
Schema-based Scheduling of Event Processors and Buffer

Minimization for Queries on Structured Data Streams

Christoph Koch†,∗ Stefanie Scherzinger‡ Nicole Schweikardt\ Bernhard Stegmaier]

†: Technische Universität Wien, Vienna, Austria, Email: koch@dbai.tuwien.ac.at
‡: Technische Universität Wien, Vienna, Austria, Email: scherzinger@wit.tuwien.ac.at

\: Humboldt Universität zu Berlin, Berlin, Germany, Email: schweikardt@informatik.hu-berlin.de
]: Technische Universität München, Munich, Germany, Email: bernhard.stegmaier@in.tum.de

Abstract

We introduce an extension of the XQuery lan-
guage, FluX, that supports event-based query
processing and the conscious handling of main
memory buffers. Purely event-based queries
of this language can be executed on stream-
ing XML data in a very direct way. We then
develop an algorithm that allows to efficiently
rewrite XQueries into the event-based FluX
language. This algorithm uses order con-
straints from a DTD to schedule event han-
dlers and to thus minimize the amount of
buffering required for evaluating a query. We
discuss the various technical aspects of query
optimization and query evaluation within our
framework. This is complemented with an ex-
perimental evaluation of our approach.

1 Introduction

XML is the preeminent data exchange format on the
Internet. Stream processing naturally bears relevance
in the data exchange context (e.g., in e-commerce).
An increasingly important data management scenario
is the processing of XQueries on streams of exchanged
XML data. While the weaknesses of XML as a
semistructured data model have been observed time
and again (cf. e.g. [1]), XQuery on XML streams can
be seen as the prototypical instance of the problem of
queries on structured (vs. flat tuple) data streams .

Query engines for processing streams are natu-
rally main-memory-based. Conversely, in some ef-

∗Work support by project Z29-N04 of the Austrian Science
Fund (FWF).

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

forts towards developing main-memory XQuery en-
gines whose original emphasis was not on stream pro-
cessing (e.g., BEA’s XQRL [9]), it was observed that
it is worthwhile to build such systems using stream
processing operators.

The often excessive need for buffers in current
main memory query engines causes a scalability is-
sue that has been identified as a significant research
challenge [14, 13, 16, 7, 4]. While the efficient eval-
uation of XPath queries on streams has been worked
on extensively in the past (here, state-of-the-art tech-
niques use very little main memory) [2, 5, 10, 11],
not much work has been done on efficiently process-
ing XQuery on streams. The nature of XQuery, as a
data-transformation query language entirely different
from node-selecting XPath, requires new techniques
for dealing with (and reducing) main memory buffers.
State-of-the-art XQuery engines consume main mem-
ory in large multiples of the actual size of input XML
documents [14].

Several recent projects have addressed XQuery on
streams using transducer networks [13, 16]. Auto-
mata-based techniques are usually quite elegant but
are hard to compare or integrate with other approaches
and usually do not generalize to real-world query lan-
guages such as (full) XQuery with their great expres-
sive power and all their odd features and artifacts of
the standardization process. One approach [14] to-
wards addressing the problem of reducing main mem-
ory consumption in an engine for full XQuery aims at
reducing the amount of data buffered in main memory
by pre-filtering the data read from the stream with
the paths occurring in the query. However, for real-
world XQueries, the need for substantial main memory
buffers cannot be avoided in general.

An important goal is thus to devise a well-principled
machinery for processing XQuery that is parsimonious
with resources and allows to minimize the amount of
buffering. Such machinery needs to be based on in-
termediate representations of queries that are syntac-
tically close to XQuery and has to allow for an alge-
braic approach to query optimization, with buffering

228

as an optimization target. This is necessary to allow
for both extensibility and the leverage of a large body
of related earlier work done by the database research
community. However, to our knowledge, no principled
work exists on query optimization in the framework
of XQuery (rather than automata) for structured data
streams (such as XML, but unlike flat tuple streams)
which honors the special features of stream process-
ing. Moreover, no framework for optimizing queries
on structured data streams exists that captures the
spirit of stream processing and allows for query opti-
mization using schema information. (However, there
are XQuery algebras meant for conventional query pro-
cessing [17, 8], and there is work on applying them in
the streaming context [7]. Moreover, the problem of
optimizing XQueries using a set of constraints holding
in the XML data model – rather than a schema – was
addressed in [6].)

In this paper, we attempt to improve on this situ-
ation. We introduce a query language, FluX , which
extends XQuery by a new construct for event-based
query processing called process-stream. FluX moti-
vates a very direct mode of query evaluation on data
streams (similar to query evaluation in XQRL [9]),
and provides a strong intuition for what main mem-
ory buffers are needed in which queries. This allows
for a strongly “buffer-conscious” mode of query opti-
mization. The main focus of this paper is on automati-
cally rewriting XQueries into event-based FluX queries
and at the same time optimizing (reducing) the use of
buffers using schema information from a DTD.

Consider the following XQuery Q in a bibliography
domain, taken from the XML Query Use Cases [18]
(XMP Q3):

<results>
{ for $b in $ROOT/bib/book return

<result> { $b/title } { $b/author } </result> }
</results>

For each book in the bibliography, this query lists its
title(s) and authors, grouped inside a “result” element.
Note that the XQuery language requires that, within
each book, all titles are output before all authors.

The DTD

<!ELEMENT bib (book)*>
<!ELEMENT book (title|author)*>

specifies that each book node may have several title
and several author children. A priori, no order among
these items is inferable from the given DTD. To imple-
ment this query, we may output the title children in-
side a book node as soon as they arrive on the stream.
However, the output of the author children needs to
be delayed (using a memory buffer) until we reach the
closing tag of the book node (at that time, no further
title nodes may be encountered). Then we may flush
the buffer of author nodes, empty it, and later refill it
with the author nodes from the next book.

We thus only need to buffer the author children of
one book node at a time, but not the titles. Current

main memory query engines do not exploit this fact,
and rather buffer either the entire book nodes or, as
an optimization [14], all title and all author nodes
of book. Previous frameworks for evaluating or opti-
mizing XQuery do not provide any means of making
this seeming subtlety explicit and reasoning about it.

The process-stream construct of FluX allows to
express precisely the mode of query execution just de-
scribed. XQuery Q is then phrased as a FluX query
as follows:

<results>
{ process-stream $ROOT: on bib as $bib return
{ process-stream $bib: on book as $book return

<result>
{ process-stream $book:

on title as $t return {$t};
on-first past(title,author) return
{ for $a in $book/author return {$a} } }

</result> } }
</results>

A process-stream $x expression consists of a num-
ber of handlers which process the children of the XML
tree node bound by variable $x from left to right. An
“on a” handler fires on each child labeled “a” vis-
ited during such a traversal, executing the associated
query expression. In the process-stream $book ex-
pression above, the on-first past(title,author)
handler fires exactly once as soon as the DTD im-
plies for the first time that no further author or
title node can be encountered among the children
of $book. (As observed above, in the given, very
weak DTD, this is the case only as soon as the last
child of $book has been seen.) In the query associated
with the on-first past(title,author) handler, we
may freely use paths of the form $book/author or
$book/title, because such paths cannot be encoun-
tered anymore and we may assume that the query en-
gine has already buffered all matches of these paths for
us. It is a feasible task for the query engine to buffer
only those paths that the query actually employs (see
also [14]).

We call a query safe for a given DTD if, informally,
it is guaranteed that XQuery subexpressions (such as
the for-loop in the query above) do not refer to paths
that may still be encountered in the stream. The above
FluX query is safe: The for-expression employs the
$book/author path, but is part of an on-first handler
that cannot fire before all author nodes relative to
$book have been seen.

If the path $book/author was replaced by, say,
$book/price and the DTD production for book were

<!ELEMENT book ((title|author)*,price)>

then the FluX query above would not be safe. In that
case, on the firing of on-first past(title,author),
the buffer for $book/price items would still be empty
and the query result would be incorrect.

Query Q can be processed more efficiently with the
schema used in the XML Query Use Cases,

229

<!ELEMENT bib (book)*>
<!ELEMENT book (title,(author+|editor+),

publisher,price)>

Here, no buffering is required to execute our query
because the DTD asserts that for each book, the ti-
tle occurs strictly before the authors (we denote this
as Ordbook(title, author), called an order constraint).
We may phrase our query in FluX so as to directly copy
titles and authors to the output as they arrive on the
input stream. No data items need to be buffered.

<results>
{ process-stream $ROOT: on bib as $bib return

{ process-stream $bib: on book as $book return
<result>
{ process-stream $book:

on title as $t return {$t};
on author as $a return {$a} }

</result> } }
</results>

The contributions of this paper are as follows.

• We introduce the FluX query language, which ex-
tends XQuery by the natural stream processing con-
struct discussed above.

• We define the safe FluX queries (under a given
DTD), which are those FluX queries in which
XQuery subexpressions have the usual semantics
(i.e., are never executed before the data items re-
ferred to have been fully read from the stream and
may be assumed available in main memory buffers).

• We present an algorithm that schedules XQueries
on streams using DTDs and transforms them into
optimized FluX queries.

• We discuss the realization of query engines for FluX
and the runtime buffer management.

• We have built a prototype FluX query engine which
we evaluate by means of a number of experiments.

This is, to our knowledge, the first work on opti-
mizing XQuery using schema constraints derived from
DTDs1. A main strength of the approach taken in this
paper is its extensibility, and even though space limita-
tions require us to restrict our discussion to a (power-
ful) fragment of XQuery, our results can be generalized
to even larger fragments. In our discussion at the end
of the paper, we will also lay the foundations for alge-
braic optimization of queries using further information
from the schema.

This paper is structured as follows. We start with
basics on DTDs and regular languages in Section 2.
Section 3 defines the query languages considered in
this paper: Section 3.1 specifies an XQuery fragment.
Based on this, Section 3.2 defines the FluX language,
and Section 3.3 singles out the safe FluX queries. Sec-
tion 4 presents our algorithms for translating XQuery

1To simplify presentation we restrict ourselves to DTDs,
but the required information could also be derived from XML
Schemata.

into a particular normal form (Section 4.1) and for
transforming this normal form into FluX (Section 4.2).
Some examples of this transformation are given in Sec-
tion 4.3. In Section 5 we discuss the implementa-
tion of our prototype system and the actual handling
of buffers during query evaluation. In Section 6, we
present our experiments, and we conclude with a dis-
cussion in Section 7.

2 Preliminaries

For simplicity of exposition, we consider the fragment
of XML without attributes as our data model. Note
that this is no substantial restriction, since attributes
can be handled in the same way as subelements.

We focus on valid documents, i.e. documents con-
forming to a given document type definition (DTD).

Let Σ be a set of symbols (or tag names). A DTD
is an extended context free grammar over Σ. DTDs
are local tree grammars [15], i.e. without competing
nonterminals to the left-hand sides of productions, so
each production in a DTD is unambiguously identified
by a tag name in Σ.

Let ρ be a regular expression and let symb(ρ) be
the set of atomic symbols that occur in ρ. By L(ρ) we
denote the language defined by ρ, i.e., the set of words
over symb(ρ) that are recognizable by ρ. Given a word
w, let wi denote its i-th symbol. We define a binary
relation Ordρ ⊆ Σ × Σ such that for a, b ∈ Σ,

Ordρ(a, b) :⇔ @w ∈ L(ρ) : wi = b ∧ wj = a ∧ i < j.

That is, Ordρ(a, b) holds if there is no word in L(ρ) in
which a symbol a is preceded by a symbol b. (All a
symbols occur before all b symbols.) We refer to a con-
straint of the form Ordρ(a, b) as an order constraint .

Example 2.1 Let ρ = (a∗.b.c∗.(d|e∗).a∗). Then,
Ordρ(b, c), Ordρ(c, d), and Ordρ(c, e), but ¬Ordρ(a, c).
Ordρ is transitive, so we also have e.g. Ordρ(b, d). �

DTDs have the nice property that regular expres-
sions appearing in the right-hand sides of productions
are one-unambiguous . This guarantees that an equiv-
alent deterministic finite automaton can be computed
in polynomial – even quadratic – time [3]. One can
show the following [12]:

Proposition 2.2 Given a regular expression ρ from a
DTD, Ordρ can be computed in time O(|ρ|2).

Let ρ be a regular expression and let S ⊆ Σ. Then,
for each word u = u1 . . . un ∈ symb(ρ)∗,

Pastρ,S(u) :⇔
∀w ∈ symb(ρ)∗ : uw ∈ L(ρ) → @ i : wi ∈ S,

first-pastρ,S(u) :⇔

Pastρ,S(u) ∧
(

n > 0 → ¬Pastρ,S(u1 . . . un−1)
)

.

Intuitively, when processing a word uw ∈ L(ρ) from
left to right, if first-pastρ,S(u) holds, then the reading
of the last symbol of u is the earliest possible time at
which we know that none of the symbols in S can be
seen anymore until the end of the word uw.

230

3 Query Language

In this section, we define the syntax and semantics of
the FluX query language, which extends an XQuery
fragment, denoted as XQuery−, by a construct for
event-based query processing.

Before defining FluX and XQuery−, we need some
more notation. We write $x, $y, $z, . . . to denote
variables that range over XML trees. In the following,
we overload the meaning of variable $x bound to an
XML tree whose root is labeled a, by writing $x when
we actually mean the DTD production unambiguously
identified by the element a. For example, if the DTD
contains the rule <!ELEMENT a ρa> for a regular ex-
pression ρa, we write Ord$x(c, d) instead of Ordρa(c, d),
and we write symb($x) instead of symb(ρa).

A fixed path is a sequence a1/ . . . /an, where the
ai are symbols from the DTD and n ≥ 1. XPath
expressions such as a/∗/b, or a//b or a[b] are excluded.

An atomic condition is either of the form
$x/π RelOp s, exists $x/π, or $x/π RelOp $y/π′,
where s is a string, π and π′ are fixed paths, and
RelOp ∈ {=, <,≤, >,≥}. A condition is a Boolean
combination (using “and”, “or”, “not”, and “true”)
of atomic conditions.

3.1 An XQuery Fragment: XQuery−

Definition 3.1 (XQuery−) The XQuery fragment
XQuery− is the smallest set consisting of expressions

1. ε (the empty query)

2. s (output of a fixed string)

3. α β (sequence)

4. { for $x in $y/π return α } (for-loop)

5. { for $x in $y/π where χ return α } (condi-
tional for-loop)

6. { $x/π } (output of subtrees reachable from node
$x through path π)

7. { $x } (output of subtree of node $x)

8. { if χ then α } (conditional)

where π is a fixed path, s a fixed string, χ a condition,
and α and β are XQuery− expressions.

Indeed, XQuery− is very similar to (a fragment of)
standard XQuery [17], but differs in how we treat fixed
strings inside queries. For example, the string <hello>
is valid in XQuery−, but not in standard XQuery. The
query

<result> { $ROOT/bib/book } </result>

is understood in standard XQuery as a “result” node
with an embedded query to produce its children. In
the present paper, the same query is read as a sequence
of three queries which write the string <result>, the
/bib/book subtrees, and finally the string </result>
to the output.

This, however, is only a subtlety which, on the one
hand, is very convenient for obtaining our main re-
sults in Section 4 and which, on the other hand, as
the following Proposition 3.2 shows, does not cause
any problems. The alternative semantics of XQuery−

is the basis of optimizations used internally by the
query engine. Users formulate input queries in stan-
dard XQuery and may assume the usual semantics.

Let [[Q]]XQuery−(D) (resp., [[Q]]XQuery(D)) denote
the XML document stream produced by evaluating
query Q on document D under our XQuery− semantics
(resp., under the standard XQuery semantics [17]).

Proposition 3.2 Let Q be an XQuery that parses as
an XQuery− query. Then, for any input document D,
[[Q]]XQuery−(D) = [[Q]]XQuery(D).

3.2 Syntax and Semantics of FluX

A simple expression is an XQuery− expression of the
form α β γ where

• α and γ are possibly empty sequences of strings and
of expressions of the form “{if χ then s}”, where
χ is a condition and s is a string.

• β is either empty, “{$u}”, or “{if χ then {$u} }”,
for some variable $u and some condition χ.

• if β is of the form “{$u}”, or “{if χ then {$u} }”,
then no atomic condition that occurs in α β contains
the variable $u.

For instance,

<a>{$x} {if $x/b=5 then 5}

is a simple expression, but {$x}{$y} is not.

Definition 3.3 (FluX) The class of FluX expres-
sions is the smallest set of expressions that are either
simple or of the form

s { process-stream $y: ζ } s′

where s and s′ are possibly empty strings, $y is a vari-
able, and ζ is a list (where entries are separated by
semicolons “;”) of one or more event handlers. Each
event handler is of one of the following two types:

1. (so-called “on-first” handler)

on-first past(S) return α

where S ⊆ symb($y) and α is an XQuery− expres-
sion

2. (so-called “on” handler)

on a as $x return Q

where $x is a variable, a is an element name in
symb($y), and Q is a FluX expression.

We will use ps as a shortcut for process-stream,
on-first past(*) as an abbreviation for on-first
past(symb($y)), and furthermore on-first past()
in place of on-first past(∅).

231

Some examples of FluX expressions, as well as an in-
formal description of the FluX semantics, were already
given in Section 1; further examples can be found in
Section 4.3. In general, we evaluate an expression

{ process-stream $y: ζ }

as follows: An event-handling statement considers the
children of the node currently bound by variable $y as
a list (or stream) of nodes and processes this list one
node at a time. On processing a node v with children
t1, . . . , tn, with the labels of ti denoted as label(ti),
we proceed as follows. For each i from 0 to n+1
(i.e., n+2 times), we scan the list of event handlers
ζ = ζ1; . . . ; ζm once from the beginning to the end. In
doing so, we test for each event handler ζj whether
its event condition is satisfied, in which case the event
handler ζj “fires” and the corresponding query expres-
sion is executed:

• A handler “on a as $x return Q” fires if 1 ≤ i ≤
n and label(ti) = a.

• A handler “on-first past(S) return α” fires if
0 ≤ i ≤ n and first-past$y,S(label(t1) . . . label(ti))
is true (i.e., for the first time while processing the
children of $y, no symbol of S can be encountered
anymore) or if i = n+1 and this event handler has
not fired in any of the previous (n+1) scans.

In summary, it is well possible that several events fire
for a single node, in which case they are processed in
the order in which the handlers occur in ζ. During
the run on t1, . . . , tn, each “on” handler may fire zero
up to several times, while each “on-first” handler is
executed exactly once.

For a FluX or XQuery− expression Q, let free(Q) be
the set of all free variables in Q, defined analogously to
the free variables of a formula in first-order logic. That
is, free({$x/π}) = {$x}, and free({if χ then α})
consists of free(α) and the variables that appear in χ.
Further, free({for $x in $y/π return α}) contains
the variable $y and the variables in free(α) \ {$x}.
Finally, free({process-stream $y: ζ }) consists of
the variable $y, for each event handler in ζ of the form
“on-first past(S) return α” also of the variables
in free(α), and likewise for each event handler in ζ of
the form “on a as $x return Q” of the variables in
free(Q)\{$x}.

Note that expressions of the form “{for $x in
$y/a return α}” and event handlers of the form “on
a as $x return Q” bind the variable $x, i.e., remove
it from the free variables of the superexpressions.

A FluX query is a FluX expression in which all free
variables except for the special variable $ROOT corre-
sponding to (the root of) the document are bound.
That is, for a query Q in FluX (resp., α in XQuery−)
we require that free(Q) ⊆ {$ROOT} (resp., free(α) ⊆
{$ROOT}).

As the following example shows, every XQuery−

query can be transformed into a FluX query in a
straightforward way.

Example 3.4 Every XQuery− query α is equivalent
to the FluX query

{ ps $ROOT: on-first past(*) return α }

In Section 4 below we will show how, depending on a
given DTD, this FluX query can be transformed into
an equivalent FluX query that can be evaluated more
efficiently. �

By the size of an expression Q, denoted |Q|, we refer
to the size of its string representation.

By the parent variable of (FluX or XQuery−) ex-
pression α in FluX query Q, denoted parentVar(α),
we refer to the variable bound by the nearest superex-
pression of α, or $ROOT if no such variable exists.

By the condition paths in α, we refer to the set of
paths $x/π in a condition χ that occurs in α.

For FluX or XQuery− expressions α and β we
write α � β (resp., α ≺ β) to denote that α is a
subexpression (resp., proper subexpression) of β. An
XQuery− subexpression α of a FluX expression Q is
called maximal if there is no XQuery− expression β
with α ≺ β � Q. Note that a FluX query may contain
several such maximal expressions.

Example 3.5 The maximal XQuery− subexpressions
of the first FluX query from Section 1 are “{$t}” and
“{ for $a in $book/author return {$a} }”. �

3.3 Safe Queries

We next define the notion of safety for FluX queries.
Informally, a query is called safe for a given DTD if
it is guaranteed that XQuery− subexpressions do not
refer to paths that might still be encountered in an
input stream compliant with the given DTD. For the
precise definition we need the following notion.

The set of dependencies w.r.t. variable $y in a FluX
or XQuery− expression α is defined as

dependencies($y, α) :=
{a | ex. a condition path $y/a or $y/a/π in α} ∪
{b | ex. $u, π, Q s.t. π starts with symbol b and

“{for $u in $y/π return Q}” � α }.

Definition 3.6 (safe queries) A FluX query Q is
called safe w.r.t. a given DTD if, and only if, for each
subexpression “{ps $y: ζ }” of Q, the following two
conditions are satisfied:

1. For each handler “on-first past(S) return α”
in the list ζ, the following is true:

• ∀ b ∈ dependencies($y, α) we have: b ∈ S or
ex. a ∈ S s.t. Ord$y(b, a)

• ∀ $z ∈ free(α) s.t. {$z} � α or {$z/π} � α (for
some π) we have: $z = $y and ∀ b ∈ symb($y):
b ∈ S or ex. a ∈ S s.t. Ord$y(b, a).

232

{ for $x in $y/π where χ return β }

{ for $x in $y/π return { if χ then β } }

{ $y/π }

{ for $x in $y/π return {$x} }

{ for $x in $y/a/π return β }

{ for $x0 in $y/a return
{ for $x in $x0/π return β } }

($x0 new)

{ if χ then { for $x in $y/π return α } }

{ for $x in $y/π return { if χ then α } }

{ if χ then α β }

{ if χ then α } { if χ then β }

{ if χ then { if ψ then α } }

{ if (χ and ψ) then α }

Figure 1: Normal form rewrite rules. Each rule is
always applied downwards, i.e., the expression above
the line is replaced by the expression below the line.

2. For each handler “on a as $x return Q̃” in the
list ζ, and for each maximal XQuery− subexpres-
sion α of Q̃, the following is true:

• ∀ b ∈ dependencies($y, α) we have: Ord$y(b, a)

• if α = Q̃ (note that according to Definition 3.3
α must then be simple), then for all $u s.t.
{$u} � α we have: $u = $x.

It can be shown that this notion of safety is suffi-
cient to ensure that main memory buffers are fully pop-
ulated when they are accessed by a query, i.e., that a
FluX query can be evaluated in a straightforward way
on input streams compliant with the given DTD.

Examples of safe FluX queries can be found in Sec-
tions 1 and 4. (To be precise, all FluX queries occur-
ring in this paper are safe.)

4 Translating XQuery into FluX

In this section we address the problem of rewriting
a query of our XQuery fragment into an equivalent
FluX query that employs as little buffering as possi-
ble. This rewriting proceeds in two steps: First, we
transform the given XQuery− query into an equiv-
alent query in XQuery− normal form (Section 4.1).
Afterwards, depending on a given DTD, this normal-
ized query is rewritten into an equivalent safe FluX
query (Section 4.2). The FluX extensions manage the
event based, streaming execution of the query. All
subqueries exclusively working on buffered data are
XQuery− expressions.

4.1 A Normal Form for XQuery−

An XQuery− expression is transformed into normal
form by rewriting (subexpressions of) it using the rules

in Figure 1 until no further changes are possible.
In an XQuery− expression in normal form, the fol-

lowing three properties hold: (1) All paths except
those inside conditionals are simple-step paths, i.e. of
the form $x/a. (2) An expression in normal form does
not contain any conditional for-loops, as the normal-
ization process pushes conditionals inside the inner-
most for-loops. (3) For each subexpression of the form
“{if χ then α}”, α is either a fixed string or of the
form “{$x}” for some variable $x.

Theorem 4.1 The rule applications of Figure 1 can
be implemented in such a way that the rewriting termi-
nates for an input XQuery− expression Q after O(|Q|)
rule applications with a unique result, the so-called
normalization of Q, which is equivalent to Q.

Example 4.2 ([18], XMP, Q1) Consider the fol-
lowing XQuery Q1 for books published by Addison-
Wesley after 1991, including their year and title.

<bib>
{ for $b in $ROOT/bib/book

where $b/publisher = "Addison-Wesley" and
$b/year > 1991

return <book> {$b/year} {$b/title} </book> }
</bib>

We abbreviate the where-condition in the above query
as χ. Then Q1 has the following normalization Q′

1:

<bib>
{ for $bib in $ROOT/bib return
{ for $b in $bib/book return

{ if χ then <book> }
{ for $year in $b/year return
{ if χ then {$year} } }

{ for $title in $b/title return
{ if χ then {$title} } }

{ if χ then </book> } } }
</bib>

�

4.2 Rewriting normalized XQuery− into FluX

To formulate our main rewrite algorithm for trans-
forming normalized XQuery− queries into equivalent,
safe FluX queries, we need some further notation.

Let Σ be the set of tag names occurring in the given
DTD. Let ⊥ denote the empty list. For a list ζ of
event handlers, we inductively define the set hsymb(ζ)
of handler symbols for which an “on” handler or an
“on-first” handler exists in ζ:

hsymb(⊥) := ∅

hsymb(ζ; on a as $x return α) := hsymb(ζ) ∪ {a}

hsymb(ζ; on-first past(S) return α) :=
hsymb(ζ) ∪ S

Our algorithm for recursively rewriting normal-
ized XQuery− expressions into FluX is shown in Fig-
ure 2. Note that this algorithm uses order constraints
and hence depends on the underlying DTD. Given

233

1 function rewrite(Variable parentVar, Set〈Σ〉 H,
2 XQuery− β) returns FluXQuery
3 begin
4 let $x = parentVar;
5 if {$x} � β then
6 begin
7 if β is simple and dependencies($x, β) = ∅ then
8 return β
9 else

10 return { ps $x: on-first past(∗) return β }
11 end
12 else /* {$x} 6� β */
13 begin
14 if β = β1 β2 then
15 begin
16 β′

1 := rewrite(parentVar, H, β1);
17 match ζ1 such that β′

1 = { ps $x: ζ1 };
18 β′

2 := rewrite(parentVar, H ∪ hsymb(ζ1), β2);
19 match ζ2 such that β′

2 = { ps $x: ζ2 };
20 return { ps $x: ζ1; ζ2 }
21 end
22 else if β is simple then
23 /* β is either of the form s or { if χ then s } */
24 return { ps $x:
25 on-first past(dependencies($x, β) ∪H)
26 return β }
27 else if β is of the form
28 { for $y in $z/a return α } then
29 begin
30 X := {b ∈ dependencies($x,α) ∪H | ¬Ord$x

(b, a)};
31 if $z 6= $x then
32 return { ps $x: on-first past(X) return β }
33 else if X 6= ∅ then
34 return { ps $x: on-first past(X ∪ {a}) return β }
35 else
36 begin
37 α′ := rewrite($y, ∅, α);
38 return { ps $x: on a as $y return α′ }
39 end
40 end /* if β is for-expression */
41 end /* else {$x} 6� β */
42 end

Figure 2: Algorithm for rewriting XQuery− into FluX.

query Q, we obtain the corresponding FluX query as
“rewrite($ROOT, ∅, Q)”. Some example runs of this al-
gorithm are given in Section 4.3 below. The goals in
the design of the algorithm were to produce a FluX
query which (1) is safe w.r.t. the given DTD, (2) is
equivalent to the input XQuery, and (3) minimizes the
amount of buffering needed for evaluating the query in
an XML document.

To meet goals (1) and (2), e.g. the particular or-
der of the if-statements in the algorithm (lines 5, 14,
22, 27) is crucial. Also, a set H of handler symbols
must be passed on in recursive calls of the algorithm,
because otherwise the resulting FluX query would not
be safe. One important construct for meeting goal (3)
is the case distinction in lines 31–39, where an “on”
handler is created provided that this is safe, and an
“on-first” handler is created otherwise.

Theorem 4.3 Given a DTD D and a normalized

XQuery− query Q, “rewrite($ROOT, ∅, Q)” runs in
time O(|D|3 + |Q|2) and produces a safe FluX query
that is equivalent to Q on all XML documents compli-
ant with the given DTD.

Our algorithm performs only a single traversal of
the query tree. Runtime O(|Q|2) is mainly caused by
the need to compute dependencies . Note that the re-
sulting FluX query is in normal form.

4.3 Examples

We now discuss the effect of our rewrite algorithm on
sample queries from the XQuery Use Cases [18].2

Example 4.4 ([18], XMP, Q2) Let us consider
the XQuery Q2 from the XQuery Use Cases [18],
which creates a flat list of all the title–author pairs,
with each pair enclosed in a result element. Due to
space limitations we omit Q2 here and only give its
normalization Q′

2 (which is very similar to the original
XQuery Q2):

1 <results>
2 { for $bib in $ROOT/bib return
3 { for $b in $bib/book return
4 { for $t in $b/title return
5 { for $a in $b/author return
6 <result> {$t} {$a} </result> } } } }
7 </results>

When given a DTD that does not impose any order
constraints on title and author, e.g., the first
DTD from Section 1, then “rewrite($ROOT,∅,Q′

2)”
proceeds as follows: First, Q′

2 is decomposed into
two subexpressions β1, consisting of line 1, and β2,
consisting of lines 2–7. Then, the rewrite algorithm is
recursively called for β1 and for β2. As β1 is simple,
the call for β1 produces the result

{ps $ROOT: on-first past() return <results> }

The call for β2 decomposes β2 into two subexpressions
β21, consisting of lines 2–6, and β22, consisting of line
7 of Q′

2. The recursive call “rewrite($ROOT,∅,β21)”
then executes lines 36–39 of the algorithm in Figure 2,
because β21 is a for-loop with parent variable $ROOT
and associated set X = Xβ21

= ∅. That is, the result

{ps $ROOT: on bib as $bib return α′
1 }

is produced, where α′
1 is the result produced by the

recursive function call “rewrite($bib,∅,α1)”, for the
subquery α1 of Q′

2 in lines 3–6. This recursive call
for α1 again executes lines 36–39 of the algorithm,
producing the expression α′

1 =

{ps $bib: on book as $b return α′
2 }

where α′
2 is the result of “rewrite($b,∅,α2)” for

the subquery α2 of Q′
2 in lines 4–6. As α2 is a

2We rewrite the queries to work without attributes.

234

for-loop with parent variable $b and associated set
X = Xα2

= {author}, in this call line 34 of the
algorithm is executed, producing the expression α′

2 =

{ps $b: on-first past(author,title) return α2 }

All in all, “rewrite($ROOT,∅,Q′
2)” returns the fol-

lowing FluX query F2:

1 {ps $ROOT:
2 on-first past() return <results>;
3 on bib as $bib return
4 {ps $bib: on book as $b return
5 {ps $b: on-first past(author,title) return
6 { for $t in $b/title return
7 { for $a in $b/author return
8 <result> {$t} {$a} </result> } } } };
9 on-first past(bib) return </results> }

We will refer to the “{ps $b · · · }”-expression in lines
5–8 of F2 as α′

2. When evaluating the query F2 on an
XML document, the XQuery inside α′

2 will be evalu-
ated once all author and all title nodes have been
encountered and buffered.

Let us now consider the case where we are given a
DTD with the production

<!ELEMENT book (author*,title*)>

where the order constraint Ordbook(author, title) is
met. While running “rewrite($ROOT,∅,Q′

2)” we now
encounter the situation where X = Xα2

= ∅ (rather
than {author}, as with the previous DTD). Therefore,
when processing the recursive call “rewrite($b,∅,α2)”,
now lines 36–39 of the algorithm are executed, even-
tually producing the following result α′′

2 =

{ps $b: on title as $t return
{ps $t: on-first past(*) return

{ for $a in $b/author return
<result> {$t} {$a} </result> } } }

Now, “rewrite($ROOT,∅,Q′
2)” yields query F ′

2 differing
from F2 in the lines 5–8, which must be replaced by
the above expression α′′

2 .
When evaluating F ′

2 on an XML document com-
pliant with the second DTD, all author nodes arrive
before title nodes and are buffered. Encountering a
title node in the input stream invokes the following
actions: The value of that particular node is buffered,
i.e., “on-first past(*)” delays the execution until
the complete title node has been seen. Then, we it-
erate over the buffer containing all collected author
nodes, each time writing the buffered title and the
current author to the output. In contrast to the worst-
case scenario above, we only buffer one title at a time
in addition to the list of all authors. If there is more
than one title, this strategy is clearly preferable. �

We next demonstrate that conditional for-loops are
optimized correspondingly.

Example 4.5 ([18], XMP, Q1) Let us consider the
query Q1 and its normalization Q′

1 from Example 4.2.

Given a DTD that does not impose any order con-
straints, e.g., the DTD

<!ELEMENT bib (book)*>
<!ELEMENT book (title|publisher|year)*>

the function call “rewrite($ROOT, ∅, Q′
1)” rewrites Q′

1

into the following FluX query F1:

1 {ps $ROOT:
2 on-first past() return <bib>;
3 on bib as $bib return
4 {ps $bib: on book as $b return
5 {ps $b:
6 on-first past(publisher,year) return
7 { if χ then <book> };
8 on-first past(publisher,year) return
9 { for $year in $b/year return

10 { if χ then {$year} } };
11 on-first past(publisher,year,title) return
12 { for $title in $b/title return
13 { if χ then {$title} } };
14 on-first past(publisher,year,title) return
15 { if χ then </book> } } };
16 on-first past(bib) return </bib> }

The “on-first” handler in lines 11–13 delays query
execution until all title nodes have been buffered and
all publisher and year nodes have been seen.

When given a different DTD, ensuring that both
Ordbook(year, title) and Ordbook(publisher, title)
hold, the title nodes can be processed in the
streaming fashion. The query F ′

1 produced by
“rewrite($ROOT,∅,Q′

1)” with this new DTD differs from
the above query F1 in the subexpression in lines 11–13
which must be replaced by

on title as $title return
{ if χ then {$title} }

Consequently, titles will not be buffered at all during
evaluation of this query. �

Our rewrite algorithm is well capable of optimizing
joins over two or more join predicates, as is demon-
strated in the following example which is not part of
the XQuery Use Cases.

Example 4.6 We remain in the bibliography domain
and consider documents compliant with the DTD

<!ELEMENT bib (book|article)*>
<!ELEMENT book (title,(author+|editor+),publisher)>
<!ELEMENT article (title,author+,journal)>

The following XQuery Q3 retrieves those authors of
articles which are coauthored by people who have also
edited books:

<results>
{ for $bib in $ROOT/bib return
{ for $article in $bib/article return

{ for $book in $bib/book
where $article/author = $book/editor return
{ <result> {$article/author} </result> } }}}

</results>

235

For the remainder of this example, we abbreviate
the join-condition comparing the authors of articles
with the editors of books by χ. Normalization yields
the following query Q′

3:

1 <results>
2 { for $bib in $ROOT/bib return
3 { for $article in $bib/article return
4 { for $book in $bib/book return
5 { if χ then <result> }
6 { for $author in $article/author return
7 { if χ then {$author} } }
8 { if χ then </result> } } } }
9 </results>

When executing “rewrite($ROOT,∅,Q′
3)” with the DTD

above, a recursive call “rewrite($bib,∅,β)” is eventu-
ally invoked for the subexpression β of Q′

3 in lines 3–8.
As β is a for-loop with parent variable $bib and asso-
ciated set X = Xβ = {book} 6= ∅, line 34 of the algo-
rithm is executed, returning an expression of the form
{ps $bib: on-first past(book,article) · · · }.
That is, as no order constraint between article and
book holds, an on-first handler ensures that all ar-
ticles and books will be buffered.

Altogether, “rewrite($ROOT,∅,Q′
3)” produces the

following FluX query F3, where α is used as abbrevi-
ation for the for-loop over books in lines 4–8 of Q′

3:

1 {ps $ROOT:
2 on-first past() return <results>;
3 on bib as $bib return
4 {ps $bib: on-first past(book,article) return
5 { for $article in $bib/article return α } };
6 on-first past(bib) return </results> }

When given a different DTD which imposes an order
on books and articles, e.g. by the following production

<!ELEMENT bib (book*,article*)>

we can evaluate Q′
3 by buffering only book nodes but

processing article nodes in a streaming fashion.
Indeed, when executing “rewrite($ROOT,∅,Q′

3)”
with this new DTD, we eventually encounter the
situation where set X = Xβ = ∅, and therefore,
lines 36–39 (rather than line 34, as with the previous
DTD) are executed. Altogether, the FluX query F ′

3

produced now, differs from the above query F3 in the
subexpression in lines 4–5, which must be replaced by

4 {ps $bib: on article as $article return
5 {ps $article: on-first past(author) return α }};

As all book nodes will have arrived before an article
node can be encountered, data from books is available
in buffers once the first article node is being read.
When processing the children of an article node, we
first buffer all author nodes before the query can be
evaluated for the current article.

During the evaluation of F ′
3, we therefore only buffer

the authors of a single article in addition to the data
already stored on books, whereas the evaluation of F3

requires the authors of all articles to be buffered. �

5 Implementation

In this section, we discuss our implementation of a
query engine for evaluating FluX queries obtained
from XQuery− by the rewriting algorithm of the pre-
vious section.

We focus on the allocation of buffers and their use
during query evaluation. Given a FluX query, we stat-
ically infer the buffers which are actually necessary in
order to avoid superfluous buffering. Our prefilter-
ing techniques generalize those of [14] to the scenario
where certain parts of the input do not need to be
buffered – even though they are used by the query –
because they can be processed on-the-fly.

Buffers are implemented as lists of SAX events. The
events stored in a buffer represent well-formed XML
in the sense that start-element events and end-element
events are properly nested within each other. This
renders data read from (a stream replayed from) a
buffer indistinguishable from data read from the input
stream. In our implementation, we employ the same
set of operators for handling both events originating
from streams and from buffers.3

In the following, we say that a FluX query is in
normal form if all of its (maximal) XQuery− subex-
pressions are in normal form.

Let Q be a safe FluX query in normal form. The
FluX query engine identifies all nodes that must be
stored in buffers, i.e. all nodes compared in join con-
ditions, the roots of buffered subtrees that are output,
and buffered nodes over which for-loops iterate.

More formally, let α be an XQuery− subexpression
of Q. We define Π($r, α), the set of all buffered paths
in α starting with variable $r, as Π($r, ε) = Π($r, s) =
∅, Π($r, {$r}) = {$r}, Π($r, αβ) = Π($r, α)∪Π($r, β),

Π($r, {for $x in $y/a return α}) =

Π($r, α) ∪ {$r/a | $y = $r and Π($x, α) = ∅}

∪ {$r/a/w | $y = $r and $x/w ∈ Π($x, α)},

and Π($r, {if χ then α}) = Π($r, α) ∪ {$r/π |
χ contains an atomic condition $r/π RelOp $y/π′ or
$y/π′ RelOp $r/π}.

For a variable $r and a safe FluX query Q in normal
form, we now define Π($r) as the union of all Π($r, α)
s.t. α is a maximal XQuery− subexpression of Q.

Let T ($r) be the prefix tree constructed by merging
all paths from Π($r). Intuitively, the prefix tree defines
a projection of the input document, as it describes
which parts of the input tree will be buffered.

We optimize the prefix tree in order to restrict the
amount of data being buffered. Let T m($r) be the tree
obtained from T ($r) by marking each node v if v either
occurs in a join condition or the entire subtree rooted
at node v is output and must therefore be buffered.
For unmarked nodes in T m($r), we merely store the
SAX events for the opening and the closing tag.

3Thus, physical query evaluation proceeds in a way similar
to that followed in XQRL [9].

236

publisher•

book author•

$bib $article

Figure 3: Buffer trees of variables $bib and $article.

Clearly, if a node is marked and we buffer it to-
gether with its subtree, we also buffer the subtrees
of any descendant nodes at the same time. Thus we
only buffer the data of the topmost marked nodes in
T m($r). For example, if we need to buffer two sub-
trees reachable by paths π and π′ respectively, where
π is a prefix of π′, we restrict ourselves to buffering
the subtree identified by π. Let T p($r) be the pruned
prefix tree obtained from T m($r) by successively re-
moving a subtree rooted at node v′ if an ancestor node
v is marked. We refer to T p($r) as a buffer tree.

W.l.o.g., below we will assume that variables in
queries are used uniquely, i.e., each variable name is
bound at most at one place in the query. For a safe
FluX query Q in normal form, let X be the set of
variables that are free in maximal XQuery− subex-
pressions of Q. The variables in X are precisely those
for which we will later define buffers.

Example 5.1 The following FluX query selects all
book publishers whose CEO has published articles.

{ ps $ROOT: on bib as $bib return
{ ps $bib: on article as $article return
{ ps $article: on-first past(author) return

{ for $book in $bib/book return
{ for $p in $book/publisher return

{ if $article/author = $book/publisher/ceo
then {$p} } } } } } }

Here, X = {$bib, $article} and we compute the sets
of buffer paths for each variable in X :

Π($bib) = {$bib/book/publisher/ceo,

$bib/book/publisher}

Π($article) = {$article/author}

We construct a buffer tree for each variable in X with
a nonempty set of buffer paths. Here, we obtain the
trees shown in Figure 3 (the bullet denotes a marked
node). Note that the leaf node ceo has been pruned
off the buffer tree of variable $bib. �

We evaluate a safe FluX query Q in normal form as
follows. We compute X and construct the buffer tree
T p($r, Q) for each variable $r ∈ X .

We further associate an evaluator function with
each variable $r in X . When variable $r is bound
to a node v of the incoming XML tree, then the eval-
uator Eval $r is responsible for handling all events
generated while processing the children of v.

We define a buffer buffer $r for variable $r in the
evaluator which calls Eval $r. This buffer is initialized
on entering the scope of $r and freed on re-entering it.

The buffer tree of $r can be considered a schema for all
events stored in buffer buffer $r. At the same time,
the buffer tree determines how the set of evaluators is
to be extended such that all buffers are correctly filled.

For a node v in buffer tree T p($r), reachable by
path $r/a1/ . . . /an, we implement the corresponding
buffering strategy in a set of evaluators. Starting with
Eval $r and a1, we successively extend the evaluators
responsible for handling the children of a node labeled
ai such that the events for the opening and closing
tag of the respective node will be added to buffer $r.
In cases where no such evaluator exists, we introduce
new variables and evaluators accordingly. As there
is at most one case statement in an evaluator for an
”on a” event under a given node label ”a”, it is clear
where corresponding commands are to be introduced.
In case an is marked, we insert the respective code
for adding all events corresponding to node an and its
subtree to buffer $r.

Example 5.2 Consider query F ′
3 of Example 4.6.

The set of buffer trees for this query is as in Figure 3
with the publisher node replaced by an editor node.
Its FluX evaluation strategy is as follows.

for each event e of Eval $ROOT, switch(e) {
case(ofp()): { output "<results>"; }
case(on bib): { initialize(buffer $bib);

Eval $bib(node(e)); }
case(ofp(bib)): { output "</results>"; } }

for each event of Eval $bib, switch(e) {
case(on book): { buffer $bib.add(<book>);

Eval $book(node(e));
buffer $bib.add(</book>); }

case(on article): { initialize(buffer $article);
Eval $article(node(e)); } }

for each event of Eval $book, switch(e) {
case(on editor): { buffer $bib.add(node(e));} }

for each event of Eval $article, switch(e) {
case(on author):

{ buffer $article.add(node(e)); }
case(ofp(author)): { execute subquery(α); } }

At the beginning of the stream, the evaluator of
variable $ROOT handles the event on-first past(),
denoted ofp() above, by writing the opening tag
<results> to the output. Correspondingly, the event
ofp(bib) signals the end of the stream and the closing
tag </results> is output.

Yet when processing the SAX event for the open-
ing tag of root node bib, the buffer associated with
variable $bib is initialized and the evaluator for $bib
takes over to handle all events generated while parsing
the children of bib.

Book nodes arriving on the stream are stored
in the buffer of variable $bib, while editor nodes
are buffered by the evaluator for variable $book to-
gether with their complete subtrees. As with all safe
FluX queries, we may rely on the fact that buffer

237

FluX Galax AnonX

5M 2.1s/0 13.4s/37M 3.4s
Q1 10M 2.8s/0 29.8s/83M 6.7s

50M 7.8s/0 - / >500M 38.3s
100M 14.0s/0 - / >500M -

5M 6.8s/1.54M 296.9s/50M 143.8s
Q8 10M 17.2s/3.16M 1498.3s/100M 534.8s

50M 357.8s/16.00M - / >500M -
100M 11566.9s/32.25M - / >500M -

5M 5.6s/374k 277.0s/50M n/a
Q11 10M 11.4s/741k 1663.7s/100M n/a

50M 170.8s/3.64M - / >500M n/a
100M 626.8s/7.27M - / >500M n/a

5M 2.2s/0 12.8s/38M 3.0s
Q13 10M 3.1s/0 27.2s/73M 5.2s

50M 7.9s/0 230.1s/344M 88.0s
100M 13.9s/0 - / >500M -

5M 2.8s/4.66k 13.2s/36M 2.5s
Q20 10M 3.4s/5.18k 29.7s/80M 6.2s

50M 8.7s/7.01k - / >500M 151.9s
100M 15.4s/7.02k - / >500M -

Figure 4: Benchmark results.

buffer $bib is filled by the time we encounter the
first article node. The buffer is not freed until the
complete subtree under the node bound to variable
$bib has been parsed.

Processing the children of an article node, any
authors are first buffered in buffer $article until the
event ofp(author) guarantees that the subquery α of
F ′

3 can be executed correctly. �

Join conditions are handled similarly, by buffering
both constituent paths of the condition. Simple con-
ditions comparing a path with a constant can be eval-
uated on the fly while reading the paths, so only a
Boolean flag is required, which has to be appropriately
initialized upon entering the relevant variable scope.

6 Experiments

In order to assess the merits of the approach presented
in this paper, we have experimentally evaluated our
prototype query engine implemented in JAVA using a
number of queries on data obtained using the XMark
benchmark generator.

Our implementation supports the XQuery− frag-
ment as defined in Section 3. We took selected queries
of the XMark benchmark and, as XQuery− does not
include certain features that are used in these queries,
adapted them correspondingly. In detail, attributes
were converted into subelements of their parent ele-
ment in our tests (the XMark DTD was adjusted ac-
cordingly). Occurrences of the XPath step text()
were replaced by {$x} expressions that print the whole
element instead. We eliminated the count($x) ag-
gregations by again outputting $x instead. XMark
queries 1, 8, 11, and 13 were adjusted as sketched
above. We extracted the last FLWR subexpression
of original query 20 (which computes persons whose

income is not available) for our novel query 20. The
queries thus obtained can be found in full in [12].

We used data generated by the XMark xmlgen data
generation tool (V. 0.96) of the sizes 5MB, 10MB,
50MB, and 100MB as input data. All tests were per-
formed with the SUN JDK 1.4.2 03 and the built-in
SAX parser on an AMD Athlon XP 2000+ (1.67GHz)
with 512MB RAM running Linux (gentoo linux us-
ing kernel 2.6). Our query engine was implemented
precisely as described in this paper. As a reference
implementation the Galax query engine (V. 0.3.1) was
employed with projection turned on [14]. The perfor-
mance of query evaluation was studied by measuring
the execution time4 (in seconds) and maximum mem-
ory consumption (in bytes) of each engine. The mem-
ory and CPU usage of both query engines were mea-
sured by internal monitoring functions (excluding the
fixed memory consumption of the Java Virtual Ma-
chine).

To give a broader overview over the performance
of our approach we evaluated our queries additionally
with a commercial XQuery system of a major com-
pany that has to remain anonymous and will be called
AnonX below. Unfortunately, we could not deter-
mine the exact memory consumption for this system.
Hence, we only state its execution time. As AnonX
was not able to parse Query 11, we are not able to list
the execution time.

Figure 4 shows the results of our experiments. To
evaluate most queries with input greater than 10MB,
Galax needed more than 500MB of main memory after
running for a few minutes (which caused the system to
start swapping). These runs were aborted. Obviously,
our prototype engine clearly outperforms Galax with
respect to both execution time and memory consump-
tion. Queries 1 and 13 are evaluated on-the-fly without
any buffering because of the order constraints imposed
by the DTD. Query 20 has to buffer only a single ele-
ment at a time, which leads to very low memory con-
sumption in comparison to the traditional approach.
Queries 8 and 11 perform a join on two subtrees (i.e.
of people and closed auction resp. open auction)
and therefore inevitably have to buffer elements. Nev-
ertheless, due to our effective projection scheme only
a small fraction of the original data is buffered. The
rapid increase in execution time is due to the fact that
we compute joins by naive nested loops at the moment.
(We will work on this orthogonal but vital issue in the
future.)

The comparison of the execution times to AnonX
again shows the competitiveness of our query engine.
AnonX ran out of memory processing queries marked
by “-” (the maximum heap size of the Java VM was
set to 512MB in both cases) and hence did not give
any results in this case.

Altogether, our optimization approach seems to
perform very well with respect to execution time, max-

4The times taken for query rewriting were negligible and are
not reported separately in our experiments.

238

imum memory consumption, and the maximum size of
XML documents that can be processed.

7 Discussion and Conclusions

Main memory is probably the most critical resource in
(streamed) query processing. Keeping main memory
consumption low is vital to scalability and has – indi-
rectly – a great impact on query engine performance
in terms of running time.

The main contribution of this paper is the FluX
language together with an algorithm for automati-
cally translating a significant fragment of XQuery into
equivalent FluX queries. FluX – while intended as an
internal representation format for queries rather than a
language for end-users – provides a strong intuition for
buffer-conscious query processing on structured data
streams. The algorithm uses schema information to
schedule FluX queries so as to reduce the use of buffers.

As evidenced by our experiments, our approach
indeed dramatically increases the scalability of main
memory XQuery engines, even though we think we
are not yet close to exhausting this approach, neither
with respect to run-time buffer management and query
processing nor query optimization.

In particular, further constraints such as cardinality
constraints derived from the DTD, telling, e.g., that a
book node has at most one publisher child (let this

be denoted by publisher ∈ ||≤1

book), could be used to
simplify XQueries before they are rewritten into FluX
using rewrite rules such as

{ for $x in $r/a return α }
{ for $x in $r/a return β }

{ for $x in $r/a return α β }

(

a ∈ ||≤1

$r

)

which can form the basis of algebraic query optimiza-
tion for buffer minimization.

Sequences of for-loops iterating over singletons are
a natural product of the normalization process that we
have described. For example, the query

{ for $b in $ROOT/book return
{$b/publisher/name} {$b/publisher/address} }

uses a sequence of two loops over publisher in its nor-
mal form, which can be rewritten into one using the
rule above. By first merging for-loops, it is often pos-
sible to obtain FluX queries that require no buffering
at all, while two subsequent loops over the same path
generally cause that path to be buffered.

Another important optimization is to push if-
expressions – which we have moved down the query
tree to obtain our normal form – back “up” the ex-
pression tree as soon as the other simplifications have
been realized.

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the
Web. Morgan Kaufmann Publishers, 2000.

[2] M. Altinel and M. Franklin. “Efficient Filtering of
XML Documents for Selective Dissemination of Infor-
mation”. In Proc. VLDB 2000, pages 53–64, Cairo,
Egypt, 2000.

[3] A. Brüggemann-Klein and D. Wood. “One-
Unambiguous Regular Languages”. Information and
Computation, 142(2):182–206, 1998.

[4] P. Buneman, M. Grohe, and C. Koch. “Path Queries
on Compressed XML”. In Proc. VLDB 2003, pages
141–152, 2003.

[5] C. Y. Chan, P. Felber, M. N. Garofalakis, and R. Ras-
togi. “Efficient Filtering of XML Documents with
XPath Expressions”. In Proc. ICDE 2002, San Jose,
California, USA, February 26–March 1 2002.

[6] A. Deutsch and V. Tannen. “Reformulation of XML
Queries and Constraints”. In Proc. ICDT’03, 2003.

[7] L. Fegaras, D. Levine, S. Bose, and V. Chaluvadi.
“Query Processing of Streamed XML Data”. In Proc.
CIKM 2002, pages 126–133, 2002.

[8] M. Fernandez, J. Siméon, and P. Wadler. “A Semi-
monad for Semi-structured Data”. In Proc. ICDT’01,
pages 263–300, 2001.

[9] D. Florescu, C. Hillery, D. Kossmann, P. Lucas,
F. Riccardi, T. Westmann, M. J. Carey, A. Sundarara-
jan, and G. Agrawal. “The BEA/XQRL Streaming
XQuery Processor”. In Proc. VLDB 2003, pages 997–
1008, 2003.

[10] T. J. Green, G. Miklau, M. Onizuka, and D. Su-
ciu. “Processing XML Streams with Deterministic
Automata”. In Proc. ICDT’03, 2003.

[11] A. K. Gupta and D. Suciu. “Stream Processing of
XPath Queries with Predicates”. In SIGMOD Con-
ference, pages 419–430, 2003.

[12] C. Koch, S. Scherzinger, N. Schweikardt, and
B. Stegmaier. “Schema-based Scheduling of
Event Processors and Buffer Minimization for
Queries on Structured Data Streams”. Tech-
nical Report cs.DB/0406016, CoRR, 2004.
http://arxiv.org/abs/cs.DB/0406016.

[13] B. Ludäscher, P. Mukhopadhyay, and Y. Papakon-
stantinou. “A Transducer-Based XML Query Proces-
sor”. In Proc. VLDB 2002, pages 227–238, 2002.

[14] A. Marian and J. Siméon. “Projecting XML Docu-
ments”. In Proc. VLDB 2003, pages 213–224, 2003.

[15] M. Murata, D. Lee, and M. Mani. “Taxonomy of XML
Schema Languages using Formal Language Theory”.
In Extreme Markup Languages, Montreal, Canada,
Aug. 2001.

[16] D. Olteanu, T. Kiesling, and F. Bry. “An Evaluation
of Regular Path Expressions with Qualifiers against
XML Streams”. In Proc. ICDE 2003, Bangalore, Mar.
2003. Poster Session.

[17] World Wide Web Consortium. “XQuery
1.0 and XPath 2.0 Formal Semantics. W3C
Working Draft (Aug. 16th 2002), 2002.
http://www.w3.org/TR/query-algebra/.

[18] “XML Query Use Cases. W3C Working Draft 02 May
2003”, 2003. http://www.w3.org/TR/xmlquery-use-
cases/.

239

