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Abstract

Existing studies on time series are based on
two categories of distance functions. The first
category consists of the Lp-norms. They are
metric distance functions but cannot support
local time shifting. The second category con-
sists of distance functions which are capable
of handling local time shifting but are non-
metric. The first contribution of this paper
is the proposal of a new distance function,
which we call ERP (“Edit distance with Real
Penalty”). Representing a marriage of L1-
norm and the edit distance, ERP can support
local time shifting, and is a metric.

The second contribution of the paper is the de-
velopment of pruning strategies for large time
series databases. Given that ERP is a met-
ric, one way to prune is to apply the trian-
gle inequality. Another way to prune is to
develop a lower bound on the ERP distance.
We propose such a lower bound, which has
the nice computational property that it can
be efficiently indexed with a standard B+-
tree. Moreover, we show that these two ways
of pruning can be used simultaneously for
ERP distances. Specifically, the false posi-
tives obtained from the B+-tree can be further
minimized by applying the triangle inequal-
ity. Based on extensive experimentation with
existing benchmarks and techniques, we show
that this combination delivers superb pruning
power and search time performance, and dom-
inates all existing strategies.
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1 Introduction

Many applications require the retrieval of similar time
series. Examples include financial data analysis and
market prediction [1, 2, 10], moving object trajectory
determination [6] and music retrieval [31]. Studies in
this area revolve around two key issues: the choice of
a distance function (similarity model), and the mech-
anism to improve retrieval efficiency.

Concerning the first issue, many distance functions
have been considered, including Lp-norms [1, 10], dy-
namic time wraping (DTW) [30, 18, 14], longest com-
mon subsequence (LCSS) [4, 25] and edit distance on
real sequence (EDR) [6]. Lp-norms are easy to com-
pute. However, they cannot handle local time shifting,
which is essential for time series similarity matching.
DTW, LCSS and EDR have been proposed to exactly
deal with local time shifting. However, they are non-
metric distance functions.

This leads to the second issue of improving retrieval
efficiency. Specifically, non-metric distance functions
complicate matters, as the violation of the triangle in-
equality renders most indexing structures inapplica-
ble. To this end, studies on this topic propose various
lower bounds on the actual distance to guarantee no
false dismissals [30, 18, 14, 31]. However, those lower
bounds can admit a high percentage of false positives.

In this paper, we consider both issues and explore
the following questions.

• Is there a way to combine Lp-norms and the other
distance functions so that we can get the best of
both worlds – namely being able to support local
time shifting and being a metric distance func-
tion?

• With such a metric distance function, we can ap-
ply the triangle inequality for pruning, but can we
develop a lower bound for the distance function?
If so, is lower bounding more efficient than apply-
ing the triangle inequality? Or, is it possible to
do both?

Our contributions are as follows:

• We propose in Section 3 a distance function which
we call Edit distance with Real Penalty (ERP). It
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can be viewed as a variant of L1-norm, except
that it can support local time shifting. It can
also be viewed as a variant of EDR and DTW,
except that it is a metric distance function. We
present benchmark results showing that this dis-
tance function is natural for time series data.

• We propose in Section 4 a new lower bound for
ERP, which can be efficiently indexed with a stan-
dard B+-tree. Given that ERP is a metric dis-
tance function, we can also apply the triangle in-
equality. We present benchmark results in Section
5 comparing the efficiency of lower bounding ver-
sus applying the triangle inequality.

• Last but not least, we develop in Section 4 a k-
nearest neighbor (k-NN) algorithm that applies
both lowering bounding and the triangle inequal-
ity. We give extensive experimental results in Sec-
tion 5 showing that this algorithm gets the best
of both paradigms, delivers superb retrieval effi-
ciency and dominates all existing strategies.

2 Related Work

Many studies on similarity-based retrieval of time se-
ries were conducted in the past decade. The pioneering
work by Agrawal et al. [1] used Euclidean distance to
measure similarity. Discrete Fourier Transform (DFT)
was used as a dimensionality reduction technique for
time series data, and an R-tree was used as the index
structure. Faloutsos et al. [10] extended this work to
allow subsequence matching and proposed the GEM-
INI framework for indexing time series. The key is the
use of a lower bound on the true distance to guarantee
no false dismissals when the index is used as a filter.

Subsequent work have focused on two main aspects:
new dimensionality reduction techniques (assuming
that the Euclidean distance is the similarity measure);
and new approaches for measuring the similarity be-
tween two time series. Examples of dimensionality
reduction techniques include Single Value Decompo-
sition [19], Discrete Wavelet Transform [20, 22], Piece-
wise Aggregate Approximation [15, 29], and Adaptive
Piecewise Constant Approximation [14].

The motivation for seeking new similarity measures
is that the Euclidean distance is very weak on han-
dling noise and local time shifting. Berndt and Clif-
ford [3] introduced DTW to allow a time series to be
“stretched” to provide a better match with another
time series. Das et al. [9] and Vlachos et al. [25] ap-
plied the LCSS measure to time series matching. Chen
et al. [6] applied EDR to trajectory data retrieval and
proposed a dimensionality reduction technique via a
symbolic representation of trajectories. However, none
of DTW, LCSS and EDR is a metric distance function
for time series.

Most of the approaches on indexing time series fol-
low the GEMINI framework. However, if the distance
measure is a metric, then existing indexing structures

Symbols Meaning

S a time series [s1, . . . , sn]
Rest(S) [s2, . . . , sn]
dist(si, ri) the distance between two elements

S̃ S after aligned with another series
DLB a lower bound of the distance

Figure 1: Meanings of Symbols Used

proposed for metrics may be applicable. Examples in-
clude the MVP-tree [5], the M-tree [8], the Sa-tree [21],
and the OMNI-family of access methods [11]. A sur-
vey of metric space indexing is given in [7]. In our
experiments, we pick M-trees and OMNI-sequential as
the strawman structures for comparison; MVP-trees
and Sa-trees are not compared because they are main
memory resident structures. The other access methods
of OMNI-family are not used because the dimension-
ality of OMNI-coordinates is high (e.g., ≥ 20), which
may lead to dimensionality curse [28]. In general, a
common strategy to apply the triangle inequality for
pruning is to use a set of reference points (time series
in this case). Different studies propose different ways
to choose the reference points. In our experiments,
we compare our strategies in selecting reference points
with the HF algorithm of the OMNI-family.

3 Edit Distance With Real Penalty

3.1 Reviewing Existing Distance Functions

A time series S is defined as a sequence of real val-
ues, with each value si sampled at a specific time,
i.e., S = [s1, s2, . . . , sn]. The length of S is n,
and the n values are referred to as the n elements.
This sequence is called the raw representation of
the time series. Given S, we can normalize it us-
ing its mean (µ) and standard deviation (σ) [13]:
Norm(S) = [ s1−µ

σ
, s2−µ

σ
, . . . , sn−µ

σ
]. Normalization is

recommended so that the distance between two time
series is invariant to amplitude scaling and (global)
shifting of the time series. Throughout this paper, we
use S to denote Norm(S) for simplicity, even though
all the results developed below apply to the raw rep-
resentation as well. Figure 1 summarizes the main
symbols used in this paper.

Given two time series R and S of the same
length n, the L1-norm distance between R and S is:∑n

i=1 dist(ri, si) =
∑n

i=1 |ri − si|. This distance func-
tion satisfies the triangle inequality and is a metric.
The problem in using L1-norm for time series is that
it requires the time series to be of the same length and
does not support local time shifting.

To cope with local time shifting, one can borrow
ideas from the domain of strings. A string is a se-
quence of elements, each of which is a symbol in an
alphabet. Two strings, possibly of different lengths,
are aligned so that they become identical with the
smallest number of added, deleted or changed sym-
bols. Among these three operations, deletion can be
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treated as adding a symbol in the other string. Here-
after, we refer to an added symbol as a gap element.
This distance is called the string edit distance. The
cost/distance of introducing a gap element is set to 1.

dist(ri, si) =





0 if ri = si

1 if ri or si is a gap
1 otherwise

(1)

In the above formula, we highlight the second case to
indicate that if a gap is introduced in the alignment,
the cost is 1. String edit distance satisfies the triangle
inequality and is a metric [27].

To generalize from strings to time series, the compli-
cation is that the elements ri and si are not symbols,
but real values. For most applications, strict equal-
ity would not make sense as, for instance, the pair
ri = 1, si = 2 should be considered more similar than
the pair ri = 1, si = 10000. To take the real values
into account, one way is to relax equality to be within
a certain tolerance δ:

distedr(ri, si) =





0 if |ri − si| ≤ δ
1 if ri or si is a gap
1 otherwise

(2)

This is a simple generalization of Formula (1).
Based on Formula (2) on individual elements and
gaps, the edit distance between two time sequences
R and S of length m and n respectively is de-
fined in [6] as Formula (3) in Figure 2. r1 and
Rest(R) denote the first element and the remain-
ing sequence of R respectively. Notice that given
Formula (2), the last case in Formula (3) can
be simplified to: min{EDR(Rest(R), Rest(S)) +
1, EDR(Rest(R), S)+1, EDR(R,Rest(S))+1}. Local
time shifting is essentially implemented by a dynamic-
programming style minimization of the above three
possibilities.

While EDR can handle local time shifting, it no
longer satisfies the triangle inequality. The problem
arises precisely from relaxing equality, i.e., |ri−si| ≤ δ.
More specifically, for three elements qi, ri, si, we can
have |qi − ri| ≤ δ, |ri − si| ≤ δ, but |qi − si| > δ.

To illustrate, let us consider a very simple exam-
ple of three time series: Q = [0], R = [1, 2] and
S = [2, 3, 3]. Let δ = 1. To best match R, Q is

aligned to be Q̃ = [0,−], where the symbol “-” de-
notes a gap. (There may exist many alternative ways
to align sequences to get their best match. We only
show one of the possible alignments for simplicity.)
Thus, EDR(Q,R) = 0 + 1 = 1. Similarly, to best

match S, R is aligned to be R̃ = [1, 2,−], giving rise
to EDR(R,S) = 1. Finally, to best match S, Q is

aligned to be Q̃ = [0,−,−], leading to EDR(Q,S) =
3 > EDR(Q,R) + EDR(R,S) = 1 + 1 = 2!

DTW differs from EDR in two key ways, summa-

rized in the following formula:

distdtw(ri, si) =





|ri − si| if ri, si not gaps
|ri − si−1| if si is a gap
|si − ri−1| if ri is a gap

(6)

First, unlike EDR, DTW does not use a δ threshold
to relax equality, the actual L1-norm is used. Second,
unlike EDR, there is no explicit gap concept being in-
troduced in its original definition [3]. We treat the
replicated elements during the process of aligning two
sequences as gaps of DTW. Therefore, the cost of a
gap is not set to 1 as EDR does; it amounts to repli-
cating the previous element, based on which the L1-
norm is computed. Based on the above formula, the
dynamic warping distance between two time series, de-
noted as DTW (R,S), is defined formally as Formula
(4) in Figure 2. The last case in the formula deals with
the possibilities of replicating either si−1 or ri−1.

Let us repeat the previous example with DTW:
Q = [0], R = [1, 2] and S = [2, 3, 3]. To best match

R, Q is aligned to be Q̃ = [0,−] = [0, 0]. Thus,
DTW (Q,R) = 1 + 2 = 3. Similarly, to best match

S, R is aligned to be R̃ = [1, 2,−] = [1, 2, 2], giving
rise to DTW (R,S) = 3. Finally, to best match S,

Q is aligned to be Q̃ = [0,−,−] = [0, 0, 0], leading
to DTW (Q,S) = 8 > DTW (Q,R) + DTW (R,S) =
3 + 3 = 6.

It has been shown in [24] that for speech applica-
tions, DTW “loosely” satisfies the triangle inequality.
We verified this observation with the 24 benchmark
data sets used in [14, 31]. It appears that this obser-
vation is not true in general, as on average nearly 30%
of all the triplets do not satisfy the triangle inequality.

3.2 ERP and its Properties

The key reason why DTW does not satisfy the trian-
gle inequality is that, when a gap needs to be added,
it replicates the previous element. Thus, as shown in
the second and third cases of Formula (6), the differ-
ence between an element and a gap varies according to
ri−1 or si−1. Contrast this situation with EDR, which
makes every difference to be a constant 1 (second case
in Formula (2)). On the other hand, the problem for
EDR lies in its use of a δ tolerance. DTW does not
have this problem because it uses the L1-norm between
two non-gap elements.

We propose ERP such that it uses real penalty be-
tween two non-gap elements, but a constant value for
computing the distance for gaps. Thus, ERP uses the
following distance formula:

disterp(ri, si) =





|ri − si| if ri, si not gaps
|ri − g| if si is a gap
|si − g| if ri is a gap

(7)

where g is a constant value. Based on Formula (7),
we define the ERP distance between two time series,
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EDR(R, S) =





n if m = 0
m if n = 0
EDR(Rest(R), Rest(S)) if distedr(r1, s1) = 0
min{EDR(Rest(R), Rest(S)) + distedr(r1, s1), otherwise
EDR(Rest(R), S) + distedr(r1, gap), EDR(R, Rest(S)) + distedr(gap, s1)}

(3)

DTW (R, S) =





0 if m = n = 0
∞ if m = 0 or n = 0
distdtw(r1, s1) + min{DTW (Rest(R), Rest(S)), otherwise
DTW (Rest(R), S), DTW (R, Rest(S))}

(4)

ERP (R, S) =





∑ n
1
|si − g| if m = 0∑ m

1
|ri − g| if n = 0

min{ERP (Rest(R), Rest(S)) + disterp(r1, s1), otherwise
ERP (Rest(R), S) + disterp(r1, gap), ERP (R, Rest(S)) + disterp(s1, gap)}

(5)

Figure 2: Comparing the Distance Functions

denoted as ERP (R,S), as Formula (5) in Figure 2. A
careful comparison of the formulas reveals that ERP
can be seen as a combination of L1-norm and EDR.
ERP differs from EDR in avoiding the δ tolerance. On
the other hand, ERP differs from DTW in not replicat-
ing the previous elements. The following lemma shows
that for any fixed constant g, the triangle inequality is
satisfied.
Lemma 1 For any three elements qi, ri, si, any of
which can be a gap element, it is necessary that
dist(qi, si) ≤ dist(qi, ri) + dist(ri, si) based on For-
mula (7).
Theorem 1 Let Q,R, S be three time series of arbi-
trary length. Then it is necessary that ERP (Q,S) ≤
ERP (Q,R) + ERP (R,S).

The proof of this theorem is a consequence of
Lemma 1 and the proof of the result by Waterman et
al. [27] on string edit distance. The Waterman proof
essentially shows that defining the distance between
two strings based on their best alignment in a dynamic
programming style preserves the triangle inequality, as
long as the underlying distance function also satisfies
the triangle inequality. The latter requirement is guar-
anteed by Lemma 1. Due to lack of space, we omit a
detailed proof.

3.2.1 Picking a Value for g

A natural question to ask here is: what is an appro-
priate value of g? The above lemma says that any
value of g, as long as it is fixed, satisfies the triangle
inequality. We pick g = 0 for two reasons. First, g = 0
admits an intuitive geometric interpretation. Consider
plotting the time series with the x-axis representing
(equally-spaced) time points and the y-axis represent-
ing the values of the elements. In this case, the x-axis
corresponds to g = 0. Thus, the distance between two
time series R,S corresponds to the difference between
the area under R and the area under S.

Second, to best match R, S is aligned to form S̃
with the addition of gap elements. However, since
the gap elements are of value g = 0, it is easy to
see that

∑
s̃i =

∑
sj , making the area under S and

that under S̃ the same. The following lemma states
this property. In the next section, we will see the

computational significance of this lemma.

Lemma 2 Let R,S be two time series. By setting
g = 0 in Formula (7),

∑
s̃i =

∑
sj , where S is aligned

to form S̃ to match R.
Let us repeat the previous example with ERP: Q =

[0], R = [1, 2] and S = [2, 3, 3]. To best match R,

Q is aligned to be Q̃ = [0, 0]. Thus, ERP (Q,R) =
1+2 = 3. Similarly, to best match S, R is aligned to be

R̃ = [1, 2, 0], giving rise to ERP (R,S) = 5. Finally, to

best match S, Q is aligned to be Q̃ = [0, 0, 0], leading
to ERP (Q,S) = 8 ≤ ERP (Q,R) + ERP (R,S) =
3 + 5 = 8, satisfying the triangle inequality.

To see how local time shifting works for ERP, let us
change Q = [3] instead. Then ERP (Q,R) = 1+1 = 2,

as Q̃ = [0, 3]. Similarly, ERP (Q,S) = 2 + 3 = 5, as

Q̃ = [0, 3, 0]. The triangle inequality is satisfied as
expected.

Notice that none of the results in this section are
restricted to L1-norm. That is, if we use another Lp-
norm to replace L1-norm in Formula (7), the lemma
and the theorem remain valid. For the rest of the
paper, we continue with L1-norm for simplicity.

3.3 On the Naturalness of ERP

Even though ERP is a metric distance function, it is
a valid question to ask whether ERP is “natural” for
time series. In general, whether a distance function is
natural mainly depends on the application semantics.
Nonetheless, we show two experiments below suggest-
ing that ERP appears to be at least as natural as the
existing distance functions.

The first experiment is a simple sanity check. We
first generated a simple time series Q shown in Fig-
ure 3. Then we generated 5 other time series (T1-T5)
by adding time shifting or noise data on one or two
positions of Q as shown in Figure 3. For example, T1

was generated by shifting the sequence values of Q to
the left starting from position 4, and T2 was derived
from Q by introducing noise in position 4. Finally, we
used L1-norm, DTW, EDR, ERP and LCSS to rank
the five time series relative to Q. The rankings are
listed left to right, with the leftmost being the most
similar to Q. The rankings are as follow:
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Figure 3: Subjective Evaluation of Distance Functions

L1-norm: T1, T4, T5, T3, T2

LCSS: T1, {T2, T3, T4}, T5

EDR: T1, {T2, T3}, T4, T5

DTW: T1, T4, T3, T5, T2

ERP: T1, T2, T4, T5, T3

As shown from the above results, L1-norm is sen-
sitive to noise, as T2 is considered the worst match.
LCSS focuses only on the matched parts and ignores
all the unmatched portions. As such, it gives T2, T3, T4

the same rank, and considers T5 the worst match.
EDR gives T2, T3 the same rank, higher than T4. DTW
gives T3 a higher rank than T5. Finally, ERP gives a
ranked list different from all the others. Notice that
the point here is not that ERP is the most natural.
Rather, the point is that ERP appears to be no worse,
if not better, than the existing distance functions.

In the second experiment, we turn to a more ob-
jective evaluation. Recently, Keogh et al. [17] have
proposed using classification on labelled data to eval-
uate the efficacy of a distance function on time series.
Specifically, each time series is assigned a class label.
Then the “leave one out” prediction mechanism is ap-
plied to each time series in turn. That is, the class
label of the chosen time series is predicted to be the
class label of its nearest neighbour, defined based on
the given distance function. If the prediction is correct,
then it is a hit; otherwise, it is a miss. The classifica-
tion error rate is defined as the ratio of the number of
misses to the total number of the time series. In the
table below, we show the average classification error
rate using three benchmarks: the Cylinder-Bell-Funnel
(CBFtr) data [12, 14], the ASL data [25] and the “cam-
eramouse” (CM) data [25]. (All can be downloaded
from http://db.uwaterloo.ca/∼l6chen/testdata). Com-
pared to the standard CBF data [17], temporal shifting
is introduced in the CBFtr data set. The CBFtr data
set is a 3-class problem. The ASL data set from UCI
KDD archive consists of of signs from the Australian
Sign Language. The ASL data set is a 10-class prob-
lem; The “cameramouse” data set contains 15 trajec-
tories of 5 classes (words) (3 for each word). As shown
in the table below, for three data sets, ERP performs
(one of) the best, showing that it is not dominated by
other well known alternatives.

Avg. Error Rate L1 DTW LCSS EDR ERP

CBFtr 0.03 0.01 0.01 0.01 0.01
ASL 0.16 0.10 0.11 0.11 0.09
CM 0.4 0.00 0.06 0.00 0.00

4 Indexing for ERP

Recall from Figure 2 that ERP can be seen as a vari-
ant of EDR and DTW. In particular, they share the
same computational behavior. Thus, like EDR and
DTW, it takes O(mn) time to compute ERP (Q,S)
for time series Q,S of length m,n respectively. For
large time series databases, it is important that for a
given query Q, we try to minimize the computation of
the true distance between Q and S for all series S in
the database. The topic explored here is indexing for
k-NN queries. An extension to range queries is rather
straightforward; we omit details for brevity.

Given that ERP is a metric distance function, one
obvious way to prune is to apply the triangle inequal-
ity. In Section 4.1, we present an algorithm to do just
that. Metric or not, another common way to prune
is to apply the GEMINI framework – that is, using
lower bounds to guarantee no false negatives. Specif-
ically, even though DTW is not a metric, three lower
bounds have been proposed [30, 18, 14]. In Section
4.2.1, we show how to adapt these lower bounds for
ERP. In Section 4.2.2, we propose a new lower bound
for ERP. The beauty of this lower bound is that it can
be indexed by a simple B+-tree.

4.1 Pruning by the Triangle Inequality

The procedure TrianglePruning shown in Figure 4
shows a skeleton of how the Triangle inequality is
applied. The array procArray stores the true ERP
distances computed so far. That is, if {R1, . . . , Ru}
is the set of time series for which ERP (Q,Ri) has
been computed, the distance ERP (Q,Ri) is recorded
in procArray. Thus, for time series S currently be-
ing evaluated, the triangle inequality ensures that
ERP (Q,S) ≥ ERP (Q,Ri) − ERP (Ri, S), for all
1 ≤ i ≤ u. Thus, it is necessary that ERP (Q,S) ≥
(max1≤i≤u{ERP (Q,Ri) − ERP (Ri, S)}). This is
implemented in lines 2 to 4. If this distance
maxPruneDist is already worse than the current k-
NN distance stored in result, then S can be skipped
entirely. Otherwise, the true distance ERP (Q,S) is
computed, and procArray is updated to include S.
Finally, the result array is updated, if necessary, to
reflect the current k-NN neighbours and distances in
sorted order.

The algorithm given in Figure 5 shows how the
result and procArray should be initialized when the
procedure TrianglePruning is called repeatedly in line
4. Line 3 of the algorithm represents a simple sequen-
tial scan of all the time series in the database. Note
that we are not saying that a sequential scan should be
used. We include it for two reasons. The first reason
is to show how the procedure TrianglePruning can be
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Procedure TrianglePruning(S, procArray, pmatrix, result, Q, k) {
/* S ≡ the current time series; procArray ≡ the array of
time series with computed true distance to Q; pmatrix ≡
precomputed pairwise distance matrix; result ≡ the k-NN
time series */
(1) maxPruneDist = 0
(2) for each time series R in procArray {
(3) if ( (procArray[R].dist − pmatrix[R, S]) > maxPruneDist)
(4) maxPruneDist = procArray[R].dist − pmatrix[R, S]

} /* end-for, line 2 */
(5) bestSoFar = result[k].dist /* the k-NN distance so far */
(6) if (maxPruneDist ≤ bestSoFar) { /* cannot be pruned */
(7) realDist = ERP (Q, S) /* compute true distance */
(8) insert S and realDist into procArray
(9) if (realDist < bestSoFar) /* update result */
(10) insert S and realDist into result,

sorted in ascending order of ERP distance
} /* end-if, line 6 */

}

Figure 4: Algorithm for Applying the Triangle In-
equality

Procedure SequentialScan(Q, k, pmatrix) {
/* Q ≡ the query time series; pmatrix ≡
precomputed pairwise distance matrix */
(1) initialize result so that result[k].dist = ∞
(2) initialize procArray to empty
(3) for each time series S in the database
(4) TrianglePruning(S, procArray, pmatrix, result, Q, k)
(5) return result

}

Figure 5: Sequential Scan Applying the Triangle In-
equality

invoked. The second reason is that a sequential scan
algorithm can be used to illustrate the pure pruning
power of the triangle inequality, independent of the
indexing structure. This issue will be discussed later
when the inequality is used in conjunction with index
structures. Moreover, the triangle inequality need not
be applied only in the manner shown in Figure 4. It
can be applied directly with existing metric space in-
dex structures such as M-trees or OMNI-family access
methods. Again the issue of comparison will be ad-
dressed in Section 5.

Finally, for large databases, the procedure Trian-
glePruning makes two assumptions. The first assump-
tion is that the matrix pmatrix is small enough to be
contained in main memory. For every pair of time se-
ries R,S in the database, pmatrix[R,S] records the
distance ERP (R,S). For large databases, pmatrix
may be too large. The second assumption is that the
size of procArray is small enough. The size is left
unspecified because procedure TrianglePruning works
regardless of the actual size of the array. The larger
the size, the more time series can be used for prun-
ing. These two assumptions will be addressed in Sec-
tion 4.3.

4.2 Pruning by Lower Bounding

For non-metric distance functions, like DTW, the main
pruning strategy is lower bounding. However, lower
bounding is not restricted only to non-metric distance
functions. Below we develop lower bounds for ERP.

4.2.1 Adapting Existing Lower Bounds

Given the similarities between ERP and DTW, as
shown in Figure 2, we first adapt existing lower bounds
for DTW to become lower bounds for ERP. Specifi-
cally, we consider the lower bounds proposed by Yi et
al. [30], Kim et al. [18], and Keogh et al. [14].

The lower bound proposed by Yi et al., denoted
as DLByi(Q,S), is based on the area covered by
Q that is greater than max(S) and the area of Q
that is less than min(S), where max(S) and min(S)
denote the maximum and minimum elements of S.
Adapting to ERP is rather straightforward. Because
ERP uses a constant gap element g = 0, we need
to compare the original minimum and maximum
elements with 0, i.e., newmin(S) = min{min(S), 0}
and newmax(S) = max{max(S), 0}. With this
modification, we have the following result. The proof
is omitted because it is a simple extension of the orig-
inal proof of DLByi(Q,S) ≤ DTW (Q,S) given in [30].

Lemma 3 Let Q,S be two time series. It is necessary
that DLByi(Q,S) ≤ ERP (Q,S).

Instead of just using min(S) and max(S), the
lower bound proposed by Kim et al., denoted as
DLBkim(Q,S), uses the first and last elements of
Q and S as well, i.e., q1, qm and s1, sn. The lower
bound is the maximum of: |max(Q) − max(S)|,
|min(Q) − min(S)|, |q1 − s1| and |qm − sn|. To
adapt this lower bound for ERP, we need to take
into account that for the aligned time series, the first
or the last element may be a gap. With this simple
change, we have the following result, which extends
DLBkim(Q,S) ≤ DTW (Q,S) shown in [18].

Lemma 4 Let Q,S be two time series. It is necessary
that DLBkim(Q,S) ≤ ERP (Q,S).

Finally, Keogh et al. introduced the concept of a
bounding envelop for a time series Q, which is of the
form: Env(Q) = [(Min1,Max1), . . . (Minn,Maxn)].
Mini and Maxi represent the minimum and max-
imum value of the warping range of an element.
The warping range of an element is the maximum
number of times the element can be duplicated
in local time shifting. To adapt the envelope to
ERP, Mini and Maxi are adjusted with the gap,
exactly like in DLByi(Q,S). The following extends:
DLBkeogh(Q,S) ≤ DTW (Q,S) shown in [14].

Lemma 5 Let Q,S be two time series. It is necessary
that DLBkeogh(Q,S) ≤ ERP (Q,S).

The effectiveness of the three adapted lower bounds
will be empirically evaluated in the next section. The
focus will be on the pruning power of these lower
bounds. Notice that the lower bound DLBkeogh is
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not directly indexable. Thus, in [31], Shasha et al.
proposed a lower bound for DLBkeogh. We do not in-
clude this technique in our experimentation because
we will make comparison with DLBkeogh directly. As
a preview, we will show that our proposed technique
dominates DLBkeogh, which translates to a superiority
over the Shasha’s lower bound of DLBkeogh.

Finally, as the comparisons are based on pruning
power, we consider a sequential scan strategy for ex-
ploiting these lower bounds. This can be achieved by
modifying procedure TrianglePruning in Figure 4 as fol-
lows:

• Delete lines 2 to 4 and line 8, as there is no longer
necessary to keep procArray.

• Change line 1 to: maxPruneDist =
DLByi(Q,S), DLBkim(Q,S) or DLBkeogh(Q,S).

4.2.2 A New Lower Bound for ERP

Below we develop a new lower bound specifically for
ERP. Given a time series S of length n, we use the
notation sum(S) to denote

∑n
i=1 si. Then we define

the distance DLBerp(Q,S) between Q of length m and
S of length n as:

DLBerp(Q,S) = |sum(Q) − sum(S)| (8)

A key result here is the following theorem stating that
this is indeed a lower bound for ERP.

Theorem 2 Let Q,S be two time series. It is
necessary that DLBerp(Q,S) ≤ ERP (Q,S).

Before we present a proof sketch of the theorem, we
need the following results from the literature on a
convex function. A function f(x) is convex on an
interval [a, b] if for any two points x1 and x2 in [a, b],
f [12 (x1 + x2)] ≤

1
2 [f(x1) + f(x2)].

Lemma 6 [23] Let λ1, . . . , λK be non-negative real

values such that
∑K

i=1 λi = 1. If f is a convex function
on reals, then f(λ1x1 + . . .+λKxK) ≤ λ1f(x1)+ . . . +
λKf(xK), where x1, . . . , xK are real values.

As shown in [29], the following corollary can be
established for Lp-norms which are convex functions
on reals.

Corollary 1 For any sequence S = [s1, . . . , sK ], and

1 ≤ p < ∞, we have: K � |mean(S)|p ≤
∑K

i=1 |si|
p.

Proof of corollary: Take f(x) = |x|p, and λi = 1/K.

Then f(
∑K

i=1 λisi) = f((
∑K

i=1 si)/K) = |mean(S)|p.
Thus, the inequality follows.

With the above corollary and Lemma 2, we can now
establish Theorem 2.

Proof of Theorem 2: Given Q of length m and S
of length n, let the aligned sequences, to give the best

local time shifting outcome, be Q̃ and S̃ respectively.

Both Q̃ and S̃ are of the same length, say K.

ERP (Q,S) =

K∑

i=1

|s̃i − q̃i| (Formula 7)

≥ K � |mean(S̃ − Q̃)| (Corollary 1, p = 1)

= K � |

∑K
i=1 s̃i −

∑K
i=1 q̃i

K
|

= |

K∑

i=1

s̃i −

K∑

i=1

q̃i|

= |
n∑

i=1

si −
m∑

j=1

qj | (Lemma 2)

= DLBerp(Q,S)

There are two points worth mentioning from the above
theorem. The first point concerns the application of

Lemma 2, i.e.,
∑K

i=1 s̃i =
∑n

i=1 si. This is due to
the fact that the gap element is g = 0. The beauty

of this equality is that regardless of S̃, which depends
on Q, the quantity sum(S) is unchanged and can be
inserted into an index for lower bounding purposes for
any future query Q. This leads to the second point –
sum(S) is a single value. Thus, only a 1-dimensional
B+-tree is sufficient.

Figure 6 shows a skeleton of the algorithm for us-
ing the B+-tree for lower bounding with sum(S). It
first conducts a standard search for the value sum(Q).
This results in a leaf node I. The first k time series
pointed to by I are used to initialize the result array.
Then the leaf nodes of the tree are traversed using the
pointer connecting a leaf node to its siblings. All the
data values bigger than sum(Q) are visited in ascend-
ing order. Similarly, all the data values smaller than
sum(Q) are visited in descending order. In both cases,
if the lower bound distance DLBerp(Q,S) is smaller
than the best k-NN distance so far, the true distance
ERP (Q,S) is computed and updates are made if nec-
essary. Otherwise, the remaining data values can be
skipped entirely.

4.3 Combining the Two Pruning Methods

For a non-metric distance function like DTW, lower
bounding can be used, but pruning by the triangle
inequality cannot. ERP is of course different. It is
possible to combine both methods – use the triangle
inequality to save the computation of the true distance
ERP (Q,S) after lower bounding. A skeleton is shown
in Figure 7.

Recall from Figure 4 that in applying the Trian-
glePruning procedure, there are two unresolved issues:
(i) the size of the pairwise distance matrix pmatrix;
and (ii) the size of procArray, i.e., the maximum
number of time series whose true ERP distances are
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Procedure DLBerpk-NN(Q, k, Tree, result) {
/* Tree ≡ a B+-tree storing sum(S) for all S in database */
(1) sumQ = sum(Q)
(2) conduct a standard B+-tree search on Tree using sumQ

and let I be the leaf node the search ends up with
(3) pick the first k time series pointed to by I and

initialize result with the k true (sorted) ERP distances
(4) let v1, . . . , vh be the data values in all the leaf nodes

larger than the data values visited in line 3. v1, . . . , vh

are sorted in ascending order.
(5) for each vi {
(6) bestSoFar = result[k].dist /* the k-NN distance so far */
(7) if ((vi − sumQ) ≤ bestSoFar) /* need to check */
(8) for each S pointed to by the pointer with vi {
(9) realDist = ERP (Q, S) /* compute true distance */
(10) if (realDist < bestSoFar) { /* update result */
(11) insert S and realDist into result,

sorted in ascending order of ERP distance
(12) bestSoFar = result[k].dist

} /* end-if, line 10 */
} /* end-for, line 8 */

(13) else break /* else, line 7, skip the rest */
} /* end-for, line 5 */

(14) repeat line 4 to 13 this time to the values w1, . . . , wj

in all the leaf nodes which are smaller than the data values
visited in line 3. w1, . . . , wj are sorted in descending
order. Line 7 is modified to: if ((sumQ − wi) ≤ bestSoFar)

(15) return result
}

Figure 6: Algorithm for Applying DLBerp

Procedure ERPCombineK-NN(Q, k, Tree, result) {
Identical to Procedure DLBerpk-NN except:

line 8 to 12 is replaced with:
(8’) for each S pointed to by the pointer with vi

(9’) invoke procedure TrianglePruning() in Figure 4
}

Figure 7: Algorithm for Applying first DLBerp fol-
lowed by the Triangle Inequality

kept for triangle inequality pruning. Below we resolve
these issues to make procedure ERPCombineK-NN in
Figure 7 practical for large databases and for limited
buffer space situations.

Let maxTriangle denote the maximum number of
time series whose true ERP distances are kept for tri-
angle inequality pruning. This value should be deter-
mined at query time by the query engine. Hereafter
we call these time series the reference series. There
are two ways to pick these reference series:

• static: these reference series are randomly picked
a priori. For that matter, they may not even be
series contained in the database.

• dynamic: these reference series are picked as pro-
cedure ERPCombineK-NN runs. The choices are
thus query dependent. In our implementation, we
simply pick the first maxTriangle time series that
fill up the fixed-size procArray.

For the static reference series strategies, the entire
pmatrix is not needed. We only need the pairwise
ERP distance matrix for each pair of reference series
and data series. Thus, if N is the number of time se-
ries in the database, then the size of the this matrix
is N ∗ maxTriangle. For the dynamic reference se-
ries strategy, again the entire pmatrix is not needed.
As the reference series are picked and kept, the ap-
propriate column of the matrix is read into the buffer

space. The buffer space requirement is maxTriangle
columns, each of size N . Thus, the total buffer space
required is again N ∗ maxTriangle.

While the buffer space requirement is the same,
there are tradeoffs between the two strategies. For
the dynamic strategy, the advantage is that the refer-
ence series are chosen based on previously compared
time series. Thus, there is no extra cost involved.
The disadvantage is that at the beginning of running
ERPCombineK-NN, there may not be enough reference
series for the triangle inequality to be effective. It takes
at least maxTriangle iterations to fill up procArray.
In contrast, for the static strategy, all maxTriangle
reference time series are available right at the begin-
ning of running ERPCombineK-NN. The disadvantage
is that the ERP distance must be computed between
the query and each reference time series, which rep-
resents additional overhead. In the next section, we
will present experimental results to compare these two
strategies.

In closing, note that ERPCombineK-NN can be gen-
eralized to apply to any metric distance function –
representing an extension to the GEMINI framework.
That is, within the GEMINI framework, once lower
bounding has been applied, we can add an additional
step to apply the triangle inequality to eliminate more
false positives, as long as the underlying distance func-
tion is a metric. Thus, in this paper, not only do we
find a good marriage between distance functions, but
we also develop a framework for combining two popu-
lar pruning strategies.

5 Experimental Evaluation

5.1 Experimental Setup

In this section, we present experimental results based
on the 24 benchmark data sets used in [31, 14], the
stock data set used in [26], and the random walk data
set tested in [16, 14, 31]. All experiments were run on
a Sun-Blade-1000 workstation with 1G memory under
Solaris 2.8. All the algorithms listed in previous sec-
tions were implemented in C. The various lower bound
strategies for DTW [30, 18, 14], OMNI-sequential and
the HF algorithm for selecting reference series [11],
were also implemented. We obtained the M-tree code
from http://www-db.deis.unibo.it/Mtree/.

Our experiments measure either total time or prun-
ing power. Total time includes both CPU and I/O,
and is measured in seconds. Given a k-NN query Q,
the pruning power is defined to be the fraction of the
time series S in the data set for which the true dis-
tance ERP (Q,S) is not computed (without introduc-
ing false negatives). Following [14, 31], we measure
pruning power (P) because this is an indicator free
of implementation bias (e.g., page size, thresholds).
Moreover, we vary k from 1 to 5, 20, etc.
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5.2 Lower Bounding vs Triangle Inequality

The first experiment addressed the issue of lower
bounding versus the triangle inequality. To
make the comparisons fair, sequential scans were
used. Figure 8 shows the pruning power of
DLByi,DLBkim,DLBkeogh,DLBerp and the triangle
inequality (denoted as TR) on the 24 benchmark data
sets for k = 1, 5, 20. The pruning power shown is the
average over 50 random queries. Each data set con-
tains 200 time series with length 256. As a concrete
example, we pick an arbitrary data set among the 24
and show the detailed pruning power figures below for
k = 20. The third data set is picked and it contains
the spot prices (foreign currency in dollars) over 10
years (10/9/86 to 8/9/96).

DLBkim DLByi DLBkeogh DLBerp TR

0.0 0.28 0.44 0.54 0.63

From the results shown in the above table and Fig-
ure 8, it is obvious that among the three previously
proposed lower bounds, DLBkeogh performs uniformly
the best. However, it is dominated by DLBerp pro-
posed in this paper. Furthermore, the triangle in-
equality (TR) consistently outperforms all the lower
bounds. The larger the value of k, the larger is the
difference. This shows the value of having a metric
distance function.

5.3 Combining DLBerp with Triangle Inequal-
ity

From Figure 8, the triangle inequality (TR) performs
the best in pruning power. In Figure 9, TR is com-
pared further with:

• M-tree (page size 16K). Compared to other metric
space indexing structures, such as MVP-tree and
Sa-tree, M-tree is designed to minimize both I/O
cost and distance computations.

• OMNI-sequential (OMNI-seq). OMNI-seq is
tested with different number of reference points
that ranges from 5 to 100.

• B+-tree (page size 1K). This implements DLBerp

with an index structure (i.e., Algorithm 6).

• B+-tree incorporating both the triangle inequal-
ity and DLBerp (i.e., Algorithm 7). Both the
static and dynamic versions are included.

In the experiment, we found that the pruning power
of OMNI-seq with 100 reference points behaves very
similar to that of TR. This is because they use the
same strategies to remove false alarms; the only differ-
ence is the number of reference points that they use.
Therefore, we do not include the results of OMNI-seq
in Figure 9.

From the figure, the first observation is that all the
methods do well when k = 1. But with k = 20, the sep-
aration is clear. M-tree is by far the worst, even dom-
inated by the triangle inequality based on sequential

scan. This is because with M-tree, the algorithm uses
the distance information below each scanned node,
rather than on all the true distances previously com-
puted. This restricts the effectiveness of the pruning.

The second observation is that while TR (based on
sequential scan) outperforms DLBerp with sequential
scan, the reverse is true when DLBerp is used with a
B+-tree. This shows the effectiveness of the B+-tree
index in facilitating lower bound pruning.

The third observation is that the combination ap-
proaches B+TR(static) and B+TR(dynamic) are the
best – better than B+-tree alone or the triangle in-
equality alone. This shows the beauty of combining
both lower bounding and pruning by the triangle in-
equality. For both the static and dynamic combination
approaches, the number of reference series varies from
5 to 100. The graph only shows the result with 100 ref-
erence series. The following table is included to show
the pruning power in greater details on the third data
set with k = 20.

M-tree TR B+tree B+TR(static)
20 50 100

0.59 0.63 0.72 0.76 0.80 0.82

B+TR(dynamic) B+HF OMNI-seq
20 50 100 (100) (100)

0.74 0.76 0.77 0.76 0.63

For both the static and dynamic combination ap-
proaches, increasing the number of reference series im-
proves the pruning power as expected. And the static
approach appears to perform better than the dynamic
approach. However, as will be shown in later exper-
iments, this perspective on pruning power is not yet
the complete picture.

Note that in the above table, we also include the
pruning power results using the HF algorithm to select
the reference series and the OMNI-sequential with 100
reference points [11]. Both are dominated by the static
and dynamic approaches we developed.

5.4 Total Time Comparisons

So far we have presented the pruning power results.
However, these results do not represent the complete
picture because higher pruning power may require ad-
ditional time spent on pre-processing. Figure 10 shows
the total time spent on answering the k-NN queries.
This time includes the pre-processing time and the
query processing time (both CPU and I/O included).
The time taken by TR (the triangle inequality alone)
is not shown in the figure because it takes much longer
than the others. We also found that the time cost of
OMNI-seq is very similar to that of B+TR(static)),
because both of them spend the same amount of time
on computing the distance between query time series
and the reference time series. Thus, we did not in-
clude the results of OMNI-seq in Figure 10. Again,
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Figure 8: Lower Bounding vs the Triangle Inequality: Pruning Power
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Figure 9: Lower Bounding Together with the Triangle Inequality: Pruning Power
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Figure 10: Total Time comparisons: 24 Benchmark Data Sets
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the graphs only show the results of combined methods
with 100 reference sequences. The detailed run time
(in seconds) on the third data set with k = 20 and 100
reference series is shown below.

M-tree B+tree B+TR B+TR OMNI-seq
(static) (dynamic)

3.89 1.84 6.36 1.58 5.68

Among the approaches shown in the figure and table,
the static combination approach (i.e., B+TR(static))
takes the most time, followed by OMNI-seq, M-tree
and the B+-tree alone. The dynamic combination ap-
proach appears to be the best, in delivering very good
pruning power but not at the expense of sacrificing
pre-processing time.

However, it would be a mistake to conclude at this
point that the dynamic combination approach is the
clear winner. The main reason is that the 24 bench-
marks are all small data sets, none of which contains
more than 200 time series. We use them because they
have been widely used as benchmarks, and represent
a wide spectrum of applications and data characteris-
tics. However, to address the size issue, the following
set of results is based on much larger data sets.

5.5 Scalability Tests

We used two data sets. The first data set was a real
stock data set from [26], which contains daily stock
prices from 4622 American companies. Each time se-
ries contains 1024 daily closing prices, starting from
March 1995 to March 1999. To make the data set big-
ger, we segmented each time series into 4 disjoint series
with length 256 each. Thus, the total number of time
series is 18,488. The other data set was the random
walk data set used in [16, 14, 31]. We generated 65,536
and 100,000 random walk time series, each of length
256.

Figure 11 shows the total time taken to an-
swer k-NN queries. The time taken for five
methods are included: M-tree, B+-tree alone,
B+TR(static,400), B+TR(dynamic,400) and OMNI-
sequential(400), where 400 refers to the number of ref-
erence time series. It is clear that the static and dy-
namic approaches perform the best. In fact, the static
approach manages to catch up with the dynamic ap-
proach, and in some cases, it even outperforms. The
reason is that when the data set is large and selectivity
is high (k > 1), the pre-processing represents a small
overhead relative to the search. The improvement in
pruning power can then compensate for the overhead.
We also ran the experiments to confirm the pruning
power on these large data sets. Same conclusions can
be drawn as for the 24 benchmarks.

6 Conclusions and Future Work

In this paper, we present the ERP distance function
for time series similarity retrieval. ERP can be viewed

as a perfect marriage between L1-norm and edit dis-
tance. It resembles L1-norm in being a metric distance
function, and it resembles edit distance in being able
to handle local time shifting. We show that this new
distance function is as natural for time series as exist-
ing distance functions such as DTW and LCSS.

Because ERP is a metric distance function, the tri-
angle inequality can be used for pruning for k-NN
queries. Furthermore, we develop a new lower bound
for ERP distance. Unlike existing lower bounds which
require indexing with a multi-dimensional index, the
proposed lower bound is 1-dimensional and can simply
be implemented in a B+-tree, which reduces the stor-
age requirement and save the possible I/O cost in con-
sequence. Because pruning by the triangle inequality
and by lower bounds are orthogonal, we combine the
two strategies. This combination can be considered as
an extension of GEMINI framework for indexing time
series data with a metric.

We conducted extensive experimentation using 24
benchmarks and other large data sets. Consistently,
our new lower bound dominates existing strategies.
More importantly, the combination approaches which
incorporate both lower bounding and pruning by the
triangle inequality deliver superb pruning power as
well as wall clock time performance. Among the two
combination approaches, both the static and the dy-
namic approach are viable alternatives depending on
k and the size of the database.

A direct extension of the similarity-based time
series retrieval is the search of trajectories of moving
objects in multimedia databases. Unlike the time
series data that we used in this paper, trajectories
of moving objects are multi-dimensional and contain
possible noises, which brings new challenges. Our
future research directions will include the work in this
direction.

Acknowledgements: Thanks to Eamonn Keogh,
Michalis Vlachos, X. Sean Wang for providing data
sets.
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[6] L. Chen, M. T. Özsu, and V. Oria. Robust and effi-
cient similarity search for moving object trajectories.
In CS Tech. Report. CS-2003-30, School of Computer

Science, University of Waterloo.
[7] E. Chv́ez, G. Navarro, R. Baeza-Yates, and J. L. Mar-
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