned will be found as sub-elements 
of the Customer in the XML document.  Any paths 
specified by the ORDERS nickname must be relative to 
the XPATH specified for the CUSTOMER nickname.  
The value for the pk column is simply a serialization of a 
Xerces element reference. 

For our experiments, we modified the existing XML 
Wrapper to be an interface to a prototype XML store.  
Since our data had been previously parsed and stored in 
this native XML store, we removed the Xerces code.  
Also, the Xalan XPath evaluator could not be used, since 
it operates over in-memory DOM trees only.  In its place, 
we used a custom XPath evaluation engine that evaluates 
paths over the prototype XML store.  To implement the 
PRIMARY_KEY column option, we used an internally 
generated XML node identifier.  We present an overview 
of our experimental architecture in Figure 5. 

One of the primary advantages of a native XML store 
is that we have an opportunity to create one or more 
indices over the loaded data.  The prototype XML store 
contains a path-based XML indexing module, but lacks 
automatic XML index selection in the query optimizer.  
To enable using each XML index created, we wrote 
custom parameterized table functions that take a key 
value as input and return relational rows that are the inner 
join result for that key value.  This works because the 
XML index stores the same XML node reference value 
that the XPath evaluator uses.  This idea also allows us to 
hand-optimize the join order for queries that refer to more 
than two nicknames by using a column from the result of 
one table function call as the input for another.  For 
example, if we want to force a scan of the CUSTOMER 
nickname to be the outer entity in an index nested-loops 
join with ORDERS, we would write the following SQL 
query: 

 
  SELECT O.O_ORDERDATE 
  FROM CUSTOMER C, tfORDERS(C.C_CUSTKEY) O; 

 
In this example, tfORDERS() is a user-defined table 

function that takes as input a customer key and returns 
columns from the ORDERS nickname from rows that 
contain a matching O_CUSTKEY value.  The XML 
documents that match are found by performing a lookup 
in the XML index to find all documents which contain the 
path /ORDERS/O_CUSTKEY/text() = [C_CUSTKEY], 
where C_CUSTKEY is the value passed to the table 
function. 

CREATE NICKNAME REGION( 
  R_REGIONKEY int 
     OPTIONS(XPATH ‘R_REGIONKEY/text()’), 
  R_NAME char(25) 
     OPTIONS(XPATH ‘R_NAME/text()’), 
  R_COMMENT varchar(152) 
     OPTIONS(XPATH ‘R_COMMENT/text()’)) 
FOR SERVER xml_server 
OPTIONS(XPATH ‘/REGION’); 

<REGION> 
  <R_REGIONKEY>2</R_REGIONKEY> 
  <R_NAME>ASIA</R_NAME> 
  <R_COMMENT>sladfkj weoiu sdflkj 
  </R_COMMENT> 
</REGION> 
 

Figure 4 - Sample XML document 

Figure 3 - Nickname definition 
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4.2. Prototype Walkthrough 

To illustrate the prototype ROX architecture, we will 
describe how the following SQL query is executed: 
 
  SELECT r_name, 
    COUNT(n_nationkey) AS n_count 
  FROM region, nation 
  WHERE r_regionkey = n_regionkey 
  GROUP BY r_name; 
 

Logically, the input to the query optimizer is a SQL 
parse tree.  For our example query, it will contain 
references to our nickname definitions for REGION and 
NATION, as well as the R_REGIONKEY = 
N_REGIONKEY predicate.  Since DB2 only knows 
about the definition, it must consult the server specified 
by the CREATE NICKNAME statement, and therefore 
our modified XML wrapper, to create alternate execution 
plans and cost estimates.  Plans enumerated include plans 
for: REGION only, NATION only, a plan that pushes the 
equality predicate into the wrapper and returns rows 
containing both REGION and NATION columns, and a 
plan for NATION which takes as input a context 
R_REGIONKEY and returns rows with an equal 
N_REGIONKEY column.  We would accept this last plan 
only if R_REGIONKEY was defined with the 
PRIMARY_KEY option in the REGION nickname, and 
N_REGIONKEY defined with the FOREIGN_KEY 
option and referencing the REGION nickname. With a 

full cost model in the wrapper, we could tell the optimizer 
that one or more of these plans would provide the best 
performance.  For each plan the wrapper can accept, we 
create a structure containing everything necessary to 
execute the plan later at runtime, and return control back 
to the optimizer.  In the prototype, the structure would 
contain an XQuery to be executed at runtime.  For 
example, we would create the following XQuery when 
asked to scan the REGION nickname: 
 
  for $a in /REGION, $b in $a/R_NAME 
  return $a, $b; 
 

Once the optimizer chooses a final query plan, the 
query runtime takes control and begins to execute the 
plan.  Any operator in the plan containing a packed 
structure created by the wrapper during optimization now 
calls back into the wrapper requesting to open a cursor 
based on the information contained in that structure.  For 
our example query, the first request might be to do a table 
scan on the REGION nickname.  

For each row returned from the wrapper for that scan, 
a second cursor would be opened over the NATION 
nickname, with an additional parameter containing the 
value of the R_REGIONKEY column for the current 
REGION row.  Recall that the value of the 
R_REGIONKEY column would be the internal XML 
node identifier for the REGION element parenting the 
NATION information to return.  The XML navigation 
would begin with the node identifier passed in, rather than 
from the document root.  If the XML nodes are stored on 
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disk in document order, we likely have the relevant 
NATION elements already in memory.  

The prototype expects DB2 to perform the calculation 
of the N_COUNT output column and to handle the 
GROUP BY R_NAME clause.  Note that better 
performance could be achieved for this query by pushing 
the aggregate down into the XML Wrapper, but the 
prototype did not do so. 

4.3. Experimental Dataset 

We chose the TPC-H [TPC02] dataset for our 
experiments.  This dataset is well known throughout both 
the industrial and academic research communities, and is 
representative of a normalized relational schema that can 
be adapted to the ROX model.  The schema consists of 
eight entities, namely REGION, NATION, SUPPLIER, 
PART, PARTSUPP, CUSTOMER, ORDERS, and 
LINEITEM.  The PARTSUPP entity exists to allow a 
many-to-many relationship between PART and 
SUPPLIER. 

For the corresponding XML schema of this dataset, 
we have quite a few choices.  As with the relational 
schema, we discard any choice which results in data 
duplication.  Please refer to section 3.2 for our discussion 
of data normalization. We compare three XML schemas 
for our experiments, named Unnest, Nest2, and Nest3. 

Our Unnest schema consists of one XML document 
per relational row per relational table.  The root element 
of each document is the name of the relation from which 
it came, each sub-element the name of a column from that 
relation, and the text contained in each sub-element is a 
value from the row that we used to generate the 
document.  Figure 4 shows an example XML document 
created from one row of the REGION table.  Our Nest2 
schema stores LINEITEM elements nested within the 
correct ORDERS element, and PARTSUPP within PART, 
but leaves the remaining data as in the Unnest schema.  
Finally, the Nest3 schema stores LINEITEM elements 
within ORDERS elements, which in turn are nested 
within the correct CUSTOMER element, with all other 
data as in the Unnest schema.  With the TPC-H schema, it 
is not possible to create a semantically meaningful, 
properly normalized document with four levels of nesting. 

5. Experiments and Results 

This section presents the experimental results we gathered 
to validate the feasibility and performance of the ROX 
model. 

All experiments were executed on a quad processor 
PowerPC-based machine running AIX 5.1, equipped with 
16GB of main memory and SCSI disks.  Data and indices 
were loaded into separate DB2-managed tablespaces 
striped across 22 5GB SCSI disks.  All timings reported 
in this section are an average of 5 runs.  We calculated 
that all timings for each average are within 1% of the 
average value with 95% confidence. 

All experiments are run using data generated at TPC-
H Scale Factor 0.1.  This means our largest entity, 
LINEITEM, has approximately 600,000 rows.  The raw 
data is nearly 100 MB on disk. 

5.1. Storage Comparison 

In this section, we examine the storage requirements of 
both the relational and XML versions of the TPC-H data 
set.  The number of disk pages required to store the data 
has a direct impact on the cost of any sequential scan.  For 
this experiment, we loaded several of the TPC-H relations 
into both standard DB2 tables and our native XML 
storage engine, and present the disk storage requirements 
in Table 1. 
Table 1 - Relational and XML Storage Requirements 

for selected TPC-H relations, in KB 
Relation(s) Relational XML 
CUSTOMER 2656 13312 
ORDERS->LINEITEM 100960 888832 
PART->PARTSUPP 15904 66560 
 
It is clear that a generic XML store generates 

significant storage overhead when compared to the same 
data stored relationally.  These overheads are due mostly 
to three factors.  All text data is stored in Unicode format 
in the prototype XML store.  Although DB2 allows tables 
to store Unicode data, it does not do so unless explicitly 
asked to by the user.  This is a factor of two size increase 
for any text data in the TPC-H tables.  Secondly, a generic 
XML store must duplicate the document structure for 
every relational record converted to XML format.  For 
XML documents with a high structure-to-data ratio, this 
overhead is high.  Finally, our XML storage engine 
currently stores all XML data in text format.  For any 
numeric data, this adds significant storage overhead. 
Storage for the element tags does not require significant 
overhead, however. Each unique element and attribute 
name is entered into a mapping table, which allows us to 
store an integer tag ID for each document node. 

5.2. Bufferpool Effects 

As discussed in section 5.1, the storage required for the 
XML schemas under test is significantly more than for the 
relational load of the data into DB2.  It therefore makes 
sense to consider the effects of varying the size of DB2’s 
bufferpool on query performance.  We chose to run each 
series of queries using four different bufferpool sizes.  
The sizes were chosen to be 10%, 25%, 50%, and 100% 
of the total storage (data and indices) required for the 
schema.  Using this definition implies that the 10% case 
for the relational schema is a much smaller number of 
pages than for the 10% XML schema case.  Please refer to 
Table 2 for the specific bufferpool sizes tested. 

It may seem unfair to use different bufferpool sizes for 
the tests.  After all, when 100% of the relational data and 
indices fit in memory, only 11% of the XML data and 
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indices fit.  Further, given a specific memory budget, the 
relational data has a size advantage and should benefit 
from it.  However, if the scale factor of the data increased, 
we would not have a choice but to choose a bufferpool 
size < 10% in both cases. 

Table 2 - Tested bufferpool sizes (in number of 32K 
pages) 

Size Relational XML 
10% 450 4000 
25% 1125 10000 
50% 2250 20000 

100% 4500 40000 

We present a graph in Figure 6 which illustrates the 
effects that the bufferpool size has on the performance of 
TPC-H query 10.  The results presented are normalized to 
the execution time when the 100% bufferpool size is used. 
For the relational schema, additional memory directly 
contributes to decreased query execution time.  However, 
additional memory does not give an advantage for queries 
executed using the XML schemas.  The additional CPU 
cost of navigating through the XML schema and 
converting the retrieved text to the correct column 
datatype may be to blame, but additional experiments are 
necessary.  Similar results were obtained for the other 
queries we tested. 
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Figure 6 - TPC-H Q10 bufferpool effects.  For each 
schema, the execution times are normalized to the 
100% bufferpool execution time.  The percentages 
listed are relative to the total size of the data and 

indicies being tested. 
When the number of bufferpool pages are roughly the 

same for the relational and XML schemas, the relational 
schema appears to be the clear winner.  In Figure 7, we 
present the results of two queries executed over all 
schemas.  The relational schema was tested at the 100% 
bufferpool level of 4500 pages, while the XML schemas 
used their 10% level of 4000 pages.  For Q10, the best 
XML schema is still a factor of about 19x slower than the 
relational schema.  For Q22, we see that the Unnest and 
Nest2 schemas are about a factor of 5 slower.  
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Figure 7 - Bufferpool effects when all queries are 
executed with approximately the same number of 

bufferpool pages 

5.3. Schema Variations 

In this section, we discuss the measured effects of varying 
the nesting of the XML schema.  All experiments 
discussed in this section assume a 10% bufferpool size. 
As the level of nesting in each XML document is 
increased, we encounter mixed performance results.  
Consider the graph in Figure 8, which shows the 
normalized execution times for two TPC-H queries for 
our three XML schemas.  TPC-H Q10 is called the 
Returned Item Reporting Query.  This query is 
basically a four-way join between NATION, 
CUSTOMER, ORDERS, and LINEITEM.  This query fits 
our Nest3 schema extremely well, and the results show 
that this query is about twice as fast with Nest3 as with 
either the Nest2 or Unnest schemas.  One obvious 
question, though, is why we don’t see any benefit from 
the Nest2 schema, which has LINEITEM nested in 
ORDERS.  The answer lies in the fact that we are 
utilizing the XML index to join CUSTOMER to 
ORDERS in both cases, and also for ORDERS to 
LINEITEM in the Unnest case.  As we will see in the next 
section, the XML index performs very well and brings 
Unnest’s performance in line with Nest2. 

Although Nest3 was the clear favorite for Q10, it 
suffers for other queries such as Q22.  This query scans 
CUSTOMER looking for customers in specific countries 
who have never placed an order but have a good account 
balance.  The country selection predicate is reasonably 
selective, and so the join to ORDERS can be avoided for 
most customers.  The Nest3 schema performs very poorly 
for this query due to the storage of each CUSTOMER’s 
ORDERS and LINEITEM information – the very attribute 
that made it much better for Q10.  Since this query does 
not use the ORDERS information very often and never 
uses the LINEITEM information, we needlessly pay to 
load them from disk.  CUSTOMER information packs 
much better in the Unnest and Nest2 schemas, as both 
utilize the CUSTOMER-only XML document format. 
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These results suggest that the XML schema chosen 
should factor in the expected query workload, if known. 

0

2

4

6

8

10

12

14

16

Unnest Nest2 Nest3
Schema

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

TPC-H Q10
TPC-H Q22

 
Figure 8 - Schema Effects for two TPC-H queries, 
normalized to the Relational time for each query 

5.4. XML Index Exploitation 

We now consider the benefits of utilizing the XML index 
to aid in joining across documents.  In all of our chosen 
XML schemas, we maintain some normalization.  For 
example, all of our schemas keep PART and LINEITEM 
unnested.  To find the name of a part given a specific 
lineitem, we must do a standard join.  In this section, we 
compare two types of joins – index nested loops join 
using the XML index, and DB2’s hash join.  In Figure 9, 
we show results for TPC-H query 5 – the Local Supplier 
Volume Query.  This query joins six of the eight tables 
using a total of six equijoin predicates.  The extra join 
ensures that the supplier and customer are from the same 
nation.  Here, we have normalized the results to the 
execution time for the Relational schema.  For this query, 
utilizing the XML index provides a very tangible benefit.  
The Unnest schema shows a much larger improvement 
over the hash join plan than the Nest2 schema, with both 
schemas at about 3 times the relational query time when 
the XML index is used.  In the Hash Join case, the 
Unnest2 performs better because the plan executed still 
takes advantage of the nesting of LINEITEM in 
ORDERS, thereby obviating a very expensive join. 
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Figure 9 - TPC-H Q5: Local Supplier Volume Query 

These results show that our immature ROX prototype 
can achieve performance within a factor of three of a 
mature relational database system for an important 
category of queries.  With proper tuning and optimization 
of the storage format, XML navigation, and XML index 
utilization, even better results could be obtained. 

6. Conclusions/Future Work 

In this paper, we have discussed an alternate solution to 
the problem of integrating relational and XML data 
sources to support both new XQuery and legacy SQL 
queries.  We called this solution the ROX model, and 
described the architectural tradeoffs involved.  Our 
solution allows existing SQL applications to continue to 
run unmodified, and allows a gradual transition of some 
or all data to the XML storage format.  We created a 
prototype to compare the performance of the ROX model 
to the standard relational model, and found that it can 
compete for an important class of queries. We found that 
the choice of the XML schema to represent the relational 
data can have a profound impact on performance. Also, 
by utilizing an index over the XML storage, we could 
achieve performance within a factor of three of a mature 
relational DBMS for queries with many joins. 

Many research questions remain open for future work.  
Updates in a native XML storage system can pose 
problems such as document order anomalies and subtree 
locking issues.  Further, an XML update standard (or even 
a candidate specification) does not yet exist.  It would be 
interesting to consider the ROX model as the XML update 
standard is created. 

Storage overheads associated with general native 
XML stores are a significant source of performance 
problems when using the ROX model to perform 
sequential scans.  Identifying ways to store XML 
compactly and exploring tree storage alternatives based 
on document access patterns are interesting areas for 
future research. 

For a given query workload and XML schema, we 
could utilize the query optimizer to create alternate plans 
that would be possible if a different XML schema was 
available, and use this information to automatically 
suggest a better XML schema for that query workload, 
much as was done in DB2’s Index Advisor [VZZ00] and 
Design Advisor [ZIL04]. 

Resolving these questions will bring us closer to the 
time when XQuery and SQL queries can both be 
processed efficiently against both structured and semi-
structured databases.  
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