
Compressing Large Boolean Matrices Using Reordering
Techniques

David Johnson
AT&T Labs – Research
dsj@research.att.com

Shankar Krishnan
AT&T Labs – Research

krishnas@research.att.com

Jatin Chhugani
Johns Hopkins University
jatinch@cs.jhu.edu

Subodh Kumar
Johns Hopkins University

subodh@cs.jhu.edu

Suresh Venkatasubramanian
AT&T Labs – Research

suresh@research.att.com

Abstract

Large boolean matrices are a basic represen-
tational unit in a variety of applications, with
some notable examples being interactive visu-
alization systems, mining large graph struc-
tures, and association rule mining. Designing
space and time efficient scalable storage and
query mechanisms for such large matrices is a
challenging problem.

We present a lossless compression strategy to
store and access such large matrices efficiently
on disk. Our approach is based on viewing the
columns of the matrix as points in a very high
dimensional Hamming space, and then for-
mulating an appropriate optimization prob-
lem that reduces to solving an instance of the
Traveling Salesman Problem on this space.

Finding good solutions to large TSP’s in high
dimensional Hamming spaces is itself a chal-
lenging and little-explored problem – we can-
not readily exploit geometry to avoid the need
to examine all N2 inter-city distances and in-
stances can be too large for standard TSP
codes to run in main memory. Our multi-
faceted approach adapts classical TSP heuris-
tics by means of instance-partitioning and
sampling, and may be of independent inter-
est. For instances derived from interactive vi-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

sualization and telephone call data we obtain
significant improvement in access time over
standard techniques, and for the visualization
application we also make significant improve-
ments in compression.

1 Introduction

Consider the following three problems:

• You are visualizing a large and complex three-
dimensional geometric model and you would like
to have a real-time walkthrough (≥ 20 frames/s
update). In order to do this, you need to deter-
mine quickly what parts of the model can be seen
from a region of space (cell) bounding your cur-
rent location.

• You work for a major phone company, and you
have access to data that tells you which numbers
call which numbers. You would like to manage
this data to develop graph models of communities
of interest.

• You have large volumes of data describing various
purchases that people make, and you’d like to in-
fer association rules from this very large database.

In all of the above problems, the basic unit of data
is a large, disk-resident matrix of ones and zeros. In
the first case, rows correspond to transitions between
view cells, and columns are the primitives (typically
collections of triangles) that become visible in moving
from one cell to the next. These matrices are very
large, having of the order of hundreds of thousands of
rows and columns. Representing them and querying
them efficiently is a non-trivial problem. In the second
case, rows and columns are individual customers, and
each entry of the matrix represents a call made from

13

one person to another. In the third case, rows are
customers and columns are products.

In general, our problem is to store the data so that
we can efficiently access the information corresponding
to a row:

Problem. Given two sets R,C and a binary relation
M ⊆ R × C, store M efficiently such that for any
r ∈ R, the set M(r) = {c | (r, c) ∈ M} can be retrieved
efficiently.

If M (viewed as a matrix) is sufficiently dense, then
representing M as an adjacency matrix is plausible.
However, this does not scale well at all; for |R|, |C| ≥
105, this is already an impractical solution.

A more reasonable option, given that in applica-
tions of interest M tends to be sparse, is to use a sparse
graph representation. For each r ∈ R, we maintain a
list of elements of M(r). This can be done in two
ways; we either explicitly enumerate the elements of
C, or maintain pointers into a data structure for C.
Note that given the scales involved, both approaches
will require using offline storage; in one application
each element of C can be 10KB, and each M(r) can
be on average of size 1000, yielding over 100 GB of
needed storage with the first approach and nearly 1
GB of storage with the second (assuming 105 rows).

There are tradeoffs between the two approaches; ex-
plicit enumeration is wasteful in space due to the repli-
cation of data elements, which means that updates to
C can be hard. However, the second approach may
require making many seeks into a list, in comparison
with the first approach where access to M(r) is rela-
tively efficient.

1.1 Paper Organization

Our proposed solution exploits both the superior ac-
cess time of the first approach and the efficient space
usage of the second. We describe it using a simple
example in Section 2 and go into more detail in Sec-
tions 3 and 4. We survey related work in Section 5. A
detailed experimental study follows in Section 6.

2 Problem Formulation

We start with a brief example to illustrate our ap-
proach. Consider the relation M depicted in Ta-
ble 1. This relation is defined between the sets R =
{A,B, C, D} and C = [1..16]. If we wished to retrieve
M(D) from disk, we can either make three distinct
seeks into C to extract the entries {4, 5, 10, 15, 16}, or
we can perform one seek and scan the entire list, re-
taining only the relevant entries (we assume that rows
are laid out sequentially on disk).

Suppose however we were able to reorder the IDs
of C, so that the relation looked like Table 2. Note
now that for each row, all the relevant entries are clus-
tered together; in fact M(B) and M(C) can each be

retrieved in a single seek and scan with no wasted disk
access.

Definition 2.1. A run in a row of a matrix M is a
maximal sequence of non-zero entries.

Going back to Table 1, row C has 3 runs ({2, 3}, {6}
and {9}). However, after reordering (see Table 2), it
has only 1 run. Since each run requires a single seek,
we can now define a cost measure for a given relation.

Definition 2.2. The cost runs(M) of a matrix M is
the sum of the number of runs in each of its rows.

The reordering problem can now be stated as:

Problem 2.1 (Matrix Reordering). Given a bi-
nary matrix M , find a matrix M ′ obtained by permut-
ing the columns of M that minimizes runs(M ′).

Note that minimizing runs(M ′) not only speeds up
access time – as we shall see later in this paper, it may
also significantly decrease the space needed to store
the matrix.

One special case of the Matrix Reordering problem
can be solved efficiently: the question of whether the
optimum value for runs(M ′) equals the number of rows
of M that contain non-zeros. This is equivalent to ask-
ing whether the matrix has the following well-studied
property.

Definition 2.3 (Consecutive-ones Property). A
matrix M is said to have the consecutive-ones property
if its columns can be permuted such that in the resulting
matrix M ′, all nonzero elements in each row appear
consecutively.

Booth and Lueker [4] showed in 1976 that for a
given matrix M , there is a linear time algorithm that
determines whether M has the consecutive-ones prop-
erty and produces the desired permutation if so. Thus,
if the relation has the consecutive-ones property, we
can reorder the columns on disk so that the elements
of each row can be accessed in a single seek. How-
ever, this will in general not be possible and minimiz-
ing the number of runs when a matrix does not have
the consecutive-ones property is hard:

Theorem 2.1. Matrix Reordering is NP-hard.

Proof. We demonstrate a reduction from Hamiltonian
Path [14, GT39]. Given an undirected graph G(V, E),
construct the boolean matrix M whose rows are edges,
columns are vertices, and an entry is 1 if the corre-
sponding vertex and edge are adjacent.

Each row has exactly two 1s in it. Consider an edge
e = (u, v). If u and v are adjacent in the column order,
e contributes a cost of 1 to the total run cost, else it
contributes two. Thus each pair of consecutive vertices
that share an edge reduce one unit from the maximum
run cost 2|E|.

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A * * * * * * * * *
B * * * * *
C * * * *
D * * * * *

Table 1: An example relation M between the sets {A,B, C, D} and [1..16].

12 15 5 7 13 16 10 4 14 8 1 11 3 2 6 9
A * * * * * * * * *
B * * * * *
C * * * *
D * * * * *

Table 2: The same relation M after reordering the columns

If G has a Hamiltonian path, then there exists a
reordering of the columns of M yielding a matrix M ′

such that runs(M ′) = 2|E| − n + 1. If not, then any
reordering must have cost at least 2|E|−n+2. Setting
K = 2|E| − n + 1, the theorem holds.

Matrix reordering can be related to the Travel-
ing Salesman Problem in the following manner. Re-
call that a Hamming space is a vector space over bi-
nary vectors where the sum of two vectors is their
component-wise sum, taken over GF(2) (i.e 0 + 1 = 1
+ 0 = 1, 1 + 1 = 0 + 0 = 0). This space has a norm
‖ · ‖, defined as ‖v‖ =

∑
i vi, and the corresponding

Hamming metric dH(v1, v2) = ‖v1 − v2‖. A tour in a
Hamming (or any distance) space is an order in which
points are visited, and the cost of the tour is the sum
of distances between adjacent points in the tour. For a
given space, let T denote the cost of the shortest tour
that visits all points.

Now if we view each column of M as a point in a
Hamming space, it is easy to relate runs(M) and the
cost of a minimum tour.

Theorem 2.2.

0.5T ≤ runs(M) ≤ T

Proof Sketch. Note that each run contributes at most
two units to a tour; one 0 → 1 transition at the be-
ginning, and one 1 → 0 transition at the end. Runs
at the beginning or end of a row contribute only one
unit. Thus if we sum up the contributions to the tour
for any particular dimension (row), we obtain a quan-
tity that is at least equal to, and is at most twice, the
number of runs in that row.

3 Traveling Salesman Heuristics

The traveling salesman problem is NP-hard even
for instances with metric distance functions. The
best polynomial-time approximation guarantee known
for such instances is 1.5, proved for the O(N3)
Christofides algorithm [10]. Such a running time is
infeasible for our applications, but many significantly

faster heuristics are known to perform well in practice,
typically getting much closer to optimal than promised
by the above bound [17]. Four commonly considered
such heuristics are

NN: Starting at an arbitrary point, move to its near-
est neighbor and repeat. If at any point the near-
est neighbor of the current point is in the tour,
pick the next nearest neighbor.

2-OPT: Start with NN tour. Pick any two edges
(u, v) and (w, x), and delete them, reconnecting
with edges (u, x) and (w, v) if the resulting tour
has lower cost. Repeat.

3-OPT: Similar to 2-OPT, except that three edges
are broken, and the tour is reconstructed in one
of two different ways.

Lin-Kernighan: This is a sophisticated algorithm
that can perform k-OPT moves for arbitrarily
large k, but in a highly structured way that keeps
the worst-case running time polynomial.

For random Euclidean instances as studied in [17],
NN typically gets within 25% of optimal and the im-
plementations of 2-OPT, 3-OPT, and Lin-Kernighan
described therein get within 5%, 3%, and 2% respec-
tively. For the instances we study here, Lin-Kernighan
performed too many distance calculations to be run
effectively, so it and still-more-sophisticated heuris-
tics were ruled out. On the other hand, results from
the other three heuristics were much closer together
than for Euclidean instances. 3-OPT was never more
than 7% better than NN and, where we could test
it, Lin-Kernighan offered little further improvement.
Thus restricting ourselves to the first three algorithms
should allow us to quantify a realistic range of running-
time/solution-quality tradeoffs.

The reason that distance calculations play such a
key role in running time here (as opposed to the case
of Euclidean instances for example) is that they can
be much more expensive. In a high-dimensional Ham-
ming space where each vector can have thousands of

15

non-zero entries, computing the distance between two
points will require thousands of operations, compared
to just 6 for the Euclidean distance in two dimensions,
and even though the latter may be individually more
expensive (involving multiplications and square roots),
the former can still add up to much more work. Even
high-dimensional Euclidean spaces can be projected to
a smaller number of dimensions using standard embed-
ding methods; as we will discuss in more detail later,
this is not likely to help for Hamming spaces.

Our implementations of 2- and 3-OPT mitigate this
somewhat by first computing a list of 50 nearest neigh-
bors for each city and caching the distances to them.
This data structure is also used to guide the search
for improving moves, as first suggested by Lin and
Kernighan [20], and once constructed can also speed
the computation of the NN tour.

Unfortunately, we know of no way to construct
the data structure without looking at all N(N − 1)/2
inter-city distances, which is prohibitively expensive
for large N . Another problem with large N is that
the data structure or the instance itself may not fit in
main memory, which would result in substantial addi-
tional costs in terms of disk I/O. We thus must resort
to a classic technique for dealing with large TSP’s.

3.1 Splitting The Tour

Given a TSP instance, instead of computing a tour
on the entire input we can partition the cities into two
sets, compute a tour for each part, and concatenate the
two partial tours. Since neighbor-list construction is
at least quadratic in the input size, this approach will
speed up the TSP computation process, presumably
at the cost of a decrease in the quality of the com-
bined tour. In general, we can break up the input into
k pieces, solve the TSP on each piece, and then glue
the pieces together. In addition to speeding up the in-
dividual TSP calculations, this approach, by reducing
the size of each instance, makes it feasible to run each
partial input completely in-core, thus allowing us to
ignore disk access issues.

The quality of the tours generated by this approach
will depend not just on the number k of pieces, but also
how the partition is constructed. Ideally one would like
cities that are close to each other to be in the same
sets of the partition. For geometric instances, a stan-
dard approach is to partition the space in which the
cities are located in contiguous regions (rectangles in
the 2-dimensional case), This can be done efficiently
and can be quite effective, leading to only a slight
worsening of overall tour quality as k increases. There
is unfortunately no obvious way to similarly exploit
the geometry of high-dimensional Hamming-space in-
stances. What structure the instances have that might
be exploitable is implicit rather than explicit.

That such structure exists can be seen from ex-
periments we report later for the POWER instance,

where simply partitioning the instance based on the in-
put order of the cities (the first n/k going into the first
set, etc.) yields substantially better results than a ran-
dom partition. This is because the instance is based on
a visualization application, and was constructed based
on walkthroughs of the model and thus the initial or-
dering of the cities to a certain extent reflects the im-
plicit geometry of that model.

In general, however, we may not be given an in-
stance in a form that already reflects such implicit
structure, so it would be useful to have a generic par-
titioning procedure that can find at least some of the
structure when it exists, and can run relatively quickly
even when the instance does not fit in memory. To that
end, we have devised the following scheme, which has
enabled us essentially to match the effectiveness of the
“original order” partition. Other methods are possi-
ble, but a full study of the alternatives is beyond the
scope of this paper.

Our approach reduces the problem to one of finding
a good ordering of the cities and then, as above, par-
titioning into k contiguous blocks of size roughly n/k.
This reordering problem is then in turn solved by a
combination of clustering and the solution of another
(much smaller) TSP. (Using classical clustering algo-
rithms to generate a partition directly doesn’t work
because those algorithms can yield clusters of widely
varying size.) The overall schema of our approach
looks like this:

1. Compute K centers from the input (K can be
bigger than k).

2. Determine an order among the centers (a TSP).

3. For each center, reorder points in the associated
cluster to form a tour, taking into account the
identity of the clusters on either side.

4. Concatenate the tours.

Step 1 can be performed in one pass over the in-
put, as can Step 3. Step 4 can be performed either
via a sorting phase, or (if K is small) by a grouping
algorithm that employs K passes.

Step 1: Computing the centers

Most clustering algorithms are designed to work on
points in `2 spaces, rather than Hamming spaces. In
addition, the size of our instances requires the use of
streaming clustering methods. Various methods are
possible, such as BIRCH [24] or the streaming K-
median algorithm of Guha et al. [16]. We take the
following related approach that computes K-centers:

Pick a uniform random sample of K points from the
input data (all subsets of K points are equally likely).
Then assign each point p to the sample point s(p) it is
closest to. Also determine p’s l closest neighbors, and
construct a bit vector vp of length p where vp[i] = 1 if

16

center i 6= s(p) is one of p’s l closest neighbors. Later,
we will also use ṽp = vp/‖vp‖1, where ‖v‖r denotes the
`r-norm ‖v‖r = (

∑
i vr

i)1/r. We will abuse notation
and use s to refer both to a sample point and the
cluster of all points assigned to it. For each center s,
let vs =

∑
i∈s vp. Normalize vs so that ‖vs‖1 = 1− α,

and set vs[s] = α.
Intuitively, the vector vs is a signature of this

cluster, representing how other clusters appear when
viewed from s. If two clusters are close together, then
they will “see” all other clusters the same way, and so
should be placed close to each other. Notice that if we
dropped the restriction i 6= s(p), then a large cluster
could swamp vs when normalized, rendering the neigh-
bourhood information useless. The parameter α is a
way of compromising, by fixing a contribution to this
signature from s itself, but not making it too large.

In our implementation, we fix l = 5 and α = 0.2
arbitrarily. The parameter K is set to 100.

Step 2: Determining an order among centers

Define d(s1, s2) = ‖vs1 − vs2‖1. Compute a tour us-
ing this metric. For this we use the best of multi-
ple runs of Iterated Lin-Kernighan (a variant of Lin-
Kernighan [17]). .

Step 3: Reordering points in a cluster

Let sl, s, sr be three adjacent points in the tour gener-
ated in Step 2. Consider a point p ∈ s. If p’s second
nearest neighbour is sl, then we place p in the set L(s).
If p’s second nearest neighbour is sr, then we place p in
set R(s). If neither case holds, we place p in set L(s) or
M(s) depending on which of d(ṽp, vsl

) and d(ṽp, vsr)
is smaller.

All points in L(s) are then sorted with respect to
the measure d(ṽp, vsl

), and all points in R(s) are sorted
with respect to d(ṽp, vsr). The output order for cluster
s is then L(s) · s ·R(s).

The intuition here is that points more similar to sl

should appear closer in the order to sl than to sr and
vice versa.

4 Sampling to Reduce Instance Size

One drawback of any partitioning scheme is that even
if we divide into parts that can fit in main memory,
it still may be the case that N is too large for us to
do the required nearest neighbor computation or even
simply to construct a true NN tour. Thus we will
either have to partition the problem further, incurring
additional penalties in tour length, or constrain our
codes in some other way.

Since the basic issue is that there are too many po-
tential distances that need to be computed, an appeal-
ing approach would be to discard a large proportion of
the N(N − 1)/2 edges as unimportant, and only con-
centrate on a sample of KN supposedly “good” edges.

Our implementations of NN, 2-OPT, and 3-OPT can
all take a “sparse graph” input consisting of a list of
(edge,true distance) pairs and a default length for the
distance between any pair of cities not represented in
the list. They then find good tours with respect to
this revised distance metric, which, depending on the
quality of the sparse graph, will be fairly good tours
for the original instance. The default length we typ-
ically use is 1, 000, 000, meaning that the algorithms
will work hard to use few “non-edges” and, subject to
that, use as short a tour as possible.

Note that this approach introduces a second trade-
off: for a fixed memory size, choosing a smaller value
of N means we have room for more edges per city,
and hence possibly better tours. Tour quality will also
depend on the quality of the sparse graph we con-
struct. We obviously would like the edges included
in this graph to connect relatively near cities.

A standard approach for computing such “near
neighbors” in large high-dimensional data sets is to
perform an embedding into a “nice” space like `2 and
then reduce the dimension via projections or other
means. The resulting set of points will approxi-
mately preserve the distances in the original set, and
near neighbor calculations can then be performed effi-
ciently.

There are a few problems with this approach. Ham-
ming spaces are much harder to approximate than Eu-
clidean spaces. Kushilevitz, Ostrovsky and Rabani
present an algorithm [19] for computing approximate
nearest neighbors in Hamming spaces; their algorithm
requires space that is polynomial in n and d, and
is thus impractical. Also, a result of Brinkman and
Charikar [5] suggests that like `1, the Hamming met-
ric is not amenable to embedding in `2 without under-
going severe distortion. Furthermore, as noted in [3],
dimensionality reduction and the associated distortion
in distance measurements are useful only if distances
are well-separated ; informally, the difference between
a point’s nearest neighbor and its farthest neighbor
is large. For high-dimensional data sets, this is often
not the case, and Table 4 demonstrates this for three
example data sets that we use.

To resolve this issue, we exploit the “distance com-
pression” that causes such a hindrance to approximate
methods. Define Bm(p) to be the ball of radius r,
where r is m times the distance from p to its nearest
neighbor. Assume there exists an 1 > α > 0 such that
for any point p, an α-fraction of the points in the space
lie in the ball B2(p). Intuitively, the larger α is, the
less separated points are.

Fix a point p. If we now sample 1/α points from
P , with a constant probability one of these points lies
in B(p, r). The probability of success can be ampli-
fied further by sampling log n/α points instead. This
can be repeated, and so if we wish to compute k near
neighbors (points that are at most twice the nearest

17

neighbour distance away from p), we merely sample
k log n/α points and take k points from this sample
closest to p. The algorithm we use is sketched below.
We use c as a boosting parameter to increase the prob-
ability of finding true near neighbors. The algorithm
runs in two passes over the input.

Input: Set of points P , distance metric d, and param-
eters K, α > 0, c > 1.
Output: For each point p ∈ P , set of K near neigh-
bors.

for each p in a scan over P do
Sample uniformly a set S of s = cK points.
Find K closest points in S to p and output p and
this set.

end for

Algorithm 1: Algorithm

Note that under this scheme we sample c potential
neighbors for each near neighbor we want to retain in
the end. This preserves a certain standard of quality
for the neighbor set as the number K of neighbors in-
creases. It also keeps the time to construct a sparse
subproblem fixed independent of the number k of such
subproblems. However, it also means that the total
time to construct all k subproblems in a k-way parti-
tion grows linearly with k, adding another tradeoff to
our mix. We will discuss other options when we cover
directions for further research at the end of the paper.
In practice, we use a factor c = 16.

5 Related Work

The most well-known example of using reordering to
improve compression is the Burrows-Wheeler trans-
form [8]. Buchsbaum et al. [6] use the idea of col-
umn reordering to improve table compression. In a
separate paper, Buchsbaum et al. [7] also use reorder-
ings based on computing TSPs. Their TSP’s also had
an expensive-to-compute distance function – the dis-
tance between two columns reflects the improvement
in compression achieved by gzip or another compres-
sion routine when the two columns were compressed
together rather than separately. The TSP’s arising in
their application were however much smaller than ours
(less than 1,000 cities), and so did not raise the run-
ning time and memory constraint issues that are our
chief concern here.

The connection between TSP’s and the number of
runs was also made by Alizadehet al. [2] in the con-
text of reconstructing DNA sequences from probes,
although their tests involved even smaller instances
(N = 100).

Variants of the consecutive-ones property have been
used in data mining [15] to identify interesting pat-
terns in market-basket data. There is a vast body of
research into mining based on association rules repre-

sented in terms of a boolean matrix; an extensive sur-
vey is beyond the scope of this paper. The paper by
Cohen et al. [11] examines the problem of computing
approximate near neighbors in a large Hamming space
under a different measure (the so-called ’intersection
over union’ metric).

Managing large amounts of disk-resident data effi-
ciently for real-time walkthroughs of three-dimensional
geometric and radiositized databases is a well stud-
ied problem in computer graphics [13, 23, 1, 22].
Some preliminary work on reordering was done by
Chhugani et al. [9]. That paper mentions the TSP
heuristics we describe here, but focuses mainly on
the data management and visualization aspects of the
large-scale walkthrough problem.

Cortes et al. [12] proposed and developed the use of
graph structures to determine communities of interest
in order to detect patterns of calls among groups of
customers; such patterns are also of interest in detect-
ing fraud in telephone service.

6 Experiments

We now present a detailed experimental evaluation of
our reordering strategy. We start with the experimen-
tal framework.

Data

POWER: Rows consist of transitions between visi-
bility regions and columns are objects. An entry
in the matrix is 1 if the object is in one of the
regions defined by the transition and not in the
other. The data comes from a 3D model of a
power plant used for the walkthrough system de-
veloped by Chhugani et al. [9].

CITY: A similar data set obtained from a 3D model
of the city of Atlanta.

PHONE: This data set consists of a sampling of call
data from a major telecomunications company;
rows correspond to callers and columns to callees
(all data is anonymized).

Table 3 summarizes the basic properties of each data
set.

Sparsity
Rows Columns (avg. entries/row)

POWER 47064 385828 8938
CITY 554455 789502 2000

PHONE 470728 543549 2

Table 3: Statistics for the data sets.

Data Characteristics

We demonstrate the distance compression that we dis-
cussed in Section 4. We sampled points at random

18

from the three data sets and computing their com-
plete list of distances to other points in the set, and
then calculated the size of B2(p) and B3(p) as a frac-
tion of the number of points in the site. In Table 4,
we record the average values.

B2(p) B3(p)
POWER 13.5% 24.6%
CITY 27.8% 36.2%

PHONE 35.4% 62.4%

Table 4: Aggregate Data Distribution statistics: For
each data set, the first column indicates the fraction
of points (on average) that lie in a ball of radius twice
the nearest neighbour distance for a given point; the
second column does the same for three times this value.

Platform

All experiments were run on a 32 CPU SGI with
R12000 400 Mhz processors and 28 GB of main mem-
ory. The code for the sampling was written in C and
compiled using CC/gcc. Auxiliary scripts for managing
the data were written in ksh/perl/awk. For comput-
ing tours, we used the Johnson-McGeoch implementa-
tion from their survey of local search methods for the
TSP [17].

Validation

The primary measure of quality we will use is runs(M),
the number of runs on the reordered matrix. We will
report the cost reduction achieved as a fraction of the
identity ordering.

As mentioned earlier, a secondary benefit of re-
ordering is the improvement in compression it yields
(because long runs of 1s get placed together). To test
this claim, we will use the well known ExpGol [21] com-
pression scheme, studied by Johnson [18] in his 1999
review of methods for compressing bitmaps. We will
use the codecs that he designed. For more details on
how ExpGol works, we refer the reader to the paper
by Moffat and Zobel [21].

Compression schemes like ExpGol are designed to
compress sequences of integers, and work well when
the integers are small. In a sparse representation, each
row of the boolean matrix is a sequence of column IDs;
however these are not small. Consider such a sequence
x1, x2, . . . xn. Offset mapping (Offset) will convert this
sequence to the form x1, x2−x1, x3−x2, . . . , xn−xn−1.
A run of k 1s starting at column ID x in the matrix will
thus be represented as (x, 1, 1, 1, ...k-1 times), A more
efficient method is the well known run-length encoding
that would represent the run by the pair (x, k).

A slightly better method called two-sided run length
encoding (2SidedRLE) exploits the fact that runs of 0s
and 1s can be encoded simultaneously. Each sequence
of integers is represented as the sequence 01,11,02, . . .,
where 0i is the length of the ith sequence of 0s and 1j is

the length of the jth sequence of 1s1. The advantage
of this approach is that if intervals of 1s and 0s are
interspersed, then there are no large numbers in the
resulting sequence.

We will evaluate our algorithms by first using Offset
or 2SidedRLE to transform each row, and then using
ExpGol to compress the row. The total compressed
size will be the sum of compressed sizes for each row.
It will often happen that the best compression scheme
for the original input is different from the best scheme
after reordering. In all cases, we use the best results
to determine compression ratios.

Table 5 summarizes the cost of the input data under
these three measures.

Offset 2SidedRLE
runs(M) +ExpGol +ExpGol

POWER 251689169 235460917 245255311
CITY 807562396 823185832 906690088

PHONE 826766 4029710 4665946

Table 5: Three different cost measures for the data.

Reporting: In all the results below, we report the
relative improvement achieved with respect to the
identity ordering. For many situations, we will have
tours generated using sampling to compute smaller in-
stances, and tours generated from a full instance (typ-
ically only when the pieces are small). We will use the
term sample to refer to tours generated by sampling,
and full to refer to tours generated by exact distance
computations. All times are reported in seconds.

6.1 Overall performance of the algorithm

We start with a start-to-finish evaluation of our
schemes on the three data sets. Results reported in
this section reflect the best choice of parameters at
various stages in the computation pipeline, indepen-
dent of running time; the goal is to verify that the null
hypothesis, that reordering has no effect, is false.

Table 6 summarizes the results achieved.

runs(M) Compression
POWER 58% 38%
CITY 34% 25%

PHONE 35% 15%

Table 6: Relative improvement of REORDER with
respect to the identity ordering.

In all cases, we get a substantial improvement after
reordering the data. It is worth mentioning that in the
case of PHONE, the compression achieved is small
(we reduce the input by 15%) because the data set
itself is extremely sparse, having an average of two
entries per row.

1This scheme can be interpreted as performing run length
encoding, and then doing further run length encoding on the
start IDs of each tuple.

19

For all the data sets, the best approach (indepen-
dent of time) is obtained by splitting the data set into
the fewest number of subproblems that can individu-
ally fit in memory, and then computing full tours i.e
tours based on looking at the entire subproblem. In
general, the best tours are obtained using 3-OPT, al-
though there are occasional situations where this is not
true.

For POWER, the best split comes at k = 16, and
for city at k = 32. The data set PHONE is small
enough to fit entirely in memory.

6.2 A Closer Look At The Approach

We now undertake a more detailed study of how vari-
ous parameter choices in our reordering strategy affect
the running time and the resulting cost.

6.2.1 Number Of Subproblems And Sampling

The number of subproblems the input is split into prior
to tour computation is constrained by the TSP algo-
rithm. In order to run in-core, it needs to be able
to fit either the sampled sparse graph or the entire
subproblem into main memory. Thus, the number of
neighbours computed for each point in a subproblem
will be inversely related to the size of the piece.

We first illustrate how the performance of the tours
varies with the number of pieces. Table 8 illustrates
the improvement in runs(M) achieved, in all cases us-
ing 3-OPT as the tour construction algorithm. Notice
that in all cases, sampling yields better results as the
number of subproblems increases, because this allows
us to sample more “edges” in the sparse graph for each
input point.

Number of Subproblems (k)
4 8 16 32

POWER sample 21% 35% 48% 54%
POWER full – – 57% –
CITY sample – 7% 16% 26%
CITY full – – – 34%

PHONE sample 1% 2% 3% –
PHONE full 18% 14% 11% –

Table 8: Relative Improvement in runs(M) as number
of subproblems increases. For each data set, a full
tour was computed for the value of k such that each
subproblem fits in memory.

However, partitioning and computing a tour based
on the full instance is always better. Table 8 also illus-
trates that it is important to partition into the fewest
number of subproblems that allow each subproblem to
fit in memory. In the case of PHONE, where the en-
tire input fits in memory, partitioning only degrades
the performance.

When time is no object, the best strategy is clearly
to compute full tours on as few subproblems as pos-

sible. However, this is significantly slower than sam-
pling, because of the quadratic distance computations.
Table 7 compares running times of sampling and full
instance-based approaches; notice that once sampling
is performed, the TSP cost itself is very small.

6.2.2 Tour Algorithms

We use three algorithms to compute tours; NN, 2-
OPT and 3-OPT. As we described in Section 3, 2-
OPT and 3-OPT perform local refinements on a tour
generated by NN, so in general for full instances 3-
OPT achieves better compression than 2-OPT, which
in turns improves upon NN. However there is a trade-
off between the time spent optimizing, and the im-
provement obtained. Table 9 summarizes the relative
improvement (and the time needed for these improve-
ments) for the three algorithms. The numbers reflect
the best-case settings for the other parameters, and
only show time for computing the TSP.

What the table indicates is that unlike the case of
Euclidean TSPs, even an NN-based tour is a good ap-
proximation to the best answer we can achieve. The
times reported here for NN are overestimates, because
they include time spent constructing neighbour lists
for the 2-OPT and 3-OPT phases of the tour con-
struction.

Interestingly, when we construct tours from sam-
pled instances, it is not always the case that 2-OPT
and 3-OPT are better than NN. For reasons dis-
cussed in Section 4, the tour construction algorithm
have to deal with the occasional “infinite” edge in the
sparse graph. As a result, NN can sometimes give
the best cost solution. One such example is the 8-way
partition for CITY. In this instance, the improvement
achieved by NN is 7% in comparison to 5% achieved
by 2-OPT and 3-OPT

6.3 Finding A Good Starting Order

Finding a good starting order can be a crucial com-
ponent of a successful reordering. We start with Ta-
ble 10, comparing the cost of a random reordering to
the cost achieved by REORDER. Once again, we use
best-case settings for all the data sets.

Random Identity REORDER
POWER +52% – -58%
PHONE +0.4% – -35%
CITY +36% – -34%

Table 10: Why the initial ordering matters: Random
orderings are bad.

This table suggests that the initial orderings given
to us in the case of POWER and PHONE were quite
good. For PHONE, the initial ordering is close to ran-
dom. This is not a coincidence; there is strong spatial
structure in the way the elements of POWER and

20

POWER CITY PHONE
sampling full sampling full sampling full

Sampling TSP Total – Sampling TSP Total Sampling TSP Total
4 37429 3736 41165 – – – – 2723 4903 7626 11802
8 106748 3618 110366 – 112020 6166 118186 5644 4482 10126 5606
16 149388 2842 152230 202252 216159 5676 221835 5287 3585 8872 2925
32 330719 3792 334511 – 375940 6089 382029 823052 – – –

Table 7: Time taken (in seconds) by REORDER as the number of tour pieces varies

POWER PHONE CITY
Time runs(M) Time runs(M) Time runs(M)

NN 192520 55.8% 43308 30.4% 772745 32.6%
2-OPT 192878 57.0% – – 774292 33.5%
3-OPT 202252 57.4% 43688 35.2% 823052 34.1%

Table 9: Relative performance of the three TSP heuristics (in seconds). The running times do not include
sampling time. The times measured are cumulative, since 3-OPT takes the output of NN as its input. We
did not measure the 2-OPT time for PHONE because running 3-OPT (with its better quality solution) takes
only a few seconds more than running 2-OPT.

PHONE were generated. Note that since PHONE
can be run entirely in main memory and thus does not
need to be partitioned, no prior reordering will have
an effect on the outcome. Thus, in the sequel, we only
present results for POWER and CITY.

Our next experiment checks the overall efficacy of
clustering alone. We evaluate the quality of the re-
ordering computed using the clustering strategy of Sec-
tion 3.1. Since our clustering strategy is independent
of the input, all comparisons will be made with respect
to a random ordering. Observe that the reordered in-
put is slightly better than the original input we were
given.

Identity Clustering
POWER 34% 43 %
CITY 26% 27 %

Table 11: The improvement in quality of the ordering
generated by clustering, relative to a random ordering

Finally, we use the new order generated via clus-
tering to partition the input as before, and compute
tours in the manner described above. Once again, we
present results for the optimal combination of settings.
Table 12 presents these results, in comparison to the
results obtained without clustering for the same pa-
rameter settings.

Reordering based Reordering based
on given order on clustering

POWER 72.0% 71.1%
CITY 51.7% 51.4%

Table 12: Evaluation of improvement due to clustering
and reordering phase, relative to a random ordering

It is important to note that the clustering strat-

egy is oblivious of the input ordering. In other words,
merely by clustering the data, we were able to recre-
ate (mostly) all the locality-preserving properties of
the original input. Thus, for an arbitrary input set,
an initial clustering phase to generate an initial order
can greatly improve the effectiveness of tour computa-
tion in the next phase of the reordering process.

As a final experiment, we randomly reordered
POWER and used this random ordering as the start-
ing order for REORDER. The run reduction we ob-
tain, again using the best possible settings of a 16-
way split and 3-OPT, is 57.4%, which is less than the
71.1% improvement obtained using clustering. This
further demonstrates the value of a good starting or-
der.

6.4 Discussion

We conclude this section with a review of the ma-
jor findings. Overall, the use of a TSP for reordering
yields significant benefits, both in terms of access cost
(measured by runs(M)), and in terms of compression.
If the input is too large to fit entirely in main memory,
an effective strategy is to break it into pieces small
enough to fit in memory, and compute tours for each
piece, using 3-OPT.

If time is a constraint, and memory is limited, sam-
pling is a good way to generate tours that are rea-
sonably good in a small amount of time. Again, the
best strategy is to use smaller pieces and pick more
neighbours.

The improvement achieved via partitioning and/or
sampling is a function of how well-ordered the original
input is. The better the input ordering, the better the
output. Therefore an initial clustering step that tries
to group points in clusters if they are near each other
is very effective in creating a good starting order to
partition.

21

The type of algorithm used to compute the tour
matters somewhat less than has been traditionally ob-
served for TSPs. NN-based tours are close to, but
worse than tours based on 2-OPT and 3-OPT, and
so a choice of which method to use can be based on
the amount of time one is willing to spend.

7 Directions for Further Research

As in most papers concerned with how to handle out-
of-memory problems, we have concentrated here on
just a few instances and applications. In future work
we hope to confirm the wider applicability of our ap-
proach.

For example, much larger instances from the
PHONE application exist and would provide new
challenges – the total number of phone-numbers is in
the 100’s of millions, not 100’s of thousands as stud-
ied here. We would also like to study instancs from
“association rule” applications, for example data sets
in which the rows correspond to documents and the
columns to key words (or vice versa).

In addition, several algorithmic questions are wor-
thy of further study. One of our conclusions here was
that the best results were obtained by partitioning
down to the largest subproblems for which it was fea-
sible to run 3-OPT on the full subproblems and then
doing so. Is this true in general? If we need to parti-
tion into 1024 subproblems to get them small enough
for 3-OPT, might not the subdivision penalty be so
severe that it would be better to solve sparse versions
of the subproblems in a 32-way partition?

Another question has to do with the quality of the
sampled subproblems. Here we allowed a fixed sam-
pling time to create a subproblem, independent of its
size. What if we only allowed a fixed amount of time
overall to create all the sparse subproblems? This
would mean even though the sparse subproblems have
more edges when k is large, they would be of lower av-
erage quality, so the improvement in results as k grows
might be lessened (or disappear).

Finally, for particular applications, are there
application-specific sampling techniques that might
generate better sparse graphs? For example, in the
PHONE application, one might exploit the “commu-
nity of interest” ideas of Cortes et al. [12], and get
neighbors for a given column by preferentially sam-
pling columns corresponding to phone numbers that
call or are called by the given column’s number, and
columns that correspond to numbers that those num-
bers call.

8 Acknowledgements

We thank Ted Johnson for providing us with his code
for ExpGol compression and Lyle McGeoch for modifi-
cations to the TSP codes to handle Hamming metrics.

We also would like to thank Divesh Srivastava for use-
ful discussions and pointers to related work.

References

[1] Aliaga, D., Cohen, J., Wilson, A., Zhang,
H., Erikson, C., Hoff, K., Hudson, T.,
Stuerzlinger, W., Baker, E., Bastos, R.,
Whitton, M., Brooks, F., and Manocha,
D. Mmr: An integrated massive model rendering
system using geometric and image-based acceler-
ation. In Proc. of ACM Symposium on Interactive
3D Graphics (1999), pp. 199–206.

[2] Alizadeh, F., Karp, R. M., Newberg, L. A.,
and Weisser, D. K. Physical mapping of chro-
mosomes: A combinatorial problem in molecular
biology. In Proc. 3rd ACM-SIAM Symp. Discrete
Algorithms (1993), pp. 371–381.

[3] Beyer, K., Goldstein, J., Ramakrishnan,
R., and Shaft, U. When is “nearest neighbor”
meaningful? Lecture Notes in Computer Science
1540 (1999), 217–235.

[4] Booth, K. S., and Lueker, G. S. Testing
for the consecutive ones property, interval graphs,
and graph planarity using P-Q tree algorithms. J.
of Comp. and Syst. Sci. 13 (1976), 335–379.

[5] Brinkman, B., and Charikar, M. On the im-
possibility of dimension reduction in l1. In Proc.
44th IEEE Symp. Foundations of Computer Sci-
ence (2003), pp. 514–523.

[6] Buchsbaum, A. L., Caldwell, D. F.,
Church, K. W., Fowler, G. S., and
Muthukrishnan, S. Engineering the compres-
sion of massive tables: an experimental approach.
In Proc. 10th ACM-SIAM Symp. Discrete Algo-
rithms (2000), Society for Industrial and Applied
Mathematics, pp. 175–184.

[7] Buchsbaum, A. L., Fowler, G. S., and Gi-
ancarlo, R. Improving table compression with
combinatorial optimization. J. ACM 50, 6 (2003),
825–851.

[8] Burrows, M., and Wheeler, D. J. A block-
sorting lossless data compression system. Tech.
Rep. 124, DEC SRC, 1994.

[9] Chhugani, J., Purnomo, B., Krishnan, S.,
Cohen, J., Venkatasubramanian, S., John-
son, D., and Kumar, S. vLOD: High-fidelity
walkthrough of large virtual environments. Sub-
mitted., 2003.

[10] Christofides, N. Worst-case analysis of a
new heuristic for the travelling salesman problem.
Tech. Rep. 388, Graduate School of Industrial Ad-
ministration, CMU, 1976.

22

[11] Cohen, E., Datar, M., Fujiwara, S., Gionis,
A., Indyk, P., Motwani, R., Ullman, J. D.,
and Yang, C. Finding interesting associations
without support pruning. Knowledge and Data
Engineering 13, 1 (2001), 64–78.

[12] Cortes, C., Pregibon, D., and Volinsky,
C. Computational methods for dynamic graphs.
Journal of Computational and Graphical Statis-
tics 12 (2003), 950–970.

[13] Funkhouser, T. A., Sequin, C. H., and
Teller, S. J. Management of large amounts
of data in interactive building walkthroughs. In
Computer Graphics (1992 Symposium on Inter-
active 3D Graphics) (Mar. 1992), D. Zeltzer, Ed.,
vol. 25, pp. 11–20.

[14] Garey, M. R., and Johnson, D. S. Computers
and Intractability. W. H. Freeman, 1979.

[15] Gionis, A., Kujala, T., and Mannila, H.
Fragments of order. In Proc. 9th ACM Conf.
Knowledge Discovery and Data Mining (2003).

[16] Guha, S., Meyerson, A., Mishra, N., Mot-
wani, R., and O’Callaghan, L. Clustering
data streams: Theory and practice. IEEE Trans.
Knowl. Data Eng 15, 3 (2003), 515–528.

[17] Johnson, D. S., and McGeoch, L. A. The
Traveling Salesman Problem: A Case Study in
Local Optimization. John Wiley and Sons, 1997,
ch. 8.

[18] Johnson, T. Performance measurements of com-
pressed bitmap indices. In Proc. 25th Intnl. Conf.
Very Large Databases (VLDB) (1999).

[19] Kushilevitz, E., Ostrovsky, R., and Ra-
bani, Y. Efficient search for approximate near-
est neighbor in high dimensional spaces. In Proc.
30th ACM Symp. Theory of Computing (1998),
pp. 614–623.

[20] Lin, S., and Kernighan, B. An effective
heuristic algorithm for the traveling-salesman
proble m. Operations Research 21 (1973), 498–
516.

[21] Moffat, A., and Zobel, J. Parameterised
compression for sparse bitmaps. In Research and
Development in Information Retrieval (1992),
pp. 274–285.

[22] Shou, L., Chionh, J., Huang, Z., Ruan,
Y., and Tan, K.-L. Walking through a very
large virtual environment in real-time. In Proc.
27th Intnl. Conf. Very Large Databases (VLDB)
(2001).

[23] Teller, S., Fowler, C., Funkhouser, T.,
and Hanrahan, P. Partitioning and order-
ing large radiosity computations. In Proceedings
of SIGGRAPH ’94 (Orlando, Florida, July 24–
29, 1994) (July 1994), A. Glassner, Ed., Com-
puter Graphics Proceedings, Annual Conference
Series, ACM SIGGRAPH, ACM Press, pp. 443–
450. ISBN 0-89791-667-0.

[24] Zhang, T., Ramakrishnan, R., and Livny,
M. Birch: an efficient data clustering method
for very large databases. In Proceedings of the
1996 ACM SIGMOD international conference on
Management of data (1996), ACM Press, pp. 103–
114.

23

	Introduction
	Paper Organization

	Problem Formulation
	Traveling Salesman Heuristics
	Splitting The Tour

	Sampling to Reduce Instance Size
	Related Work
	Experiments
	Overall performance of the algorithm
	A Closer Look At The Approach
	Number Of Subproblems And Sampling
	Tour Algorithms

	Finding A Good Starting Order
	Discussion

	Directions for Further Research
	Acknowledgements

