
Indexing Large Human-Motion Databases

ABSTRACT
Data-driven animation has become the industry standard for
computer games and many animated movies and special
effects. In particular, motion capture data recorded from live
actors, is the most promising approach offered thus far for
animating realistic human characters. However, the
manipulation of such data for general use and re-use is not yet a
solved problem. Many of the existing techniques dealing with
editing motion rely on indexing for annotation, segmentation,
and re-ordering of the data. Euclidean distance is inappropriate
for solving these indexing problems because of the inherent
variability found in human motion. The limitations of
Euclidean distance stems from the fact that it is very sensitive
to distortions in the time axis. A partial solution to this
problem, Dynamic Time Warping (DTW), aligns the time axis
before calculating the Euclidean distance. However, DTW can
only address the problem of local scaling. As we demonstrate
in this paper, global or uniform scaling is just as important in
the indexing of human motion. We propose a novel technique
to speed up similarity search under uniform scaling, based on
bounding envelopes. Our technique is intuitive and simple to
implement. We describe algorithms that make use of this
technique, we perform an experimental analysis with real
datasets, and we evaluate it in the context of a motion capture
processing system. The results demonstrate the utility of our
approach, and show that we can achieve orders of magnitude of
speedup over the brute force approach, the only alternative
solution currently available.

Keywords
Motion Capture, Animation, Time Series, Indexing

1. INTRODUCTION
Data-driven animation has now become the industry
standard for the production of computer games and many

animated movies and special effects. The most promising
and widely applied approach so far is the use of motion
capture data. These are motion data recorded from live
actors, which can subsequently be used for animating
realistic human characters. Nevertheless, the manipulation
of such data for general use and re-use is still an open
problem. Among the issues at hand, the semi-automatic
annotation [3][6] and re-ordering of motion data
[4][22][23][25] are appearing in animation research
conferences and slowly trickling their way into games
where realism, interactivity, and speed drive innovation.

Motion capture data, in its rawest form, is recorded with
a few technologies, the most popular of which appears to be
optical (see Vicon [38] and Motion Analysis [39] products)
in which digital cameras record small reflective markers
fixed to the human actor as he/she moves. Through multiple
cameras and triangulation, three dimensional position traces
for the markers are resolved faithfully. The markers can
then be identified (as outer left knee, for example) and
filtered. Motion capture allows the animation of a 3D
model, where the data is mapped to the skeleton of the
desired character and body orientations are determined
(Figure 1).

Figure 1: (Top Left) An actor being recorded using an Ascension
magnetic system while playing table tennis. In post-processing,
the data recorded from the actor's motion is manually segmented
into motion time series (Bottom) and placed in a library that is
later used to animate the simulated player shown (Top Right).

In practical applications, most motion capture data is
stored in segmented sequences in a motion library, for
example a modern sports game may contain thousands of

* Dr. Keogh is supported by NSF Career Award IIS-0237918.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy otherwise,
or to republish, requires a fee and/or special permission from the
Endowment.
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

Eamonn Keogh* Themistoklis Palpanas Victor B. Zordan Dimitrios Gunopulos Marc Cardle
Department of Computer Science
University of California, Riverside

{eamonn, themis, vbz, dg}@cs.ucr.edu

Computer Laboratory
University of Cambridge
mpc33@cl.cam.ac.uk

0 5 10 15 20 25 30 35 40
-1

0

1

780

motion data “clips”. The system, i.e. game engine in this
case, selects and plays motions from the database [37]. Our
approach aids in the creation and manipulation of such
libraries by quickly finding instances of a given motion
segment in the complete raw-data repository, e.g., kicks or
punches in the case of a hand-to-hand combat game. In
addition to speeding up brute force searches, our main
contribution is finding examples independent of the speed
in which the actor performed these behaviors.

A major difficulty in indexing and matching motion
streams (hereafter used interchangeably with “time series”)
is the variability in the speed of human motion. For
example, an actor may perform a fast or slow punch. Such
variability can manifest itself as uniform scaling, a global
stretching or shrinking of the time series (i.e., with respect
to the time axis). In this work we introduce the first
indexing technique to support uniform scaling. Our
contributions can be summarized as follows.
• We motivate the need for similarity search under uniform

scaling, and differentiate it from Dynamic Time Warping
(DTW). Although the superiority of DTW over Euclidean
distance is becoming increasing apparent [1][9][18][35],
the need for similarity search which is invariant to
uniform scaling is not well understood.

• We introduce the first known lower bounding technique
for uniform scaling. This technique allows us to index the
time series in order to achieve fast similarity search under
uniform scaling.

• We demonstrate the efficiency and effectiveness of our
techniques with a comprehensive empirical evaluation on
real datasets. We also evaluate our techniques using a
motion capture processing system. These experiments
validate the utility of the approach we propose.

The rest of this paper is organized as follows. In Section 2
we motivate the need to index motion streams under
uniform scaling. Section 3 considers related work on
indexing time series. We introduce the problem at hand
formally in Section 4, before introducing our solution in
Section 5. In Section 6 we describe algorithms that solve the
problem in secondary storage. Section 7 offers a
comprehensive empirical evaluation of our technique, and
we conclude in Section 8.

2. MOTIVATING THE NEED FOR
UNIFORM SCALING

In addition to the classic Euclidean and Dynamic Time
Warping distance measures, the last decade has seen the
introduction of dozens of new similarity measures for time
series. Recent empirical studies, however, suggest that the
majority of these measures are of dubious utility for real
world problems [21]. We will therefore take the time to
motivate the need for uniform scaling in our domain.

An important task in motion editing is the concatenation
of short motion clips into a longer, plausible motion

[30][37]. For clarity let us consider a concrete example.
Imagine we have a motion sequence that contains several
distinct motions, and then ends with a particular action, the
drawing and aiming of a gun. We would like to append to
this action sequence another sequence where the actor falls
to the ground. While we have a library of perhaps thousands
of sequences labeled “falling”, we must decide to which of
these we should append our current sequence. The
challenge in this case is to make sure that the transition is as
smooth and natural as possible. For example, we do not
want the character’s left arm to instantaneously move from
his/her side to above his/her head.

A simple way to guarantee natural plausible motion is to
ensure that the suffix of the first motion, lets say the last n
data points, is an approximate match to the prefix of the
candidate sequence, the first n data points. This way, instead
of concatenating the two sequences end to end, they are
allowed to overlap by n data points. Averaging or time
warping can be used to smooth out any slight
inconsistencies within the n overlapping data points. Figure
2 illustrates the basic idea with a simple problem, taken
from a video segment. Although this example considers a
one-dimensional time series, it can easily be extended to
multi-dimensional time series, by combining the results for
each degree of freedom, possibly weighted by their
perceptual importance (i.e., arm motion may be more
important than leg motion in some situations).

Figure 2: We can create a smooth transition between two video
clips (Top and Center), by ensuring the prefix of one
approximately matches the suffix of the other (Bottom).

In Figure 2, our contrived example happens to have a
closely matching prefix/suffix pair. More generally
however, the motion streams may occur at different speeds.

 .

A video sequence ending
with the actor drawing
and aiming a gun.

The Y-axis motion
stream of the actor’s right
hand.

A video sequence
beginning with the
actor aiming a gun, and
leading to a falling
down sequence

The Y-axis motion
stream of the actor’s
right hand.

By aligning the motion streams
carefully, we can also blend the
original video and achieve smooth
natural motion.

781

Although the animator can trivially recognize this when
he/she see it, human inspection does not scale to large
databases. The importance of (time) scale invariance stems
from the fact that small differences in scaling can greatly
confuse distance calculations. This problem arises in the
motion capture domain, and has also been observed in other
similar domains. For example, in music retrieval has been
reported [9]: “To achieve tempo invariance, the targets are
stretched by 19 different scaling factors from 0.5 to 2.0.”
Similar remarks can be found in the literature of gait
analysis [14], handwritten archive indexing [28],
bioinformatics [1] and data mining [8].

We can reiterate here the utility of uniform scaling with a
simple experiment. We created 3 pairs of time series, where
each pair was created using one of 3 functions, sine wave,
sawtooth I, and sawtooth II. Within each pair, the only
difference between the time series is that we allow their
length to vary in the range 256 ± 16. We clustered them
using two different distance measures, the classic Euclidean
distance [6][12][16][19][20][24], and using uniform scaling,
where we search over the best possible scaling, truncating
off any unmatched suffix (see Section 4 for more formal
details). The results are shown in Figure 3.

If these synthetic time series had been, examples of an
actor’s gait, then using the Euclidean distance, a video clip
corresponding to sequence 2 would be concatenated to its
closest match, sequence 5. This would be a very abrupt and
noticeable transition. In contrast, under uniform scaling,
sequence 2 would be concatenated to sequence 1. In this
case, the only difference in the resulting animation would be
a slight change of pace (if we chose not to permanently
rescale one of the sequences). This is why automatic
matching of motion capture data must consider uniform
scaling.

Figure 3: (Left) A clustering of 6 synthetic time series using
Euclidean distance, and (Right) uniform scaling. Subjectively and
objectively, the clustering on the right is correct.

Note that the generally useful tool of DTW is not the
answer to this problem [13][18][35]. On the dataset above
DTW is about 200 times slower than uniform scaling, and
returns a dendrogram (i.e., a visual representation of the
result of a hierarchical clustering, like the ones shown in
Figure 3) of ((2,((4,(6,3)),5)),1), which is no better than the
Euclidean distance dendrogram. The problem is that DTW
is designed to consider only local adjustments of the time

axis, whereas it is global adjustments that are required to
solve our problem.

To further demonstrate the difference between DTW and
uniform scaling, we perform the following experiment. We
record twice a one second snippet of an individual’s
electrocardiogram. On the first occasion, the time series
captures two heartbeats, while on the second (during
exercise), captures three heartbeats. When we use DTW to
measure the similarity of the two sequences, we get
meaningless results, because DTW must match every point,
and there is simply no sensible way to map two heartbeats
to three (Figure 4(left)). In contrast, uniform scaling can
stretch the faster heartbeat until finding a near perfect
alignment (Figure 4(right)). As mentioned above, DTW can
be useful to remove subtle local differences after uniform
scaling has located the best global match [9].

3. RELATED WORK
The problem of indexing large time series databases has
attracted great interest in the database community, and, at
least for the Euclidean distance measure, may now be
regarded as a solved problem [6][12][16][19][20][29].
However, in recent years, there has been an increasing
awareness that Euclidean distance is inappropriate for many
real world applications [1][9][35]. The limitations of
Euclidean distance stems from the fact that it is very
sensitive to distortions in the time axis. A partial solution to
this problem, DTW, essentially aligns the time axis before
calculating the Euclidean distance [18]. However DTW can
only address the problem of local scaling, and as we
demonstrated above, uniform scaling is just as important in
the motion capture editing domain. Similar observations
hold for the Longest Common SubSequence measure
[10][32].

The utility of uniform scaling has been noted before
[1][2][8][27]. However, all previous work has focused on
speeding up similarity search, when the scaling factor is
known [8][17][26]. The feature that differentiates our work
from all the rest is that we allow a user to issue a single
query, and find the best match at any scaling.

Figure 4: A visual contrast of DTW (left) and Uniform Scaling (right).
Using DTW we cannot achieve an intuitive alignment between 2
heartbeats and 3 heartbeats, even if the sequences happen to be the
same length. However uniform scaling, by stretching the bottom
sequence can achieve a meaningful alignment.

1

3

6

4

2

5

1

2

3

4

6

5

1

3

6

4

2

5

1

3

6

4

2

5

1

2

3

4

6

5

1

2

3

4

6

5

782

Note that although we don’t generally know the scaling
factor in advance, we may know upper and lower limits on
the scaling factor, based on limitations of human
biomechanics. For example, most people can only speed up
their natural walk about 20% before changing their gait into
a run [14].

There is exactly one other technique in the literature that
allows similarity search under uniform scaling, while
guaranteeing no false dismissals, the “CD-criterion”
technique of [2]. While pioneering, we do not see this work
as a complete solution to our problem for the following
reasons. The algorithm can only test if sequences are within
a user-supplied epsilon, and thus cannot be used for
ranking, classification or clustering. The algorithm requires
a parameter to be set; this parameter does not affect the
accuracy, but it can affect the speedup. Finally the real
weakness of the approach is that is only speeds up main
memory search, and cannot be indexed. In fact, the authors
suggest that indexing of uniform scaling “appears
infeasible” [2], although this is exactly the contribution of
this work. In spite of these limitations, we empirically
compare this work to our approach in Section 7.1.

4. THE UNIFORM SCALING PROBLEM
We begin by formally defining the uniform scaling
problem. Suppose we have two time series, a query Q, and a
candidate match C, of length n and m respectively, where:

Q = q1,q2,…,qi,…,qn (1)
C = c1,c2,…,cj,…,cm (2)

For clarity of presentation we will assume that n ≤ m,
that is, C is always longer than or equal to Q. Thus, we are
only interested in stretching the query to match some prefix
of C. This assumption is only to simplify notation and does
not preclude matching a time series by shrinking. For
example, if the user wishes to perform a query of length
100, with the flexibility to shrink or stretch by 10%, the
system simply interpolates the data down to 90 data points,
and then searches for matches stretched by up to 22%.

If we wish to compare the two time series, and it happens
that n = m, we can use the ubiquitous Euclidean distance
[6][12][16][20]:

() ()∑ −≡
=

n

i
ii cqCQD

1

2,
(3)

Since the square root function is monotonic and concave,
we can remove the square root step to get the squared
Euclidean distance which gives identical rankings,
clustering and classifications [21].

() ()∑ −≡
=

n

i
ii cqCQD

1

2, (4)

In addition to the utility of slightly speeding up the
calculations, working with this distance measure makes
other optimizations possible, as well [21].

If n is smaller than m, then the distance measures
introduced above are not defined. To compare the two time
series in this case, we have several choices; we can truncate
C, and compare Q to [c1,c2,…, cn], we can stretch Q to be of
length m, or more generally, we can stretch Q to be of
length p, (n ≤ p ≤ m), truncate off the last m-p values of C,
and then use the squared Euclidean distance. The informal
idea behind stretching can be captured in the more formal
definition of scaling. In order to scale time series Q to
produce a new time series QP of length p, we use the
formula:

QPj = Q j * n/p , 1 ≤ j ≤ p (5)

Note that we can quickly obtain any scaling in O(p) time.
We call the ratio p/n the scaling factor or sf. Similarly, we
use sfmax to denote the ratio m/n, which can be thought of as
the maximum scaling factor. Figure 5 visually summarizes
the above definitions.

If we wish to find the best scaled match between Q and

C, we can simply test all possible scalings, as illustrated in
Table 1.

The algorithm takes O(p*(m-n)) time and seems
unworthy of any optimization effort. However, for real
world datasets, rather than having a single candidate time
series C, we are typically confronted with massive
collections of possible candidate time series, which will
denote as D. In order to find the best scaled match to a
query Q in database D, we can use a brute force algorithm
as shown in Table 2.

Figure 5. A visual summary of the notation introduced in this
section. A) From (left) to (right) A candidate time series C, and a
shorter query Q. The squared Euclidean distance between Q
and the first n datapoints in C can be visualized as the sum of
the squared lengths of the gray hatch lines. B) From (left) to
(right) The query Q can be stretched to length p, producing a
new time series QP. In this case, QP is a good match to the first
p datapoints in C.

0 100 200 300 400
QP

D (QP, C [1:p])B)

0 100 200 300 400

Q

D (QP, C [1:p])B)

0 100 200 300 400

C

Q

D (Q,C [1:n])A)

0 100 200 300 400

C

Q

D (Q,C [1:n])A)

783

Note that the time complexity for this algorithm is
O(|D|*(m-n)), which is simply untenable for large datasets.
Table 1. An algorithm to find the best scaled match between
two time series

procedure TestAllScalings(Q,C)
BestMatchVal = inf;
BestScalingFactor = null;
for p = n to m

QP = rescale(Q,p);
Distance = SquaredEuclideanDistance(QP, C[1..p]);
if distance < BestMatchVal

BestMatchVal = distance;
BestScalingFactor = p/n;

return(BestMatchVal, BestScalingFactor)

Table 2. An algorithm to find the best scaled match to query
from a set of possible matches.

procedure SearchDatabaseforScaledMatch(Q)
OverallBestTimeSeries = null;
OverallBestMatchVal = inf;
OverallBestScaling = null;
for i = 1 to number of time series in (D)

[dist, scale] = TestAllScalings(Q,Ci)
if dist < OverallBestMatchVal

OverallBestTimeSeries = i;
OverallBestMatchVal = dist;
OverallBestScaling = scale;

return(OverallBestTimeSeries, OverallBestMatchVal, OverallBestScaling)

4.1 Speeding up Search with Lower Bounding
To speed up matching under uniform scaling we will rely on
the classic idea of lower bounding. The intuition is the
following. Given some technique for quickly calculating the
minimum possible distance between the query and a
candidate sequence at any possible scaling, we can prune
off many calculations. Before calling the subroutine
TestAllScalings(),we first perform the quick lower bounding
test. If the lower bound distance between the candidate and
the query is greater than the distance of the best-scaled
match already seen, we can simply discard the candidate
from consideration. There are two important properties that
a lower bounding measure should have.

• It must be fast to compute. A measure that takes as long
to compute as TestAllScalings() is of little use. We would
like the time complexity to be at most linear in the length
of the time series.

• It must be a relatively tight lower bound. A lower bound
that is not tight, will not prune enough of the search
space.

The idea of speeding up search using lower bounding is not
new. In fact, it is the cornerstone of virtually every time
series similarity search algorithm. However, while dozens
of lower bounding measures are known for Euclidean

distance [6][12][16][19][20][29], and three lower bounding
measures are known for DTW [18][35], only one, recently
introduced measure, the CD-criterion, is known for uniform
scaling [2]. As we mentioned above, the original authors
believe this technique is non-indexable, and in any case, as
we will show in Section 7, the bounds are quite weak.
Therefore, we propose a novel, indexable, and tight lower
bounding measure for uniform scaling.
It is important to note here that the lower bounding
technique and all the algorithms we describe in this study
for the efficient solution of the uniform scaling problem are
exact. This means that we are guaranteed to find all the
solutions we are looking for, with no false dismissals. The
essence of the techniques we propose is that they can
effectively prune the search space, by excluding candidate
time series that cannot be part of the solution. The result is
considerable savings in computation time, since we do not
have to perform the expensive distance calculations for
every time series in the database.

5. OUR SOLUTION
We will begin by showing how we can lower bound
sequences of arbitrary lengths in main memory. Since
indexing structures degrade with dimensionality, we will
further show how we can lower bound the dimensionality-
reduced representations of the time series.

5.1 Lower Bounding in Main Memory
In order to create a lower bounding distance measure for
uniform scaling, we will generate a bounding envelope.
Bounding envelopes were introduced in [18] to lower bound
DTW, and since then they have sparked a flurry of research
activity [13][24][28][32][35]. While the principle is the
same here, the definitions of the envelope are very different.
In particular, we create two sequences U and L, such that:

Ui = max(c (i-1)*m/n +1,…, c i*m/n) (6)

Li = min(c (i-1)*m/n +1,…, c i*m/n) (7)

These sequences can be visualized as bounding the first n
points of the time series C. Figure 6 shows some examples.

Having defined U and L, we can now introduce the lower
bounding function, LB_Keogh, which lower bounds the
distance between Q and C for any scaling factor sf,

max1 sfsf ≤< .

∑

=

<−
>−

=
n

i
iiii

iiii

otherwise
LqifLq
UqifUq

CQKeoghLB
1

2

2

0
)(
)(

),(_
 (8)

This function can be visualized as the squared Euclidean
distance between any part of the query time series not
falling within the envelope and the nearest (orthogonal)

784

corresponding section of the envelope. Figure 7 illustrates
this idea.

Figure 6. (Top) A time series C of length 100. (Bottom Left) The
time series shrouded by upper and lower envelopes U and L with
lengths 80. (Bottom Right) The same time series shrouded by upper
and lower envelopes U and L with lengths 60.

Figure 7. (Left) A time series C and a shorter query Q. (Right) A
visualization of the lower-bounding function LB_Keogh(Q,C).
Note that any part of query time series Q that falls inside the
bounding envelope is ignored. Otherwise the distance
corresponds to the sum of the squared straight line distances
from the query to the nearest point in the envelope (the gray
hatch lines).

We can now prove that LB_Keogh(Q,C) is a lower bound
for the distance between Q and C under uniform scaling
(the proof is in the full version of this paper).
Lemma 1 The distance LB_Keogh(Q,C) lower bounds the
squared Euclidean distance between any scaling of Q, and the
appropriate prefix of C.

5.2 Lower Bounding in Index Space
As noted in Section 4.1, if we have a distance measure

that is expensive in terms of CPU time, we can dramatically
speed up similarity search using a tight lower bound.
However, if the majority of the data exists on secondary
storage, the CPU costs may be dwarfed by the disk (or tape)
access time. The solution is to index the data. Having
defined the bounding envelopes, we proceed in a manner
similar to previous work [13] [18][24][28][32][35].

We have previously denoted a time series as Q = q1,…,
qn. Let N be the dimensionality of the space we wish to

index (1 ≤ N ≤ n). For convenience, we assume that N is a
factor of n.

A time series Q of length n can be represented in N
dimensional space by a vector

NqqQ ,,1 K= . The ith element
of Q is calculated using the following equation:

∑
+−=

=
i

ij
jn

N
i

N
n

N
n

qq
1)1(

 (9)

In Section 5.1, we discussed the lowering bounding
function LB_Keogh. However, calculating this function
requires n values. Since n may be in the order of hundreds
for realistic human motion, and multi-dimensional index
structures begin to degrade rapidly somewhere above 16
dimensions, we need a way to create a lower, N-
dimensional version of the function, where N is a number
that can be reasonably handled by a multi-dimensional
index structure. We also need this lower dimension version
of the function to lower bound LB_Keogh (and therefore, by
transitivity, uniform scaling).

We begin by creating special Piecewise Constant
Approximations (PAAs) [19] of U and L, which we will
denote as Û and L̂ . Although they are piecewise constant
approximations, the definitions of Û and L̂ differ from
those we have seen in Eq. 6 and 7. In particular, we have

() ()()iii
N
n

N
n UUU ,...,maxˆ

11 +−= (10)

() ()()iii

N
n

N
n LLL ,...,minˆ

11 +−= (11)

We can visualize Û and L̂ as the piecewise constant
functions which bound, without intersecting, U and L,
respectively. Figure 8 illustrates this intuition.

We are now able to define the low dimension, lower
bounding function, which we denote as MINDIST(). Given
a query sequence Q, transformed to Q by Eq. 9, and a
candidate sequence C, with its companion PAA functions
R̂ ={Û , L̂ }, the following function lower bounds
LB_Keogh

Figure 8. We can readily visualize Û and L̂ as the piecewise
constant functions which bound, without intersecting, U and L,
respectively. (Left) The Û and L̂ for the time series shown in Figure

5. (Right) The Û and L̂ shown overlaid on top of the generating
time series.

0 10 20 30 40 50 60 70 80 90 100

U

L

0 10 20 30 40 50 60 70 80 90 100

U

L

^

^

^

^

0 10 20 30 40 50 60 70 80 90 100

U

L

0 10 20 30 40 50 60 70 80 90 100

U

L

0 10 20 30 40 50 60 70 80 90 100

U

L

^

^

^

^

1000 10 20 30 40 50 60 70 80 90

L
0 10 20 30 40 50 60 70 80 90

U

L
0 10 20 30 40 50 60 70 80 90 100

L
0 10 20 30 40 50 60 70 80 90 100

U

L

90

0 10 20 30 40 50 60 70 80 100

C

0 10 20 30 40 50 60 70 80 100

C

m = 100

n = 60n = 80

0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100

C

Q

0 10 20 30 40 50 60 70 80 90 100

C

Q

0 10 20 30 40 50 60 70 80 90 100

C

Q

0 10 20 30 40 50 60 70 80 90 100

C
m = 100

Q
n = 80

0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100

C

Q

0 10 20 30 40 50 60 70 80 90 100

C

Q

0 10 20 30 40 50 60 70 80 90 100

C

Q

0 10 20 30 40 50 60 70 80 90 100

C
m = 100

Q
n = 80

0 10 20 30 40 50 60 70 80 90 100

C

Q

0 10 20 30 40 50 60 70 80 90 100

C

Q

0 10 20 30 40 50 60 70 80 90 100

C

Q

0 10 20 30 40 50 60 70 80 90 100

C
m = 100

Q
n = 80

785

∑
=

<−
>−

=
N

i
iiii

iiii

otherwise
LqifLq
UqifUq

N
nRQMINDIST

1

2

2

0

ˆ)ˆ(

ˆ)ˆ(
)ˆ,(

 (12)

This function is visualized in Figure 9.

 Similarly to MINDIST(Q , R̂), we can also define
MAXDIST(Q , R̂) (illustrated in Figure 10), which serves as
an upper bound for the distance between a query Q and R̂ .

∑
=

−<−>−
−<−<−

=
N

i iiiiiiii

iiiiiiii

LqqUorUqifLq
qULqorLqifUq

N
nRQMAXDIST

1
2

2

)ˆˆ()ˆ(,)ˆ(
)ˆˆ()ˆ(,)ˆ()ˆ,(

 (13)

The use of this upper bound will become apparent in
Section 6, when we discuss algorithms for fast similarity
search under uniform scaling.

Note that there is no inherent restriction in our
framework that would prevent us from incorporating into it
DTW indexing, as well. DTW can be used in conjunction

with uniform scaling to allow small local adjustments to the
time axis after uniform scaling has found the best global
scaling. In this case, we simply have to compute the upper
and lower bounding envelopes for the DTW transform, and
then, apply the techniques described in this study on these
envelopes. Since this is a straightforward extension, we do
not pursue it any further in this work.

6. ALGORITHMS FOR SECONDARY
STORAGE

Based on the discussion of the previous section, we can
now present algorithms that solve the time series similarity
problem under uniform scaling, when the time series
database does not fit in main memory. In the following
discussion, as well as in the experiments, we assume that all
the time series data and their bounding envelopes are disk
resident. For ease of exposition, we also make the
simplifying assumption that we are only interested in the
single best match to our query. The extensions to more
general cases are straightforward, and we omit them for
brevity. The interested reader can find additional
considerations, techniques, and references elsewhere [33].

The pseudocode for all the algorithms presented in this
section can be found in the full version of this paper.

6.1 Linear Scan of the Time Series
Linear scan is a brute force approach, where we do not

make use of our lower bounding technique. This algorithm
sequentially reads each time series C from the disk, and
computes its minimum distance to the query series by trying
all possible rescalings. The only optimization we can apply
in this case, is to stop the computation of the Euclidean
distance function as soon as it becomes larger than the
currently minimum distance1. We call the above algorithm
LinearScan, and we present it only as a baseline against
which we compare our proposed algorithms.

In order to improve the performance of LinearScan, we
incorporate the use of the bounding envelopes as follows.
Along with each time series C, we also store on disk its
corresponding envelopes R. As before, we keep track of the
minimum distance between the query and a candidate time
series in variable OverallBestMatchVal. The algorithm
starts by reading the envelopes R̂ of some time series C and
computing the lower bound MINDIST(Q , R̂). If this lower
bound is less than OverallBestMatchVal, then we have to
call TestAllScalings(). Otherwise, we know that C cannot
have a distance to Q less than OverallBestMatchVal, and we
can simply discard C. We refer to this algorithm as
LinearScanLB (Linear Scan Lower Bound), and we expect
it to run faster than LinearScan, since it avoids using
TestAllScalings() for all the time series in the database.

1 We apply the same optimization to all the algorithms we present in this

paper. However, the performance benefits are in all cases minimal.

Figure 9. (Top Left) The time series C, and its bounding envelopes.

(Top Right) The set of bounding envelopes R̂ ={Û , L̂ }. (Bottom
Left) The query Q, and its approximation Q . (Bottom Right)

Illustration of the MINDIST(Q , R̂) function.

Figure 10. (Left) The query Q, and its approximation Q . (Right)

Illustration of the MAXDIST(Q , R̂) function.

MINDIST(Q , R)

_
Q

Q

 ^

_
Q

Q

MAXDIST (Q,R)
 ̂

0 10 20 30 40 50 60 70 80 90 100

U

L

^

^

0 10 20 30 40 50 60 70 80 90 100

U

0 10 20 30 40 50 60 70 80 90 100

U R = {U, L}
^ ^ ^

0 10 20 30 40 50 60 70 80 90 100

U

L

^

^

0 10 20 30 40 50 60 70 80 90 100

U

0 10 20 30 40 50 60 70 80 90 100

U R = {U, L}
^ ^ ^

786

The rest of the algorithms we describe make a more
informed use of the bounding envelopes. The premise is
that these algorithms will more effectively prune the search
space, and result in superior performance.
6.2 Linear Scan of the Bounding Envelopes

The intuition behind our next algorithm, FastScan, is the
following. Instead of retrieving a time series from disk
every time that the lower bound distance is less than
OverallBestMatchVal, start by retrieving from disk the time
series in increasing order of their lower bound value. If the
lower bounds we compute are tight enough, then best match
to the query time series will be among the first time series to
be retrieved.

The FastScan algorithm (which is similar in nature to the
VA-file method [34]) computes the solution in two phases.
First, it performs a linear disk scan of the bounding
envelopes of all the time series in the database D, and builds
a minimum priority queue on the lower bound of the
distance between the corresponding candidate time series
and the query. Note that this process is relatively fast, since
the size of the bounding envelopes is much smaller than the
size of the time series themselves. During the second phase,
the algorithm dequeues elements from the priority queue,
reads from the disk the relevant candidate time series, and
calls TestAllScalings() to determine the best match. The
algorithm stops when the lower bound value for the
dequeued element is larger than OverallBestMatchVal, or
when the priority queue empties. It is easy to see that
FastScan performs less work than LinearScanLB, and only
in the worst case does it perform an equal amount of work.

The FastScan algorithm requires inserting in the priority
queue as many values as there are time series in the
database. However, this is not a concern, even though it is a
main memory data structure. For example, a heap would
require 20 bytes2 per entry, a small amount even for
databases with one million objects. The processing time
required for the heap, O(log|D|), is not of concern either,
since it is insignificant compared to the time required for
disk I/O and for computing the distances between time
series. Note that we can incorporate in the algorithm the use
of the upper bound (MAXDIST) as well, which can help
maintain the size of the priority queue small: usually less
than 15% of the original size. However, this comes at a cost
in time. In the version of FastScan we used in the
experiments, we did not take into account this optimization.

6.3 Algorithms based on R-trees
Having the bounding envelopes R̂ in a sufficiently low

dimensionality allows us to use an R-tree [5][15] for

2 The elements we need to store are the lower bound value (8 bytes), a

pointer to the time series in the file system (4 bytes), and two pointers to
the children nodes (8 bytes).

indexing them. The goal is to avoid reading all the bounding
envelopes, which is what FastScan does.

The use of the R-tree is straightforward. We associate
each bounding envelope R̂ ={Û , L̂ } to a Minimum
Bounding Rectangle MBR(l,h) as follows:
l=(NLLL ˆ,...,ˆ,ˆ

21), and h=(NUUU ˆ,...,ˆ,ˆ
21). This allows to

compute the lower bound distance MINDIST(Q , R̂) as
usual. Along with each MBR that represents a set of
bounding envelopes R̂ , we also store a pointer to the
corresponding time series C in the file system. Then, we
build the R-tree using one of the traditional construction
algorithms [5][15].

The R-tree search algorithm starts by reading an MBR r,
and computing the lower bound MINDIST(Q ,r). If this
lower bound is less than OverallBestMatchVal, and r is an
inner node, then we process r recursively. If r is a leaf node,
that is, it refers to bounding envelopes R̂ of candidate time
series C, then we have to read C from disk, call
TestAllScalings() to compute the best match for all possible
rescalings, and update OverallBestMatchVal. If the lower
bound is larger than OverallBestMatchVal, then we simply
disregard r. We refer to this algorithm as RtreeBF (R-tree
Brute Force).

An optimization that we can apply to the above algorithm
is to use the R-tree index to get a small number of candidate
time series with the lowest lower bound values, and then
test each of these candidates to determine the true best
match. This is the same idea that FastScan uses.

Now, the R-tree search algorithm needs to maintain a
minimum priority queue on the lower bound values.
However, unlike FastScan, we can also make use of the
upper bound distance between the query and an MBR,
MAXDIST(Q ,r), in order to further prune the search space
(this optimization is not applicable to RtreeBF that only
needs to compare the lower bound to
OverallBestMatchVal).

For each MBR r, we compute the lower and upper
bounds, and maintain the lowest value for the upper bounds
in variable LowestUpper. We recursively search the R-tree,
following only the MBR nodes whose lower bound is less
than LowestUpper. If this condition is true for a leaf MBR,
then we insert an entry for the corresponding candidate time
series in the priority queue. When we have finished
processing the R-tree, we start calling TestAllScalings() to
determine the best match among all the candidates stored in
the priority queue. This processing follows the order
specified by the queue. We call this algorithm RtreeProbe.

7. EXPERIMENTAL RESULTS
In this section we will empirically evaluate our approach.
Although we are particularly interested in motion capture
data, as we noted above, our algorithm may have utility in
domains as diverse as music retrieval [7] and space

787

telemetry [8]. We will therefore perform all experiments on
the following two datasets.
• Motion Capture: This dataset was distilled from several

hours of recording with Vicon (an optical motion capture
system), using 124 sensors. The data for our experiments
are drawn uniformly at random from a pool of 250,000
subsequences.

• Mixed Bag: This dataset was created by concatenating 10
diverse datasets from the UCR time series archive. The 10
datasets are foetal ecg, steam generator, space shuttle,
Photon Burst, Standard and Poor 500, ocean, power
demand, leleccum, Koski ECG, and infrasound_beamd.
The subsequences we use for our experiments are drawn
at random from this pool, making sure that all 10 seed
time series contribute equally.

In both cases, the queries are random subsequences not
present in the database of candidate time series.

7.1 Main Memory Experiments
In the first set of experiments, we evaluate the

effectiveness of our lower bounding technique when the
datasets fit in main memory. We use the main memory
version of algorithm LinearScanLB, which we call
LB_Keogh. We compare only to the brute force search
algorithm defined in Table 2, and to the recently introduced
CD-criterion technique [2], because there are no other
techniques in existence that support uniform scaling queries.
To eliminate the possibility of implementation bias [18],
and because CD-criterion does not support indexing, we
consider the speedup obtained in main memory. To compare
the three competing techniques we report the Pruning
Power, i.e., the fraction of times that each approach must
call the squared Euclidean distance function.

searchforcebrutebyfunctionncestaditocallsofNumber
approachproposedbyfunctionncestaditocallsofNumberPowerruningP =

(13)

This measure depends only on the tightness of the lower
bounds, and is independent of language, platform, caching
or any other implementation details. As an additional sanity
check we also measured the CPU time. However, since it is
almost perfectly correlated with the Pruning Power, we
omit it for brevity. Note that by definition, the pruning
power of brute force is always 1.

As noted earlier, the CD-criterion algorithm can only test
whether the distance of two sequences is within a user-
supplied epsilon. In order to allow direct comparison with
the two other approaches, we supply to the algorithm the
exact epsilon that will return the single nearest neighbor.

 Since the speed-up obtained for our approach clearly
depends on the range of scaling factors and the length of the
time series, we test our approach for the cross product of
maximum scaling factors sfmax = {1.05, 1.10, 1.20} and
candidate time series lengths of {64, 128, 256}. These
represent realistic parameters in our motion capture domain,

and seem representative of other domains as well
[9][14][35].

We conduct our experiments as follows. We randomly
remove a subsequence of the appropriate length from the
data to use as a query, and randomly choose 10,000 other
subsequences to act as the database. We then search for the
best scaled match. We repeated this 500 times for every
combination of scaling factors and candidate lengths. Figure
11 shows the results.

The results are quite impressive for the proposed
approach, which essentially needs to perform an order of
magnitude less work than CD-criterion, over all parameter
settings on both datasets. In addition, our approach is two to
three orders of magnitude more efficient than the brute
force algorithm. The above experiments demonstrate that
our technique can effectively reduce the amount of required
effort by avoiding a considerable number of unnecessary
computations.

Figure 11. The pruning power of CD-criterion and LB_Keogh
algorithm on two datasets, over a range of scaling factors and
candidate lengths.

7.2 Secondary Storage Experiments
In this section, we evaluate the performance of our

techniques when the time series database D does not fit in
main memory. The experiments were performed on an
Athlon 1.6GHz Linux machine, with 1GB of main memory.
All the data were stored on its local disk. In the interest of
space, we only report the results for the motion capture
dataset; the results for the mixed bag dataset exhibit similar
trends.

In all the following experiments, we measure the time (in
seconds) it takes each algorithm to process a single query.
We repeated each experiment 500 times, and report the
average time. Note that we only need to compare the
algorithms in terms of their running-time performance.
Since all algorithms are exact, they return in every case the
same (correct, based on the distance definition) answer.

7.2.1 Exploring the Properties of the Algorithm
In the first set of experiments, we compare the

performance of the algorithms LinearScan, LinearScanLB,
FastScan, RtreeBF, and RtreeProbe, for the cross product
of maximum scaling factors sfmax = {1.05, 1.10, 1.20} and
candidate time series lengths of {64, 128, 256} (Figure 12).
The dimensionality of the approximated bounding

25612864256128 64
1.20

1.10
1.05

0

0.05

0.1

0.15

0.2

0.25
Mixed Bag

LB_KeoghCD - c riterion

25612864256128 64
1.20

1.10
1.05

0

0.05

0.1

0.15

0.2

0.25
Mixed Bag

LB_KeoghCD - c riterion

Pruning Pow
er

2561286425612864

1.20
1.10

1.05

0

0.05
0.1
0.15
0.2
0.25

Motion Capture

LB_KeoghCD-criterion

2561286425612864

1.20
1.10

1.05

0

0.05
0.1
0.15
0.2
0.25

Motion Capture

LB_KeoghCD-criterion

788

envelopes is fixed to 16, and the number of candidate time
series to 10,000.

The results clearly show that LinearScan cannot compete
with the other alternatives, which can actually offer
interactive response times, a crucial factor for the real-life
applications we have in mind. Note that all the other
algorithms outperform LinearScan by up to more than an
order of magnitude, exactly because they make use of the
techniques we introduce in this paper. For the rest of the
discussion, we will disregard LinearScan, and focus on the
comparison among the other algorithms.

Figure 12. Average time to answer a query for algorithms
LinearScan, LinearScanLB, FastScan, RtreeBF, and RtreeProbe,
over a range of scaling factors and candidate lengths.

In Figure 13, we zoom in on the results of the four
algorithms that use our proposed technique. As expected,
the trends are that the query response time increases with
both the length of the candidate time series and the scaling
factor. Out of the two, the latter seems to be the dominant
factor. All four algorithms exhibit similar trends.

In terms of absolute numbers, FastScan and RtreeProbe
perform better than the other two algorithms, executing up
to 3.5 times faster. Note that these two are the algorithms
that first determine the most promising order in which to
access the candidate time series, and only then start
accessing them.

7.2.2 Scalability Experiments
We now turn our attention to the scalability issues, and

examine the behavior of the algorithms when we vary the
size of the time series database. The default values we use
are, unless otherwise noted, 10,000 for the number of
candidate time series, 128 for their length, and 16 for the
dimensionality of the approximated representations of the
bounding envelopes.

In the first set of experiments we vary the number of
candidate time series from 5,000 to 80,000. The results are
shown in Figure 14. We observe that the query response
time for FastScan is better than RtreeBF for the small
database sizes, but then deteriorates faster as the database
size increases. This is due to the fact that it still needs to

read from disk the bounding envelopes for all the series in
the database. RtreeBF can effectively prune the search
space. Yet, for the smaller database sizes, it pays the price
of not determining in advance the most promising order in
which to test the candidate time series. The performance of
RtreeProbe is consistently the best among the proposed
approaches (2 to 9 times faster), combining the advantages
of both FastScan and RtreeBF.

Figure 15 depicts the results of the experiments where

we varied the length of the candidate time series (from 64 to
1024). At the high end of the length spectrum, with the
exception of RtreeProbe, all the algorithms tend to behave
the same. The experimental results indicate that the
algorithms fail to prune a significant amount of the
candidate time series. On the other hand, RtreeProbe
manages to do a slightly better job in this respect, which
results in significant savings in terms of time. Its
performance is 2.5 to 4 times better than the best alternative.

Figure 14. Average time to answer a query for algorithms
LinearScanLB, FastScan, RtreeBF, and RtreeProbe, when varying the
number of candidate time series.

In the last set of experiments (Figure 16), we evaluate the
effect of the dimensionality of the approximated bounding
envelopes on the performance of the algorithms. An

Figure 13. Average time to answer a query for algorithms
LinearScanLB, FastScan, RtreeBF, and RtreeProbe, over a range of
scaling factors and candidate lengths.

25612864
25612864

25612864
25612864

25612864
1.20

1.10 1.05

0

5

10

15

20

25

LinearScan
LinearScanLB

FastScan
RtreeBF

RtreeProbe

Se
co

nd
s

sfmax

25612864
25612864

25612864
25612864

25612864
1.20

1.10 1.05

0

5

10

15

20

25

LinearScan
LinearScanLB

FastScan
RtreeBF

RtreeProbe

Se
co

nd
s

sfmax

25612864
25612864

25612864
25612864

1.20 1.10
1.05

0

0.5

1

1.5

2

2.5

LinearScanLB
FastScan

RtreeBF
RtreeProbe

Se
co

nd
s

sfmax

25612864
25612864

25612864
25612864

1.20 1.10
1.05

0

0.5

1

1.5

2

2.5

LinearScanLB
FastScan

RtreeBF
RtreeProbe

Se
co

nd
s

sfmax

S
ec

on
ds

0

LinearScanLB

FastScan

RtreeBF

RtreeProbe

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

500010000200004000080000

S
ec

on
ds

0

LinearScanLB

FastScan

RtreeBF

RtreeProbe

LinearScanLB

FastScan

RtreeBF

RtreeProbe

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

500010000200004000080000

500010000200004000080000

of time series

S
ec

on
ds

0

LinearScanLB

FastScan

RtreeBF

RtreeProbe

LinearScanLB

FastScan

RtreeBF

RtreeProbe

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

500010000200004000080000

500010000200004000080000

S
ec

on
ds

0

LinearScanLB

FastScan

RtreeBF

RtreeProbe

LinearScanLB

FastScan

RtreeBF

RtreeProbe

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

500010000200004000080000

500010000200004000080000

500010000200004000080000

500010000200004000080000

of time series

789

increase in the dimensionality results in more accurate
representations, and consequently, in more precise lower
and upper bounds. The experiments show that this is, in
general, beneficial for all the algorithms. However, the
benefits are diminishing as the dimensionality increases. In
fact, we may also get the reverse effect, as is the case with
RtreeBF for dimensionality 16. In this case, the bounding
envelopes of the candidate time series do not form tight
clusters in the high-dimensional R-tree, and consequently,
lead to poor performance. RtreeProbe avoids the cost of this
problem, because it postpones the expensive
TestAllScalings() operation till the end.

The experimental evaluation indicates that it is beneficial
to first identify the most promising candidates entirely in the
reduced dimensionality space (i.e., using only R̂), and then
test the query against the candidate time series, despite the
fact that these calculations are not as precise. Though, the
above may not be true for large databases (see Figure 14). It
is also interesting to note that the behavior of the R-tree
algorithms is not always predictable. Consider, for example,
the non-intuitive RtreeBF results for database sizes 5,000
and 10,000 (Figure 14), and dimensionalities of 12 and 16
(Figure 16). In both cases, the results worsen when the
parameters become seemingly more favorable.
Nevertheless, one of the R-tree-based algorithms,
RtreeProbe, exhibits a consistently superior performance
across all experiments, outperforming the best alternative by
up to 4 times. As a last remark, we should note that
FastScan, which does not require the use of any indexing
structures, performs in many cases competitively to
RtreeProbe. This makes FastScan an attractive alternative
for the case where we cannot afford to build an index on the
time series in the database.

Figure 15. Average time to answer a query for algorithms
LinearScanLB, FastScan, RtreeBF, and RtreeProbe, when varying
the length of the candidate time series.

7.3 Case Study
In addition to the comprehensive experiments on the

efficiency of indexing discussed above, we also used a
motion capture processing system to evaluate our
techniques. We conducted numerous experiments to test the

quality of matches obtained by uniform scaling, allowing
both stretching and shrinking.

The experimental setup was as follows. We randomly
selected a query motion from our motion capture database
(sitting up, stretching arms, etc.), and searched the database
for the closest (non-self) match. We evaluated the returned
sequences in two ways. Objectively, by measuring the
Euclidean distance of the sequences (which express the
orientations of the joints in the body), and subjectively, by
creating and reviewing animations based on the matched
sequences. These animations show the query sequence and
its best matches superimposed on each other.

 The results of the experiments validate the utility and
effectiveness of our approach, and also demonstrate that
uniform scaling produces better results than DTW. Since
such experiments do not lend themselves to a text and
graphic exposition, we have created a website with full
video examples [40], and only present here a single figure
to give the flavor of these experiments.

In Figure 17, we show the best match under uniform
scaling (top) and the best match under DTW (bottom) for a
query involving a motion of the arms. In the figures and
graphs, we have superimposed the query with each of the
best match sequences. It is obvious that when we allow
uniform scaling we are able to find a match that is much
closer to the query sequence (Euclidean distance 51.83)
than when we use DTW (Euclidean distance 154.16).

Figure 16. Average time to answer a query for algorithms
LinearScanLB, FastScan, RtreeBF, and RtreeProbe, when varying
the dimensionality of the approximated representations.

8. CONCLUSIONS
In this work, we motivated the need for uniform scaling

similarity matching, which has applications in several
domains where human variability necessitates this type of
matching flexibility (e.g., motion libraries, music retrieval,
and historical handwritten archives). We introduced the first
technique for indexing time series with invariance to
uniform scaling, based on bounding envelopes. This
technique enables fast similarity searching in large time
series databases. We presented several algorithms that make
use of the above technique, and evaluated our proposed

LinearScanLB
FastScan

RtreeBF
RtreeProbe

Se
co

nd
s

64

0

10

20

30

40

50

60

70

80

1282565121024

time series length

LinearScanLB
FastScan

RtreeBF
RtreeProbe

Se
co

nd
s

64

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

60

70

80

1282565121024

time series length

8 12 16

0

LinearScanLB
FastScan

RtreeBF
RtreeProbe

Se
co

nd
s

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

R-tree dim

8 12 16

0

LinearScanLB
FastScan

RtreeBF
RtreeProbe

Se
co

nd
s

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

R-tree dim

790

approaches with a comprehensive set of experiments on real
data, over realistic parameter choices suggested by domain
experts. The experimental results demonstrate the
significant advantages of our indexing technique, and
evaluate the relative benefits of the different alternatives.
Finally, we describe the application of our method in a
motion capture processing system, and illustrate its
usefulness and the superiority of the results it returns when
compared to other alternatives.

Figure 17: Sample results from a motion-capture similarity search
experiment. A query motion (upper body only) was submitted to a
motion capture database. (Top Left) The stick figure is a superposition
of both the query and the best matching sequence under uniform
scaling. Since both figures are so similar (after scaling the match back
to the query length) we can only see a single figure. (Bottom Left) The
superposition of the query and the best DTW match show considerable
mismatch. (Right) The corresponding time series (only the Z-axis is
shown) illustrates the source of the difference.

9. REFERENCES
[1] Aach, J. and Church, G. (2001). Aligning gene expression time series with time

warping algorithms. Bioinformatics. Volume 17, pp 495-508.
[2] Argyros, T & Ermopoulos, C. (2003). Efficient subsequence matching in time series

databases under time and amplitude transformations. IEEE ICDM pp 481-484.
[3] Arikan, O., Forsyth, D. & O'Brien, J. (2003). Motion synthesis from annotations.

ACM Transactions on Graphics. V22(3). pp. 402-408.
[4] Arikan, O, &. Forsyth, D. (2002). Synthesizing constrained motions from examples.

ACM Transactions on Graphics, 21(3):483-490. ISSN 0730-0301.
[5] Beckmann, N., Kriegel, H.-P., Schneider, R., & Seeger, B. (1990). The R*-tree: an

efficient and robust access method for points and rectangles. In Proc of ACM
SIGMOD, pp. 220-231.

[6] Cardle, M., Vlachos, M., Brooks, S., Keogh, E., Gunopulos, D. (2003). Fast Motion
Capture Matching with Replicated Motion Editing. In Proc of ACM SIGGRAPH
Sketches and Applications.

[7] Chan, K. & Fu, A. W. (1999). Efficient time series matching by wavelets. In
proceedings of the 15th IEEE Int'l Conference on Data Engineering. Sydney,
Australia. pp 126-133.

[8] Chu, K., Lam., S. & Wong, M. (1998). An efficient hash-based algorithm for
sequence data searching. The Computer Journal 41 (6): 402-415.

[9] Dannenberg, R., Birmingham, W., Tzanetakis, G., Meek, C., Hu, N., and Pardo, B.
(2003). The MUSART testbed for query-by-humming evaluation. ISMIR 2003, 4th
International Conference on Music Information Retrieval Baltimore, Maryland.

[10] Das, G., Gunopulos, D., Mannila, H. (1997). Finding similar time series. In Proc. of
the First PKDD Symp, pp. 88-100.

[11] DeCoste, D. and Levine, M (2000). Automated event detection in space instruments: a
case study using IPEX-2 data and support vector machines. SPIE Conference
Astronomical Telescopes and Instrumentation.

[12] Faloutsos, C., Ranganathan, M., & Manolopoulos, Y. (1994). Fast subsequence
matching in time-series databases. In Proc. ACM SIGMOD Conf., Minneapolis. pp.
419-429.

[13] Fung,. W & Wong., M. (2003). Efficient subsequence matching for sequences
databases under time warping. The 7th International Database Engineering and
Application Symposium.

[14] Gavrila, D. M. & Davis, L. S.(1995). Towards 3-d model-based tracking and
recognition of human movement: a multi-view approach. In International Workshop
on Automatic Face- and Gesture-Recognition.

[15] Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. In
Proceedings ACM SIGMOD Conference. pp 47-57.

[16] Hetland, M. (2003). A survey of recent methods for efficient retrieval of similar time
sequences. To appear in an Edited Volume, Data Mining in Time Series Databases.
Published by the World Scientific Publishing Company.

[17] Kahveci, T. & Singh, A. (2001). Variable length queries for time series data. In
proceedings of the 17th Int'l Conference on Data Engineering. Heidelberg, Germany,
pp 273-282.

[18] Keogh, E. (2002). Exact indexing of dynamic time warping. In 28th International
Conference on Very Large Data Bases. Hong Kong. pp 406-417.

[19] Keogh, E,.Chakrabarti, K,. Pazzani, M. & Mehrotra (2000). Dimensionality reduction
for fast similarity search in large time series databases. Journal of Knowledge and
Information Systems. pp 263-286.

[20] Keogh, E,.Chakrabarti, K,. Pazzani, M. & Mehrotra (2001). Locally adaptive
dimensionality reduction for indexing large time series databases. In Proc of ACM
SIGMOD Conference on Management of Data. pp 151-162.

[21] Keogh, E. and Kasetty, S. (2002). On the need for time series data mining
benchmarks: a survey and empirical demonstration. In the 8th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. Edmonton,
Canada. pp 102-111.

[22] Kovar, L., Gleicher, M., & Pighin. F (2002). Motion graphs. Proceedings of ACM
SIGGRAPH.

[23] Lee, J., J. Chai, P.S.A. Reitsma, J. K. Hodgins, & N. S. Pollard. (2002). Interactive
control of avatars animated with human motion data. ACM Transactions on Graphics.
V21(3) pp. 491-500.

[24] Li, Q., Lopez, I, & Moon, B. (2004). Skyline index for time series data. To appear in
TKDE.

[25] Li, Y., Wang, T. & Shum. H.-Y. (2002). Motion texture: a two level statistical model
for character motion synthesis. ACM Transactions on Graphics, 21(3):465-472.

[26] Park, S., Chu, W. W., Yoon, J. & Hsu, C. (2000). Efficient searches for similar
subsequences of different lengths in sequence databases. In proceedings of the 16th
Int'l Conference on Data Engineering. San Diego, CA, pp 23-32.

[27] Perng, C., Wang, H., Zhang, S., & Parker, S. (2000). Landmarks: a new model for
similarity-based pattern querying in time series databases. In proceedings of 16th
International Conference on Data Engineering. pp 33-42.

[28] Rath, T. & Manmatha, R. (2002). Lower-bounding of dynamic time warping distances
for multivariate time Series. Tech Report MM-40, University of Massachusetts
Amherst.

[29] Roddick, J. F. and Spiliopoulou, M. (2001). A survey of temporal knowledge
discovery paradigms and methods. IEEE Tran’s on Knowledge and Data Engineering.
pp. 750-767.

[30] Rose, C., Guenter, B., Bodenheimer, B., & Cohen, M.F. (1996). Efficient generation
of motion transitions using spacetime constraints. In Proc of ACM SIGGRAPH, New
Orleans, USA, pp. 147-154.

[31] Vlachos, M., Kollios, G., & Gunopulos, G. (2002). Discovering similar
multidimensional trajectories. In Proc 18th International Conference on Data
Engineering.

[32] Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., & Keogh, E. (2003). Indexing
multi-dimensional time-series with support for multiple distance measures. In Proc
ACM SIGKDD, Washington DC, USA.

[33] Vries, A. P. de, Mamoulis, N., Nes, N., Kersten, M. (2002). Efficient k-NN Search on
Vertically Decomposed Data. In Proc of ACM SIGMOD, pp. 322-333.

[34] Weber, R., Schek, H & Blott S. (1998) A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces. VLDB pp. 194-205.

[35] Yi, B.-K., Faloutsos, C. (2000). Fast Time Sequence for Arbitrary Lp Norms. VLDB.
[36] Zhu, Y. & Shasha, D. (2003). Query by humming: a time series database approach.

SIGMOD 2003.
[37] Zordan, V. B., Hodgins, J. K., (2002). Motion capture-driven simulations that hit and

react, ACM SIGGRAPH Symposium on Computer Animation.
[38] Vicon, http://www.vicon.com/
[39] Motion Analysis, http://www.motionanalysis.com/
[40] Videos from Case Study, available at:

http://www.cs.ucr.edu/~eamonn/VLDB2004/VLDB.htm

0

20

40

0

20

40

Query
Uniform Scaling Match1

Query
DTW Match1

0

20

40

0

20

40

Query
Uniform Scaling Match1

Query
Uniform Scaling Match1

Query
DTW Match1

Query
DTW Match1

791

