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ABSTRACT   
Data-driven animation has become the industry standard for 
computer games and many animated movies and special 
effects.  In particular, motion capture data recorded from live 
actors, is the most promising approach offered thus far for 
animating realistic human characters. However, the 
manipulation of such data for general use and re-use is not yet a 
solved problem. Many of the existing techniques dealing with 
editing motion rely on indexing for annotation, segmentation, 
and re-ordering of the data. Euclidean distance is inappropriate 
for solving these indexing problems because of the inherent 
variability found in human motion. The limitations of 
Euclidean distance stems from the fact that it is very sensitive 
to distortions in the time axis. A partial solution to this 
problem, Dynamic Time Warping (DTW), aligns the time axis 
before calculating the Euclidean distance. However, DTW can 
only address the problem of local scaling. As we demonstrate 
in this paper, global or uniform scaling is just as important in 
the indexing of human motion. We propose a novel technique 
to speed up similarity search under uniform scaling, based on 
bounding envelopes. Our technique is intuitive and simple to 
implement. We describe algorithms that make use of this 
technique, we perform an experimental analysis with real 
datasets, and we evaluate it in the context of a motion capture 
processing system. The results demonstrate the utility of our 
approach, and show that we can achieve orders of magnitude of 
speedup over the brute force approach, the only alternative 
solution currently available. 
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1. INTRODUCTION 
Data-driven animation has now become the industry 
standard for the production of computer games and many 

animated movies and special effects.  The most promising 
and widely applied approach so far is the use of motion 
capture data. These are motion data recorded from live 
actors, which can subsequently be used for animating 
realistic human characters. Nevertheless, the manipulation 
of such data for general use and re-use is still an open 
problem. Among the issues at hand, the semi-automatic 
annotation [3][6] and re-ordering of motion data 
[4][22][23][25] are appearing in animation research 
conferences and slowly trickling their way into games 
where realism, interactivity, and speed drive innovation. 

Motion capture data, in its rawest form, is recorded with 
a few technologies, the most popular of which appears to be 
optical (see Vicon [38] and Motion Analysis [39] products) 
in which digital cameras record small reflective markers 
fixed to the human actor as he/she moves. Through multiple 
cameras and triangulation, three dimensional position traces 
for the markers are resolved faithfully.  The markers can 
then be identified (as outer left knee, for example) and 
filtered.  Motion capture allows the animation of a 3D 
model, where the data is mapped to the skeleton of the 
desired character and body orientations are determined 
(Figure 1). 

 

 

Figure 1: (Top Left) An actor being recorded using an Ascension 
magnetic system while playing table tennis.  In post-processing, 
the data recorded from the actor's motion is manually segmented 
into motion time series (Bottom) and placed in a library that is 
later used to animate the simulated player shown (Top Right).  

In practical applications, most motion capture data is 
stored in segmented sequences in a motion library, for 
example a modern sports game may contain thousands of 
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motion data “clips”.  The system, i.e. game engine in this 
case, selects and plays motions from the database [37]. Our 
approach aids in the creation and manipulation of such 
libraries by quickly finding instances of a given motion 
segment in the complete raw-data repository, e.g., kicks or 
punches in the case of a hand-to-hand combat game.  In 
addition to speeding up brute force searches, our main 
contribution is finding examples independent of the speed 
in which the actor performed these behaviors. 

A major difficulty in indexing and matching motion 
streams (hereafter used interchangeably with “time series”) 
is the variability in the speed of human motion. For 
example, an actor may perform a fast or slow punch. Such 
variability can manifest itself as uniform scaling, a global 
stretching or shrinking of the time series (i.e., with respect 
to the time axis). In this work we introduce the first 
indexing technique to support uniform scaling. Our 
contributions can be summarized as follows. 
• We motivate the need for similarity search under uniform 

scaling, and differentiate it from Dynamic Time Warping 
(DTW). Although the superiority of DTW over Euclidean 
distance is becoming increasing apparent [1][9][18][35], 
the need for similarity search which is invariant to 
uniform scaling is not well understood. 

• We introduce the first known lower bounding technique 
for uniform scaling. This technique allows us to index the 
time series in order to achieve fast similarity search under 
uniform scaling. 

• We demonstrate the efficiency and effectiveness of our 
techniques with a comprehensive empirical evaluation on 
real datasets. We also evaluate our techniques using a 
motion capture processing system. These experiments 
validate the utility of the approach we propose. 

The rest of this paper is organized as follows. In Section 2 
we motivate the need to index motion streams under 
uniform scaling. Section 3 considers related work on 
indexing time series. We introduce the problem at hand 
formally in Section 4, before introducing our solution in 
Section 5. In Section 6 we describe algorithms that solve the 
problem in secondary storage. Section 7 offers a 
comprehensive empirical evaluation of our technique, and 
we conclude in Section 8. 
 

2. MOTIVATING THE NEED FOR 
UNIFORM SCALING 

In addition to the classic Euclidean and Dynamic Time 
Warping distance measures, the last decade has seen the 
introduction of dozens of new similarity measures for time 
series. Recent empirical studies, however, suggest that the 
majority of these measures are of dubious utility for real 
world problems [21]. We will therefore take the time to 
motivate the need for uniform scaling in our domain. 

An important task in motion editing is the concatenation 
of short motion clips into a longer, plausible motion 

[30][37]. For clarity let us consider a concrete example. 
Imagine we have a motion sequence that contains several 
distinct motions, and then ends with a particular action, the 
drawing and aiming of a gun. We would like to append to 
this action sequence another sequence where the actor falls 
to the ground. While we have a library of perhaps thousands 
of sequences labeled “falling”, we must decide to which of 
these we should append our current sequence. The 
challenge in this case is to make sure that the transition is as 
smooth and natural as possible. For example, we do not 
want the character’s left arm to instantaneously move from 
his/her side to above his/her head. 

A simple way to guarantee natural plausible motion is to 
ensure that the suffix of the first motion, lets say the last n 
data points, is an approximate match to the prefix of the 
candidate sequence, the first n data points. This way, instead 
of concatenating the two sequences end to end, they are 
allowed to overlap by n data points. Averaging or time 
warping can be used to smooth out any slight 
inconsistencies within the n overlapping data points. Figure 
2 illustrates the basic idea with a simple problem, taken 
from a video segment. Although this example considers a 
one-dimensional time series, it can easily be extended to 
multi-dimensional time series, by combining the results for 
each degree of freedom, possibly weighted by their 
perceptual importance (i.e., arm motion may be more 
important than leg motion in some situations). 

 

 

Figure 2:  We can create a smooth transition between two video 
clips (Top and Center), by ensuring the prefix of one 
approximately matches the suffix of the other (Bottom). 

In Figure 2, our contrived example happens to have a 
closely matching prefix/suffix pair. More generally 
however, the motion streams may occur at different speeds. 

 .  
 

A video sequence ending 
with the actor drawing 
and aiming a gun. 
 
 
The Y-axis motion 
stream of the actor’s right 
hand. 

A video sequence 
beginning with the 
actor aiming a gun, and 
leading to a falling 
down sequence 
 
 
 
The Y-axis motion 
stream of the actor’s 
right hand. 

By aligning the motion streams 
carefully, we can also blend the 
original video and achieve smooth 
natural motion.  
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Although the animator can trivially recognize this when 
he/she see it, human inspection does not scale to large 
databases. The importance of (time) scale invariance stems 
from the fact that small differences in scaling can greatly 
confuse distance calculations. This problem arises in the 
motion capture domain, and has also been observed in other 
similar domains. For example, in music retrieval has been 
reported [9]: “To achieve tempo invariance, the targets are 
stretched by 19 different scaling factors from 0.5 to 2.0.” 
Similar remarks can be found in the literature of gait 
analysis [14], handwritten archive indexing [28], 
bioinformatics [1] and data mining [8].  

We can reiterate here the utility of uniform scaling with a 
simple experiment. We created 3 pairs of time series, where 
each pair was created using one of 3 functions, sine wave, 
sawtooth I, and sawtooth II. Within each pair, the only 
difference between the time series is that we allow their 
length to vary in the range 256 ± 16. We clustered them 
using two different distance measures, the classic Euclidean 
distance [6][12][16][19][20][24], and using uniform scaling, 
where we search over the best possible scaling, truncating 
off any unmatched suffix (see Section 4 for more formal 
details). The results are shown in Figure 3. 

If these synthetic time series had been, examples of an 
actor’s gait, then using the Euclidean distance, a video clip 
corresponding to sequence 2 would be concatenated to its 
closest match, sequence 5. This would be a very abrupt and 
noticeable transition. In contrast, under uniform scaling, 
sequence 2 would be concatenated to sequence 1. In this 
case, the only difference in the resulting animation would be 
a slight change of pace (if we chose not to permanently 
rescale one of the sequences). This is why automatic 
matching of motion capture data must consider uniform 
scaling. 

 

 

Figure 3:  (Left) A clustering of 6 synthetic time series using 
Euclidean distance, and (Right) uniform scaling. Subjectively and 
objectively, the clustering on the right is correct. 

Note that the generally useful tool of DTW is not the 
answer to this problem [13][18][35]. On the dataset above 
DTW is about 200 times slower than uniform scaling, and 
returns a dendrogram (i.e., a visual representation of the 
result of a hierarchical clustering, like the ones shown in 
Figure 3) of ((2,((4,(6,3)),5)),1), which is no better than the 
Euclidean distance dendrogram. The problem is that DTW 
is designed to consider only local adjustments of the time 

axis, whereas it is global adjustments that are required to 
solve our problem.  

To further demonstrate the difference between DTW and 
uniform scaling, we perform the following experiment. We 
record twice a one second snippet of an individual’s 
electrocardiogram. On the first occasion, the time series 
captures two heartbeats, while on the second (during 
exercise), captures three heartbeats. When we use DTW to 
measure the similarity of the two sequences, we get 
meaningless results, because DTW must match every point, 
and there is simply no sensible way to map two heartbeats 
to three (Figure 4(left)). In contrast, uniform scaling can 
stretch the faster heartbeat until finding a near perfect 
alignment (Figure 4(right)). As mentioned above, DTW can 
be useful to remove subtle local differences after uniform 
scaling has located the best global match [9].  

 

3.  RELATED WORK  
The problem of indexing large time series databases has 
attracted great interest in the database community, and, at 
least for the Euclidean distance measure, may now be 
regarded as a solved problem [6][12][16][19][20][29]. 
However, in recent years, there has been an increasing 
awareness that Euclidean distance is inappropriate for many 
real world applications [1][9][35]. The limitations of 
Euclidean distance stems from the fact that it is very 
sensitive to distortions in the time axis. A partial solution to 
this problem, DTW, essentially aligns the time axis before 
calculating the Euclidean distance [18]. However DTW can 
only address the problem of local scaling, and as we 
demonstrated above, uniform scaling is just as important in 
the motion capture editing domain. Similar observations 
hold for the Longest Common SubSequence measure 
[10][32]. 

The utility of uniform scaling has been noted before 
[1][2][8][27]. However, all previous work has focused on 
speeding up similarity search, when the scaling factor is 
known [8][17][26]. The feature that differentiates our work 
from all the rest is that we allow a user to issue a single 
query, and find the best match at any scaling.  

 
Figure 4:  A visual contrast of DTW (left) and Uniform Scaling (right). 
Using DTW we cannot achieve an intuitive alignment between 2 
heartbeats and 3 heartbeats, even if the sequences happen to be the 
same length. However uniform scaling, by stretching the bottom 
sequence can achieve a meaningful alignment. 
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Note that although we don’t generally know the scaling 
factor in advance, we may know upper and lower limits on 
the scaling factor, based on limitations of human 
biomechanics. For example, most people can only speed up 
their natural walk about 20% before changing their gait into 
a run [14].  

There is exactly one other technique in the literature that 
allows similarity search under uniform scaling, while 
guaranteeing no false dismissals, the “CD-criterion” 
technique of [2]. While pioneering, we do not see this work 
as a complete solution to our problem for the following 
reasons. The algorithm can only test if sequences are within 
a user-supplied epsilon, and thus cannot be used for 
ranking, classification or clustering. The algorithm requires 
a parameter to be set; this parameter does not affect the 
accuracy, but it can affect the speedup. Finally the real 
weakness of the approach is that is only speeds up main 
memory search, and cannot be indexed. In fact, the authors 
suggest that indexing of uniform scaling “appears 
infeasible” [2], although this is exactly the contribution of 
this work. In spite of these limitations, we empirically 
compare this work to our approach in Section 7.1. 

 

4. THE UNIFORM SCALING PROBLEM  
We begin by formally defining the uniform scaling 
problem. Suppose we have two time series, a query Q, and a 
candidate match C, of length n and m respectively, where: 

Q = q1,q2,…,qi,…,qn (1) 
C = c1,c2,…,cj,…,cm (2) 

For clarity of presentation we will assume that n ≤ m, 
that is, C is always longer than or equal to Q. Thus, we are 
only interested in stretching the query to match some prefix 
of C. This assumption is only to simplify notation and does 
not preclude matching a time series by shrinking. For 
example, if the user wishes to perform a query of length 
100, with the flexibility to shrink or stretch by 10%, the 
system simply interpolates the data down to 90 data points, 
and then searches for matches stretched by up to 22%. 

If we wish to compare the two time series, and it happens 
that n = m, we can use the ubiquitous Euclidean distance 
[6][12][16][20]: 

( ) ( )∑ −≡
=

n

i
ii cqCQD

1

2,  
(3) 

Since the square root function is monotonic and concave, 
we can remove the square root step to get the squared 
Euclidean distance which gives identical rankings, 
clustering and classifications [21].  

( ) ( )∑ −≡
=

n

i
ii cqCQD

1

2,  (4) 

In addition to the utility of slightly speeding up the 
calculations, working with this distance measure makes 
other optimizations possible, as well [21]. 

If n is smaller than m, then the distance measures 
introduced above are not defined. To compare the two time 
series in this case, we have several choices; we can truncate 
C, and compare Q to [c1,c2,…, cn], we can stretch Q to be of 
length m, or more generally, we can stretch Q to be of 
length p, (n ≤  p ≤ m), truncate off the last m-p values of C, 
and then use the squared Euclidean distance. The informal 
idea behind stretching can be captured in the more formal 
definition of scaling. In order to scale time series Q to 
produce a new time series QP of length p, we use the 
formula: 

QPj = Q  j * n/p  , 1 ≤ j ≤ p (5) 

Note that we can quickly obtain any scaling in O(p) time. 
We call the ratio p/n the scaling factor or sf. Similarly, we 
use sfmax to denote the ratio m/n, which can be thought of as 
the maximum scaling factor. Figure 5 visually summarizes 
the above definitions. 

 
If we wish to find the best scaled match between Q and 

C, we can simply test all possible scalings, as illustrated in 
Table 1.  

The algorithm takes O(p*(m-n)) time and seems 
unworthy of any optimization effort. However, for real 
world datasets, rather than having a single candidate time 
series C, we are typically confronted with massive 
collections of possible candidate time series, which will 
denote as D. In order to find the best scaled match to a 
query Q in database D, we can use a brute force algorithm 
as shown in Table 2.  

 

Figure 5.  A visual summary of the notation introduced in this 
section. A) From (left) to (right) A candidate time series C, and a 
shorter query Q. The squared Euclidean distance between Q 
and the first n datapoints in C can be visualized as the sum of 
the squared lengths of the gray hatch lines. B) From (left) to 
(right) The query Q can be stretched to length p, producing a 
new time series QP. In this case, QP is a good match to the first 
p datapoints in C. 
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Note that the time complexity for this algorithm is 
O(|D|*(m-n)), which is simply untenable for large datasets. 
Table 1. An algorithm to find the best scaled match between 
two time series 

procedure TestAllScalings(Q,C) 
BestMatchVal        = inf; 
BestScalingFactor = null; 
for p = n to m 

QP = rescale(Q,p); 
Distance = SquaredEuclideanDistance(QP, C[1..p]); 
if distance < BestMatchVal 

BestMatchVal = distance; 
BestScalingFactor = p/n; 
 

return(BestMatchVal, BestScalingFactor) 

 
Table 2. An algorithm to find the best scaled match to query 
from a set of possible matches.  

procedure SearchDatabaseforScaledMatch(Q) 
OverallBestTimeSeries = null; 
OverallBestMatchVal   = inf; 
OverallBestScaling    = null; 
for i = 1 to number of time series in (D)  

[dist, scale] = TestAllScalings(Q,Ci)  
if dist <  OverallBestMatchVal    

OverallBestTimeSeries = i; 
OverallBestMatchVal   = dist; 
OverallBestScaling    = scale; 
 

return(OverallBestTimeSeries, OverallBestMatchVal, OverallBestScaling) 
 

 

4.1 Speeding up Search with Lower Bounding  
To speed up matching under uniform scaling we will rely on 
the classic idea of lower bounding. The intuition is the 
following. Given some technique for quickly calculating the 
minimum possible distance between the query and a 
candidate sequence at any possible scaling, we can prune 
off many calculations. Before calling the subroutine 
TestAllScalings(),we first perform the quick lower bounding 
test. If the lower bound distance between the candidate and 
the query is greater than the distance of the best-scaled 
match already seen, we can simply discard the candidate 
from consideration. There are two important properties that 
a lower bounding measure should have.  

• It must be fast to compute. A measure that takes as long 
to compute as TestAllScalings() is of little use. We would 
like the time complexity to be at most linear in the length 
of the time series. 

• It must be a relatively tight lower bound. A lower bound 
that is not tight, will not prune enough of the search 
space.  

The idea of speeding up search using lower bounding is not 
new. In fact, it is the cornerstone of virtually every time 
series similarity search algorithm. However, while dozens 
of lower bounding measures are known for Euclidean 

distance [6][12][16][19][20][29], and three lower bounding 
measures are known for DTW [18][35], only one, recently 
introduced measure, the CD-criterion, is known for uniform 
scaling [2]. As we mentioned above, the original authors 
believe this technique is non-indexable, and in any case, as 
we will show in Section 7, the bounds are quite weak. 
Therefore, we propose a novel, indexable, and tight lower 
bounding measure for uniform scaling.  
It is important to note here that the lower bounding 
technique and all the algorithms we describe in this study 
for the efficient solution of the uniform scaling problem are 
exact. This means that we are guaranteed to find all the 
solutions we are looking for, with no false dismissals. The 
essence of the techniques we propose is that they can 
effectively prune the search space, by excluding candidate 
time series that cannot be part of the solution. The result is 
considerable savings in computation time, since we do not 
have to perform the expensive distance calculations for 
every time series in the database.  
 

5. OUR SOLUTION 
We will begin by showing how we can lower bound 
sequences of arbitrary lengths in main memory. Since 
indexing structures degrade with dimensionality, we will 
further show how we can lower bound the dimensionality-
reduced representations of the time series. 
 
 

5.1 Lower Bounding in Main Memory  
In order to create a lower bounding distance measure for 
uniform scaling, we will generate a bounding envelope. 
Bounding envelopes were introduced in [18] to lower bound 
DTW, and since then they have sparked a flurry of research 
activity [13][24][28][32][35]. While the principle is the 
same here, the definitions of the envelope are very different. 
In particular, we create two sequences U and L, such that: 

Ui = max( c (i-1)*m/n +1,…, c i*m/n  ) (6) 

Li = min( c (i-1)*m/n +1,…, c i*m/n  ) (7) 

These sequences can be visualized as bounding the first n 
points of the time series C. Figure 6 shows some examples.  

Having defined U and L, we can now introduce the lower 
bounding function, LB_Keogh, which lower bounds the 
distance between Q and C for any scaling factor sf, 

max1 sfsf ≤< .  

 
∑

= 







<−
>−

=
n

i
iiii

iiii

otherwise
LqifLq
UqifUq

CQKeoghLB
1

2

2

0
)(
)(

),(_
 (8)

This function can be visualized as the squared Euclidean 
distance between any part of the query time series not 
falling within the envelope and the nearest (orthogonal) 
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corresponding section of the envelope. Figure 7 illustrates 
this idea. 
 

Figure 6. (Top) A time series C of length 100. (Bottom Left) The 
time series shrouded by upper and lower envelopes U and L with 
lengths 80. (Bottom Right) The same time series shrouded by upper 
and lower envelopes U and L with lengths 60. 

 

Figure 7. (Left) A time series C and a shorter query Q. (Right) A 
visualization of the lower-bounding function LB_Keogh(Q,C). 
Note that any part of query time series Q that falls inside the 
bounding envelope is ignored. Otherwise the distance 
corresponds to the sum of the squared straight line distances 
from the query to the nearest point in the envelope (the gray 
hatch lines). 

We can now prove that LB_Keogh(Q,C) is a lower bound 
for the distance between Q and C under uniform scaling 
(the proof is in the full version of this paper). 
Lemma 1 The distance LB_Keogh(Q,C) lower bounds the 
squared Euclidean distance between any scaling of Q, and the 
appropriate prefix of C.  

 

5.2 Lower Bounding in Index Space 
As noted in Section 4.1, if we have a distance measure 

that is expensive in terms of CPU time, we can dramatically 
speed up similarity search using a tight lower bound. 
However, if the majority of the data exists on secondary 
storage, the CPU costs may be dwarfed by the disk (or tape) 
access time. The solution is to index the data. Having 
defined the bounding envelopes, we proceed in a manner 
similar to previous work [13] [18][24][28][32][35].  

We have previously denoted a time series as Q = q1,…, 
qn.  Let N be the dimensionality of the space we wish to 

index (1 ≤ N ≤ n). For convenience, we assume that N is a 
factor of n.  

A time series Q of length n can be represented in N 
dimensional space by a vector 

NqqQ ,,1 K= . The ith element 
of Q is calculated using the following equation: 

∑
+−=

=
i

ij
jn

N
i

N
n

N
n

qq
1)1(

   (9) 

In Section 5.1, we discussed the lowering bounding 
function LB_Keogh. However, calculating this function 
requires n values. Since n may be in the order of hundreds 
for realistic human motion, and multi-dimensional index 
structures begin to degrade rapidly somewhere above 16 
dimensions, we need a way to create a lower, N-
dimensional version of the function, where N is a number 
that can be reasonably handled by a multi-dimensional 
index structure. We also need this lower dimension version 
of the function to lower bound LB_Keogh (and therefore, by 
transitivity, uniform scaling). 

We begin by creating special Piecewise Constant 
Approximations  (PAAs) [19] of U and L, which we will 
denote as Û  and L̂ . Although they are piecewise constant 
approximations, the definitions of Û  and L̂  differ from 
those we have seen in Eq. 6 and 7. In particular, we have 

( ) ( )( )iii
N
n

N
n UUU ,...,maxˆ

11 +−=   (10) 

 
( ) ( )( )iii

N
n

N
n LLL ,...,minˆ

11 +−=    (11) 

We can visualize Û  and L̂  as the piecewise constant 
functions which bound, without intersecting, U and L, 
respectively. Figure 8 illustrates this intuition.  

 

We are now able to define the low dimension, lower 
bounding function, which we denote as MINDIST(). Given 
a query sequence Q, transformed to Q  by Eq. 9, and a 
candidate sequence C, with its companion PAA functions 
R̂ ={Û , L̂ }, the following function lower bounds 
LB_Keogh 

 
Figure 8. We can readily visualize Û  and L̂  as the piecewise 
constant functions which bound, without intersecting, U and L, 
respectively. (Left) The Û  and L̂ for the time series shown in Figure 

5. (Right) The Û  and L̂ shown overlaid on top of the generating 
time series. 
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This function is visualized in Figure 9.   
 

 Similarly to MINDIST(Q , R̂ ), we can also define 
MAXDIST(Q , R̂ ) (illustrated in Figure 10), which serves as 
an upper bound for the distance between a query Q and R̂ .  

∑
= 




−<−>−
−<−<−

=
N

i iiiiiiii

iiiiiiii

LqqUorUqifLq
qULqorLqifUq

N
nRQMAXDIST

1
2

2

)ˆˆ()ˆ(,)ˆ(
)ˆˆ()ˆ(,)ˆ()ˆ,(

 (13) 

The use of this upper bound will become apparent in 
Section 6, when we discuss algorithms for fast similarity 
search under uniform scaling. 

Note that there is no inherent restriction in our 
framework that would prevent us from incorporating into it 
DTW indexing, as well. DTW can be used in conjunction 

with uniform scaling to allow small local adjustments to the 
time axis after uniform scaling has found the best global 
scaling. In this case, we simply have to compute the upper 
and lower bounding envelopes for the DTW transform, and 
then, apply the techniques described in this study on these 
envelopes. Since this is a straightforward extension, we do 
not pursue it any further in this work. 

 

6. ALGORITHMS FOR SECONDARY 
STORAGE 

Based on the discussion of the previous section, we can 
now present algorithms that solve the time series similarity 
problem under uniform scaling, when the time series 
database does not fit in main memory. In the following 
discussion, as well as in the experiments, we assume that all 
the time series data and their bounding envelopes are disk 
resident. For ease of exposition, we also make the 
simplifying assumption that we are only interested in the 
single best match to our query. The extensions to more 
general cases are straightforward, and we omit them for 
brevity. The interested reader can find additional 
considerations, techniques, and references elsewhere [33]. 

The pseudocode for all the algorithms presented in this 
section can be found in the full version of this paper. 

  

6.1 Linear Scan of the Time Series 
Linear scan is a brute force approach, where we do not 

make use of our lower bounding technique. This algorithm 
sequentially reads each time series C from the disk, and 
computes its minimum distance to the query series by trying 
all possible rescalings. The only optimization we can apply 
in this case, is to stop the computation of the Euclidean 
distance function as soon as it becomes larger than the 
currently minimum distance1. We call the above algorithm 
LinearScan, and we present it only as a baseline against 
which we compare our proposed algorithms. 

In order to improve the performance of LinearScan, we 
incorporate the use of the bounding envelopes as follows. 
Along with each time series C, we also store on disk its 
corresponding envelopes R. As before, we keep track of the 
minimum distance between the query and a candidate time 
series in variable OverallBestMatchVal. The algorithm 
starts by reading the envelopes R̂  of some time series C and 
computing the lower bound MINDIST(Q , R̂ ). If this lower 
bound is less than OverallBestMatchVal, then we have to 
call TestAllScalings(). Otherwise, we know that C cannot 
have a distance to Q less than OverallBestMatchVal, and we 
can simply discard C. We refer to this algorithm as 
LinearScanLB (Linear Scan Lower Bound), and we expect 
it to run faster than LinearScan, since it avoids using 
TestAllScalings() for all the time series in the database.  
                                                                 
1 We apply the same optimization to all the algorithms we present in this 

paper. However, the performance benefits are in all cases minimal. 

 

Figure 9. (Top Left) The time series C, and its bounding envelopes. 

(Top Right) The set of bounding envelopes R̂ ={Û , L̂ }. (Bottom 
Left) The query Q, and its approximation Q . (Bottom Right) 

Illustration of the MINDIST( Q , R̂ ) function. 

 

Figure 10. (Left) The query Q, and its approximation Q . (Right) 

Illustration of the MAXDIST( Q , R̂ ) function. 
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The rest of the algorithms we describe make a more 
informed use of the bounding envelopes. The premise is 
that these algorithms will more effectively prune the search 
space, and result in superior performance. 
6.2 Linear Scan of the Bounding Envelopes 

The intuition behind our next algorithm, FastScan, is the 
following. Instead of retrieving a time series from disk 
every time that the lower bound distance is less than 
OverallBestMatchVal, start by retrieving from disk the time 
series in increasing order of their lower bound value. If the 
lower bounds we compute are tight enough, then best match 
to the query time series will be among the first time series to 
be retrieved. 

The FastScan algorithm (which is similar in nature to the 
VA-file method [34]) computes the solution in two phases. 
First, it performs a linear disk scan of the bounding 
envelopes of all the time series in the database D, and builds 
a minimum priority queue on the lower bound of the 
distance between the corresponding candidate time series 
and the query. Note that this process is relatively fast, since 
the size of the bounding envelopes is much smaller than the 
size of the time series themselves. During the second phase, 
the algorithm dequeues elements from the priority queue, 
reads from the disk the relevant candidate time series, and 
calls TestAllScalings() to determine the best match. The 
algorithm stops when the lower bound value for the 
dequeued element is larger than OverallBestMatchVal, or 
when the priority queue empties. It is easy to see that 
FastScan performs less work than LinearScanLB, and only 
in the worst case does it perform an equal amount of work.  

The FastScan algorithm requires inserting in the priority 
queue as many values as there are time series in the 
database. However, this is not a concern, even though it is a 
main memory data structure. For example, a heap would 
require 20 bytes2 per entry, a small amount even for 
databases with one million objects. The processing time 
required for the heap, O(log|D|), is not of concern either, 
since it is insignificant compared to the time required for 
disk I/O and for computing the distances between time 
series. Note that we can incorporate in the algorithm the use 
of the upper bound (MAXDIST) as well, which can help 
maintain the size of the priority queue small: usually less 
than 15% of the original size. However, this comes at a cost 
in time. In the version of FastScan we used in the 
experiments, we did not take into account this optimization. 

 

6.3 Algorithms based on R-trees 
Having the bounding envelopes R̂  in a sufficiently low 

dimensionality allows us to use an R-tree [5][15] for 

                                                                 
2 The elements we need to store are the lower bound value (8 bytes), a 

pointer to the time series in the file system (4 bytes), and two pointers to 
the children nodes (8 bytes). 

indexing them. The goal is to avoid reading all the bounding 
envelopes, which is what FastScan does. 

The use of the R-tree is straightforward. We associate 
each bounding envelope R̂ ={Û , L̂ } to a Minimum 
Bounding Rectangle MBR(l,h) as follows: 
l=( NLLL ˆ,...,ˆ,ˆ

21 ), and h=( NUUU ˆ,...,ˆ,ˆ
21 ). This allows to 

compute the lower bound distance MINDIST(Q , R̂ ) as 
usual. Along with each MBR that represents a set of 
bounding envelopes R̂ , we also store a pointer to the 
corresponding time series C in the file system. Then, we 
build the R-tree using one of the traditional construction 
algorithms [5][15].  

The R-tree search algorithm starts by reading an MBR r, 
and computing the lower bound MINDIST(Q ,r). If this 
lower bound is less than OverallBestMatchVal, and r is an 
inner node, then we process r recursively. If r is a leaf node, 
that is, it refers to bounding envelopes R̂  of candidate time 
series C, then we have to read C from disk, call 
TestAllScalings() to compute the best match for all possible 
rescalings, and update OverallBestMatchVal. If the lower 
bound is larger than OverallBestMatchVal, then we simply 
disregard r. We refer to this algorithm as RtreeBF (R-tree 
Brute Force). 

An optimization that we can apply to the above algorithm 
is to use the R-tree index to get a small number of candidate 
time series with the lowest lower bound values, and then 
test each of these candidates to determine the true best 
match. This is the same idea that FastScan uses. 

Now, the R-tree search algorithm needs to maintain a 
minimum priority queue on the lower bound values. 
However, unlike FastScan, we can also make use of the 
upper bound distance between the query and an MBR, 
MAXDIST(Q ,r), in order to further prune the search space 
(this optimization is not applicable to RtreeBF that only 
needs to compare the lower bound to 
OverallBestMatchVal). 

For each MBR r, we compute the lower and upper 
bounds, and maintain the lowest value for the upper bounds 
in variable LowestUpper. We recursively search the R-tree, 
following only the MBR nodes whose lower bound is less 
than LowestUpper. If this condition is true for a leaf MBR, 
then we insert an entry for the corresponding candidate time 
series in the priority queue. When we have finished 
processing the R-tree, we start calling TestAllScalings() to 
determine the best match among all the candidates stored in 
the priority queue. This processing follows the order 
specified by the queue. We call this algorithm RtreeProbe. 
 

7. EXPERIMENTAL RESULTS 
In this section we will empirically evaluate our approach. 
Although we are particularly interested in motion capture 
data, as we noted above, our algorithm may have utility in 
domains as diverse as music retrieval [7] and space 
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telemetry [8]. We will therefore perform all experiments on 
the following two datasets. 
• Motion Capture: This dataset was distilled from several 

hours of recording with Vicon (an optical motion capture 
system), using 124 sensors. The data for our experiments 
are drawn uniformly at random from a pool of 250,000 
subsequences. 

• Mixed Bag: This dataset was created by concatenating 10 
diverse datasets from the UCR time series archive. The 10 
datasets are foetal ecg, steam generator, space shuttle, 
Photon Burst, Standard and Poor 500, ocean, power 
demand, leleccum, Koski ECG, and infrasound_beamd. 
The subsequences we use for our experiments are drawn 
at random from this pool, making sure that all 10 seed 
time series contribute equally. 

In both cases, the queries are random subsequences not 
present in the database of candidate time series. 
 

7.1 Main Memory Experiments 
In the first set of experiments, we evaluate the 

effectiveness of our lower bounding technique when the 
datasets fit in main memory. We use the main memory 
version of algorithm LinearScanLB, which we call 
LB_Keogh. We compare only to the brute force search 
algorithm defined in Table 2, and to the recently introduced 
CD-criterion technique [2], because there are no other 
techniques in existence that support uniform scaling queries. 
To eliminate the possibility of implementation bias [18], 
and because CD-criterion does not support indexing, we 
consider the speedup obtained in main memory. To compare 
the three competing techniques we report the Pruning 
Power, i.e., the fraction of times that each approach must 
call the squared Euclidean distance function. 

 

searchforcebrutebyfunctionncestaditocallsofNumber
approachproposedbyfunctionncestaditocallsofNumberPowerruningP =

 

 

(13) 

This measure depends only on the tightness of the lower 
bounds, and is independent of language, platform, caching 
or any other implementation details. As an additional sanity 
check we also measured the CPU time. However, since it is 
almost perfectly correlated with the Pruning Power, we 
omit it for brevity. Note that by definition, the pruning 
power of brute force is always 1.  

As noted earlier, the CD-criterion algorithm can only test 
whether the distance of two sequences is within a user-
supplied epsilon. In order to allow direct comparison with 
the two other approaches, we supply to the algorithm the 
exact epsilon that will return the single nearest neighbor. 

 Since the speed-up obtained for our approach clearly 
depends on the range of scaling factors and the length of the 
time series, we test our approach for the cross product of 
maximum scaling factors sfmax = {1.05, 1.10, 1.20} and 
candidate time series lengths of {64, 128, 256}. These 
represent realistic parameters in our motion capture domain, 

and seem representative of other domains as well 
[9][14][35]. 

We conduct our experiments as follows. We randomly 
remove a subsequence of the appropriate length from the 
data to use as a query, and randomly choose 10,000 other 
subsequences to act as the database. We then search for the 
best scaled match. We repeated this 500 times for every 
combination of scaling factors and candidate lengths. Figure 
11 shows the results. 

The results are quite impressive for the proposed 
approach, which essentially needs to perform an order of 
magnitude less work than CD-criterion, over all parameter 
settings on both datasets. In addition, our approach is two to 
three orders of magnitude more efficient than the brute 
force algorithm. The above experiments demonstrate that 
our technique can effectively reduce the amount of required 
effort by avoiding a considerable number of unnecessary 
computations. 

 

Figure 11. The pruning power of CD-criterion and LB_Keogh 
algorithm on two datasets, over a range of scaling factors and 
candidate lengths. 

 

7.2 Secondary Storage Experiments 
In this section, we evaluate the performance of our 

techniques when the time series database D does not fit in 
main memory. The experiments were performed on an 
Athlon 1.6GHz Linux machine, with 1GB of main memory. 
All the data were stored on its local disk. In the interest of 
space, we only report the results for the motion capture 
dataset; the results for the mixed bag dataset exhibit similar 
trends. 

In all the following experiments, we measure the time (in 
seconds) it takes each algorithm to process a single query. 
We repeated each experiment 500 times, and report the 
average time. Note that we only need to compare the 
algorithms in terms of their running-time performance. 
Since all algorithms are exact, they return in every case the 
same (correct, based on the distance definition) answer. 

 

7.2.1 Exploring the Properties of the Algorithm 
In the first set of experiments, we compare the 

performance of the algorithms LinearScan, LinearScanLB, 
FastScan, RtreeBF, and RtreeProbe, for the cross product 
of maximum scaling factors sfmax = {1.05, 1.10, 1.20} and 
candidate time series lengths of {64, 128, 256} (Figure 12). 
The dimensionality of the approximated bounding 
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envelopes is fixed to 16, and the number of candidate time 
series to 10,000.  

The results clearly show that LinearScan cannot compete 
with the other alternatives, which can actually offer 
interactive response times, a crucial factor for the real-life 
applications we have in mind. Note that all the other 
algorithms outperform LinearScan by up to more than an 
order of magnitude, exactly because they make use of the 
techniques we introduce in this paper. For the rest of the 
discussion, we will disregard LinearScan, and focus on the 
comparison among the other algorithms. 

 

Figure 12. Average time to answer a query for algorithms 
LinearScan, LinearScanLB, FastScan, RtreeBF, and RtreeProbe, 
over a range of scaling factors and candidate lengths. 

In Figure 13, we zoom in on the results of the four 
algorithms that use our proposed technique. As expected, 
the trends are that the query response time increases with 
both the length of the candidate time series and the scaling 
factor. Out of the two, the latter seems to be the dominant 
factor. All four algorithms exhibit similar trends. 

In terms of absolute numbers, FastScan and RtreeProbe 
perform better than the other two algorithms, executing up 
to 3.5 times faster. Note that these two are the algorithms 
that first determine the most promising order in which to 
access the candidate time series, and only then start 
accessing them. 

 

7.2.2 Scalability Experiments 
We now turn our attention to the scalability issues, and 

examine the behavior of the algorithms when we vary the 
size of the time series database. The default values we use 
are, unless otherwise noted, 10,000 for the number of 
candidate time series, 128 for their length, and 16 for the 
dimensionality of the approximated representations of the 
bounding envelopes. 

In the first set of experiments we vary the number of 
candidate time series from 5,000 to 80,000. The results are 
shown in Figure 14. We observe that the query response 
time for FastScan is better than RtreeBF for the small 
database sizes, but then deteriorates faster as the database 
size increases. This is due to the fact that it still needs to 

read from disk the bounding envelopes for all the series in 
the database. RtreeBF can effectively prune the search 
space. Yet, for the smaller database sizes, it pays the price 
of not determining in advance the most promising order in 
which to test the candidate time series. The performance of 
RtreeProbe is consistently the best among the proposed 
approaches (2 to 9 times faster), combining the advantages 
of both FastScan and RtreeBF. 

 
Figure 15 depicts the results of the experiments where 

we varied the length of the candidate time series (from 64 to 
1024). At the high end of the length spectrum, with the 
exception of RtreeProbe, all the algorithms tend to behave 
the same. The experimental results indicate that the 
algorithms fail to prune a significant amount of the 
candidate time series. On the other hand, RtreeProbe 
manages to do a slightly better job in this respect, which 
results in significant savings in terms of time. Its 
performance is 2.5 to 4 times better than the best alternative. 

 

 

Figure 14. Average time to answer a query for algorithms 
LinearScanLB, FastScan, RtreeBF, and RtreeProbe, when varying the 
number of candidate time series. 

In the last set of experiments (Figure 16), we evaluate the 
effect of the dimensionality of the approximated bounding 
envelopes on the performance of the algorithms. An 

 

Figure 13. Average time to answer a query for algorithms 
LinearScanLB, FastScan, RtreeBF, and RtreeProbe, over a range of 
scaling factors and candidate lengths. 
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increase in the dimensionality results in more accurate 
representations, and consequently, in more precise lower 
and upper bounds. The experiments show that this is, in 
general, beneficial for all the algorithms. However, the 
benefits are diminishing as the dimensionality increases. In 
fact, we may also get the reverse effect, as is the case with 
RtreeBF for dimensionality 16. In this case, the bounding 
envelopes of the candidate time series do not form tight 
clusters in the high-dimensional R-tree, and consequently, 
lead to poor performance. RtreeProbe avoids the cost of this 
problem, because it postpones the expensive 
TestAllScalings() operation till the end. 

The experimental evaluation indicates that it is beneficial 
to first identify the most promising candidates entirely in the 
reduced dimensionality space (i.e., using only R̂ ), and then 
test the query against the candidate time series, despite the 
fact that these calculations are not as precise. Though, the 
above may not be true for large databases (see Figure 14). It 
is also interesting to note that the behavior of the R-tree 
algorithms is not always predictable. Consider, for example, 
the non-intuitive RtreeBF results for database sizes 5,000 
and 10,000 (Figure 14), and dimensionalities of 12 and 16 
(Figure 16). In both cases, the results worsen when the 
parameters become seemingly more favorable. 
Nevertheless, one of the R-tree-based algorithms, 
RtreeProbe, exhibits a consistently superior performance 
across all experiments, outperforming the best alternative by 
up to 4 times. As a last remark, we should note that 
FastScan, which does not require the use of any indexing 
structures, performs in many cases competitively to 
RtreeProbe. This makes FastScan an attractive alternative 
for the case where we cannot afford to build an index on the 
time series in the database. 

 

Figure 15. Average time to answer a query for algorithms 
LinearScanLB, FastScan, RtreeBF, and RtreeProbe, when varying 
the length of the candidate time series. 

7.3 Case Study 
In addition to the comprehensive experiments on the 

efficiency of indexing discussed above, we also used a 
motion capture processing system to evaluate our 
techniques. We conducted numerous experiments to test the 

quality of matches obtained by uniform scaling, allowing 
both stretching and shrinking.  

The experimental setup was as follows. We randomly 
selected a query motion from our motion capture database 
(sitting up, stretching arms, etc.), and searched the database 
for the closest (non-self) match. We evaluated the returned 
sequences in two ways. Objectively, by measuring the 
Euclidean distance of the sequences (which express the 
orientations of the joints in the body), and subjectively, by 
creating and reviewing animations based on the matched 
sequences. These animations show the query sequence and 
its best matches superimposed on each other. 

  The results of the experiments validate the utility and 
effectiveness of our approach, and also demonstrate that 
uniform scaling produces better results than DTW. Since 
such experiments do not lend themselves to a text and 
graphic exposition, we have created a website with full 
video examples [40], and only present here a single figure 
to give the flavor of these experiments. 

In Figure 17, we show the best match under uniform 
scaling (top) and the best match under DTW (bottom) for a 
query involving a motion of the arms. In the figures and 
graphs, we have superimposed the query with each of the 
best match sequences. It is obvious that when we allow 
uniform scaling we are able to find a match that is much 
closer to the query sequence (Euclidean distance 51.83) 
than when we use DTW (Euclidean distance 154.16). 

 

 

Figure 16. Average time to answer a query for algorithms 
LinearScanLB, FastScan, RtreeBF, and RtreeProbe, when varying 
the dimensionality of the approximated representations. 

 

8. CONCLUSIONS 
In this work, we motivated the need for uniform scaling 

similarity matching, which has applications in several 
domains where human variability necessitates this type of 
matching flexibility (e.g., motion libraries, music retrieval, 
and historical handwritten archives). We introduced the first 
technique for indexing time series with invariance to 
uniform scaling, based on bounding envelopes. This 
technique enables fast similarity searching in large time 
series databases. We presented several algorithms that make 
use of the above technique, and evaluated our proposed 
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approaches with a comprehensive set of experiments on real 
data, over realistic parameter choices suggested by domain 
experts. The experimental results demonstrate the 
significant advantages of our indexing technique, and 
evaluate the relative benefits of the different alternatives. 
Finally, we describe the application of our method in a 
motion capture processing system, and illustrate its 
usefulness and the superiority of the results it returns when 
compared to other alternatives.  
 

 
Figure 17: Sample results from a motion-capture similarity search 
experiment. A query motion (upper body only) was submitted to a 
motion capture database.  (Top Left) The stick figure is a superposition 
of both the query and the best matching sequence under uniform 
scaling. Since both figures are so similar (after scaling the match back 
to the query length) we can only see a single figure. (Bottom Left) The 
superposition of the query and the best DTW match show considerable 
mismatch. (Right) The corresponding time series (only the Z-axis is 
shown) illustrates the source of the difference. 
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