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Abstract 

Top-k queries based on ranking elements of multidimensional 
datasets are a fundamental building block for many kinds of 
information discovery. The best known general-purpose algo-
rithm for evaluating top-k queries is Fagin’s threshold algorithm 
(TA). Since the user’s goal behind top-k queries is to identify 
one or a few relevant and novel data items, it is intriguing to use 
approximate variants of TA to reduce run-time costs. This paper 
introduces a family of approximate top-k algorithms based on 
probabilistic arguments. When scanning index lists of the under-
lying multidimensional data space in descending order of local 
scores, various forms of convolution and derived bounds are 
employed to predict when it is safe, with high probability, to 
drop candidate items and to prune the index scans. The precision 
and the efficiency of the developed methods are experimentally 
evaluated based on a large Web corpus and a structured data 
collection. 

1. Introduction 
1.1   Motivation 
Top-k queries on multidimensional datasets compute the k 
most relevant or interesting results to a partial-match que-
ry, based on similarity scores of attribute values with re-
gard to elementary query conditions and a score aggrega-
tion function such as weighted summation. This funda-
mental building block for information discovery arises in 
many important application classes such as 1) Web and 
intranet search engines with scores based on word-occur-
rence statistics and possibly combining criteria like text-
based relevance, link-based authority, and recency, 2) 
multimedia similarity search on feature vectors of images, 
music, or video, or 3) preference queries over structured 
and semistructured data such as product catalogs or custo-
mer support data (the latter having a major text compo-
nent as well). 

The best known general-purpose method for top-k 
queries is Fagin’s threshold algorithm, also known as TA 
[19], which has been independently proposed also by Ne-
pal et al. [33] and Güntzer et al. [22]. This method as-
sumes that each attribute of the multidimensional data 
space has an index list by which one can access the data 
items in descending order of the “local” score for the 

given attribute with regard to an elementary query condi-
tion (e.g., tf*idf-based score for a text keyword condition 
“Trumpet”, ontological similarity for categorical attribute 
conditions such as Genre=Jazz, or absolute distance for 
numerical attribute conditions such as Year=1970).  

The TA method is conservative in that it stops scan-
ning index lists only when it is certain that no more top-k 
results can be found. We believe that this is overly conser-
vative given that the concept of a top-k query is heuristic 
anyway. Hardly any end-user would be interested in look-
ing at exactly the k best matches to a similarity query. Ra-
ther the rationale of top-k ranking is that users typically 
find one or a few relevant and novel data items among the 
top 10 or 20 results. So there is an inherent and unavoid-
able risk of missing the truly best results (in the subjective 
judgment of the user) anyway. This in turn justifies relax-
ing the concept of a top-k query into an approximate no-
tion such that the query processor can occasionally toler-
ate errors: false positives or false negatives with regard to 
the top k.  

The idea of approximate top-k queries has been 
around in the literature (see, e.g., [3,5,13,17,19]). How-
ever, in terms of analyzing how much is lost by the re-
laxation the prior work either introduced control parame-
ters that are difficult to tune or are based on homogeneity 
assumptions for multidimensional data distributions. The 
main focus of the earlier work was image similarity 
search over color, texture, and contour feature spaces, 
where the assumptions may indeed be justified. Further-
more, the relaxation control parameters (e.g., a distance 
slack factor) of these models were difficult to translate 
into user-perceived guarantees. In contrast, this paper pre-
sents a principled approach to approximate top-k queries 
with probabilistic guarantees about the error relative to 
“exactly top-k” queries, translatable into guarantees about 
query-result precision and recall. Our approach can cope 
with heterogeneous distributions where the score variabil-
ity may radically differ among different text terms or at-
tributes of a semistructured dataset. 

We concentrate on algorithms that process index lists 
by sorted access only, as we are aiming at high-dimen-
sional data spaces such as Web or XML documents where 
queries need to access a potentially large number of very 
long index lists and random accesses would be very ex-
pensive. Our approach allows much more aggressive in-
dex list pruning, compared to the original TA method 
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with sorted access. The paper presents comprehensive ex-
perimental results that demonstrate the performance gains. 

1.2 Related Work 
The state of the art on top-k queries has been defined by 
the seminal work on the threshold algorithm (TA) [18,19, 
22,23,33]. TA scans all query-relevant index lists in an 
interleaved manner, and aims to compute “global” scores 
for the encountered data items by means of a monotonic 
score aggregation function such as (weighted) sum, max, 
etc. The algorithm maintains the worst score among the 
current top-k results and the best possible score for all 
other candidates and items not yet encountered. The latter 
serves as a threshold for stopping the index scans when no 
candidate can exceed the score of the kth ranked result. 
The algorithm comes in two variants. TA-random eagerly 
looks up all local scores of each encountered item and 
thus knows the full score immediately when it first en-
counters the item. Since random accesses may be expen-
sive and, depending on the application setting, sometimes 
infeasible, the alternative TA-sorted method (coined NRA 
in [19] and Stream-Combine in [23]) maintains worst-
score and best-score bounds for data items based on par-
tially computed global scores, and its stopping test com-
pares the worst-score of the kth ranked result with the 
best-score of all other candidates. Obviously, TA-random 
is more effective in pruning the index scans, but TA-
sorted avoids expensive random accesses. 

Variants of TA have been studied for multimedia simi-
larity search [12,31], ranking query results from struc-
tured databases [1], and distributed preference queries 
over heterogeneous Internet sources such as digital librar-
ies, restaurant reviews, street finders, etc. [11,29,38]. 
Marian et al. [29] have particularly investigated how to 
deal with restrictive sources that do not allow sorted ac-
cess to their index lists and with widely varying access 
costs. To this end, heuristic scheduling approaches have 
been developed, but the threshold condition for stopping 
the algorithm is a conservative TA-style test. Other top-k 
query algorithms in the literature include nearest-neighbor 
search methods based on an R-tree-like multidimensional 
index [3,6,14,24,25] and mapping techniques onto multi-
dimensional range queries [8] evaluated on traditional 
database indexes. In this context, probabilistic estimators 
for selection cutoff values have been developed by [13,17, 
36] and applied to multidimensional nearest-neighbor 
queries. 

Most of the above TA-centric work has studied the 
TA-random variant. TA-sorted, on the other hand, has 
been regarded as the less attractive variant to which one 
would resort only under specific circumstances. However, 
with a large number of potentially very long index lists 
TA-sorted should actually be the method of choice. A 
small number of papers have considered how to minimize 
random-access costs in TA-random when data sources 
vary in speed and selectivity [11,29,38]. To this end sim-
ple, histogram-based, probabilistic estimators have been 

developed for making scheduling decisions (i.e., deciding 
on which source (i.e., dimension) the next random access 
should be made). None of this prior work has attempted a 
principled approach to probabilistic score prediction and 
result guarantees. 

Efficient processing of index lists for ranked retrieval 
is an old topic in information retrieval (IR) research [30]. 
In this context sorted-access only is the rule of the game. 
The pruning techniques considered here (see also [4,10, 
21]) are heuristic in nature in that they trade off some loss 
in result quality (effectiveness in IR jargon) for speed 
without being able to predict and control the resulting 
effects (other than by experimentation). For the special 
but important case where the global score is a weighted 
sum of tf*idf-based text relevance and link-based, and 
thus query-independent, authority, additional pruning 
heuristics have been developed in [7,28]. 

1.3 Contribution 
Our approach is based on predicting the total score of a 
candidate item for which we know a partial score (e.g., 
the sum of local scores for one or more elementary condi-
tions, but not the total score for all conditions). In doing 
this we avoid the overly conservative best-score/worst-
score bounds of the original TA-sorted method by calcu-
lating the probability that the total score exceeds a thresh-
old that would make the item interesting for the top-k 
result. If this probability is sufficiently low, we drop the 
data item from the candidate list. The probabilistic predic-
tion involves computing the convolution of the score dis-
tributions of different index lists. To this end, we explore 
a variety of techniques including histograms, efficiently 
evaluable Poisson estimations, and convolutions based on 
moment-generating functions with generalized Chernoff-
Hoeffding bounds [32,35] for the resulting tail probabili-
ties. As the overhead of these techniques is crucial, the 
details of our bookkeeping and candidate testing strategies 
are all but straightforward; we explore a range of strate-
gies based on different setups of priority queues.  

To the best of our knowledge, this is the first paper 
that presents a method for probabilistic top-k queries. 
Note that our probabilistic guarantees are not about query 
run-times but about query result quality; run-time bounds 
that hold with high probability have been derived in [18]. 
Also, our approach should not be confused with probabil-
istic methods for deriving local and global scores, e.g., 
probabilistic IR techniques [16]; we can handle a wide 
variety of scoring functions as building blocks but our 
notion of probabilistic guarantees refers to the approxima-
tion of the top k ranks in a completely scored and exactly 
ranked result set. 

2.   Computational Model 
Consider a Cartesian product space D1×…×Dm over do-
mains D1, …, Dm, and a dataset D⊆D1×…×Dm of m-
dimensional data points. The data points could be records 
over structured domains (e.g., product catalog entries) or 
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text documents when the domains capture weights of text 
terms in a high-dimensional IR feature space. In the latter 
case D ⊆ ℜm or D ⊆ [0,1]m.  

Queries on such a dataset are partial-match queries in 
the form of m-tuples (q1, …, qm) where qi ∈ Di or qi=* 
meaning that we do not care about the ith dimension value. 
In the text-document IR case, usually a few qi values are 
set to 1 (the query keywords) and all others set to 0 (but 
there are other approaches as well). The results d ∈ D to a 
query q = (q1, …, qm) do not necessarily have to match all 
non-zero qi values or have non-zero components di; rather 
we would like to retrieve approximate matches to this 
condition according to some similarity measures. We as-
sume that for each domain Di there is a similarity function 
si: Di × Di → [0,1]. For numerical domains such as year or 
price, the similarity function could simply be the absolute 
difference; for categorical domains such as model (of 
cars) or genre (of movies or books) the similarity function 
needs to be explicitly defined for all value pairs.  

The domain-specific similarity functions are aggre-
gated into a global similarity function s: (D1×…×Dm) × 
(D1×…×Dm)→[0,1], with s(x,y) = aggr{si (xi,yi) | i=1..m} 
where aggr is an aggregation function from [0,1]m to 
[0,1]. A widely used aggregation function for this purpose 

would be summation, yielding 
1

( , ) ( , )i
m

i i
i

s x y s x
=

= ∑ y ; 

popular alternatives include weighted summation, product 
(with a probabilistic interpretation), or maximum. The 
result of a top-k query q then is given by the k data points 
d for which sim(q,d) is among the k highest values of all 
similarities between q and any data points.  

Our framework for processing top-k queries is based 
on sorted access to the data in descending order of simi-
larity scores for each dimension. Especially for processing 
IR index lists, where the lists for frequent text terms may 
be very long, random lookups into these lists would incur 
extra disk IOs which are orders of magnitudes more ex-
pensive than a sorted-access step in memory (with occa-
sional asynchronous and sequential disk reads). TA-sorted 
operates on lists Li, i=1..m, which, for a given query value 
qi, return data values yi in descending order of si(qi,yi). 
The implementation uses B-tree indexes and scans the 
inverted index lists in sorted order of scores for individual 
keys, or looks up keys that exactly match a condition and 
then merges the results of a forward and a backward scan 
for neighboring keys (e.g., numerical attribute values with 
small absolute distance to the query value). 

In this computational model, the TA-sorted algorithm, 
which will be our baseline, can be written in the compact 
pseudocode form shown in Figure 1. Note that, unlike 
TA-random, the algorithm requires remembering all non-
discarded candidates in memory. We will come back to 
these implementation details in Section 4; neither the 
original work [19,23] nor the follow-up research [1,9,29] 
discuss concrete bookkeeping data structures despite their 
strong performance impact. 

When given a query q with specified values q1, …, qm, 
we assume, without loss of generality, that all dimensions 
are specified or, equivalently, consider only the subspace 
of dimensions for which the query specifies values. We 
maintain for each index list Li the following: a current 
scan position posi  and a current score highi := si (qi, d) for 
the document d at the current scan position in Li. We 
maintain for each record or document d that was already 
encountered in at least one of the Li: a set E(d) of dimen-
sions for which we already computed a score si, and a 
partial score worstscore(q,d) := aggr {si(qi,d) | i ∈ E(d)} 
(e.g., 

( )
( , )i i

i E d
s q d

∈
∑ with summation as aggr). 

TA-sorted: 
top-k :={dummy1, …, dummyk}; // with s (dummyν )=0  
min-k := 0; 
candidates := ∅; 
scan all lists L  (i = 1..m) in parallel:  i
// e.g., round-robin or merged in descending order of si values 
    consider item d at position posi in Li; 
    if d ∉ candidates then  
          candidates := candidates ∪ {d};  
          E(d) := {i}; 
    highi := si(qi,d); // current score in Li
    E(d) := E(d) ∪ {i}; 
    bestscore(d):=aggr{aggr{sν(qν,d)|ν∈E(d)},       
                                    aggr{highν|ν∉E(d)}}; 
    worstscore(d) := aggr{sν(qν,d)|ν∈E(d)}; 
    if worstscore(d) > min-k then  
          if d ∉ top-k then 
               remove argmind’{worstscore(d’)|d’∈top-k} from top-k; 
               candidates := candidates ∪ {d’}; 
               add d to top-k  
          min-k := min{worstscore(d’) | d’ ∈ top-k}; 
     if bestscore(d) ≤ min-k then candidates := candidates − {d}; 
     threshold := max {bestscore(d’)  | d’∈ candidates}; 
     if threshold ≤ min-k then exit; 

Figure 1: Pseudocode for TA-sorted algorithm 
All algorithms are based on the invariant 
worstscore(q,d) ≤ s(q,d) ≤ bestscore(q,d) with 
bestscore(q,d):=aggr{worstscore(q,d),aggr(highi|i∉E(d)}} 
For the case of sum as the aggregation function this be-
comes

( ) ( ) ( )
( , ) ( , ) ( , )i i i i i

i E d i E d i E d
s q d s q d s q d high

∈ ∈ ∉
≤ ≤ +∑ ∑ ∑ . 

Suppose we already have k items T that are currently the 
top k results of a given query q, and let mink = min{s(q,d)| 
d ∈ T} or, in the case that the items in T have not been 
fully evaluated, mink = min{worstscore(q,d) | d ∈ T}. 
Then we can prune documents and remainders of index 
lists for documents whose upper bound cannot exceed the 
value mink, i.e., a document d can be dismissed from the 
candidate set if  

{ ( , ), { | ( )}} mi kaggr worstscore q d aggr high i E d∉ < in  
In this case we say that the threshold test fails. This con-
sideration is often unnecessarily conservative, because the 
expected remainder score of a document is much lower 
than the sum of the highi bounds. Of course, using expec-
tations for pruning would not give us any guarantees for 
not missing any of the true top-k results. But we would 
expect that the sum of the si scores in the remainder set 
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{1...m} − E(d) is lower than the sum of the highi bounds 
with very high probability. So we are interested in esti-
mating the probability that a document d that we encoun-
ter at position posi in the index list Li and for which 
E(d)=∅ holds qualifies for the top k results:  

{ ( , ), { ( , ) | ( )}} mini i kP aggr worstscore q d aggr s q d i E d∉ >⎡ ⎤⎦⎣

k⎣∑ ∑
E d

⎤⎦

⎣∑

 
If this probability is below some threshold ε (e.g., be-
tween 1 and 10 percent) then we may decide to disregard 
d, without computing its full score. When we choose 
summation as aggregation function, the above expression 
becomes 

( ) : { | ( )} { | ( )} mini ip d P s i E d s i E d= ∈ + ∉ >⎡ ⎤⎦
or equivalently, with : ( ) : min { | ( )}k id s iδ = − ∈∑

( ) { | ( )} ( )ip d P s i E d dδ= ∉ >⎡⎣∑ . We refer to this 
condition as the probabilistic threshold test. When we 
compute p(d) during query execution we know upper 
bounds highi for the unknown scores. So more precisely, 
the equation for p(d) should read as 
  ( ) { | ( )} ( ) | ( )i i ip d P s i E d d s high for i E dδ= ∉ > ≤ ∉⎡ ⎤⎦

3. Probabilistic Score Prediction 
In this section we develop the details for estimating the 
probability p(d) that a document d with non-empty re-
mainder set {1..m}−E(d) may qualify for the top-k results. 
How we estimate p(d) depends on the assumptions that 
we make about the distribution of the unknown scores si 
that d would obtain. The following subsections discuss 
various cases that are of interest from both a fundamental-
insight and application viewpoint. We will concentrate on 
the most important case of using summation for score 
aggregation, and will discuss generalizations at the end of 
this section. Note that summation is the standard choice in 
IR keyword query processing, with tf*idf-style weights 
being precomputed and stored in the index lists.  

3.1 Guarantees with Uniform Distributions 
In the absence of any other information, Occam’s razor 
suggests that the simplest assumption about the distribu-
tion of unknown partial scores is a uniform distribution. 
More specifically, we assume that for document d and 
dimension i∈{1..m}−E(d) that has not yet been evaluated, 
the score si(d) is uniformly distributed between highi, the 
currently known upper bound for the true score, and 0, the 
assumed lower bound. Instead of 0 we may also use the 
lowest value that occurs in Li, provided we have stored 
this information in the index metadata (i.e., without hav-
ing to scan Li to its end). We use continuous distributions 
rather than discrete ones, as this simplifies the subsequent 
calculations. We assume that all random variables Si are 
independent; this will be reconsidered later. 

Treating each unknown si value as a random variable 
Si we thus have to predict i iP S δ>⎡∑⎣ ⎤⎦

1 20( ) ( ) ( )xf x f z f x z dz= −∫

2 1max(0, ) min( , )

. For two random 
variables S1 and S2 with densities f1(x)=1/high1 and 
f2(x)=1/high2 this requires computing the convolution 

. Taking into account the fact 
that each factor is non-zero only within certain intervals, 
namely, 0 ≤ z ≤ high1 and 0 ≤ x-z ≤ high2, or equivalently 

x high z x high− ≤ ≤

1

2

2

, solving the integral 
leads to the following three cases, assuming high1 ≤ high2 
(without loss of generality): 

1 2

2 1

1 2 1 2

2 1

/ ( ) 0
1 /

( )
1 / 1 / /( )

x high h igh for x high
high for h igh x high

f x
high high x high h igh

for high x high high

⋅ ≤⎧
⎪ < ≤⎪= ⎨ + − ⋅⎪
⎪ < ≤ +⎩

≤

0( ) ( )s

and a corresponding cumulative distribution in efficiently 
evaluable closed form.  

Unfortunately, for three and more heterogeneous uni-
form distributions, this kind of computation, albeit still 
simple in principle, leads to a rapidly increasing number 
of cases regarding integration boundaries that are fairly 
awkward to handle. Therefore, we rather treat the convo-
lution in terms of moment-generating functions  

sSsx ii iM s e f x dx E e⎡ ⎤= = ⎢ ⎥⎣ ⎦∫  for random variables Si with 

densities fi(x). With independent variables, the convolu-
tion has the moment-generating function ( ) ( )iiM s M s= ∏  

[32]. With uniform distributions fi(x) plugged in, this 
yields a function from which we cannot easily infer the 
density of the convolution. Instead, we apply Chernoff-
Hoeffding bounds to the tail probability of the convolu-
tion [32,35]:  where the 
infimum on the right-hand side is either the minimum of 
the Chernoff bound function, computed by finding the 
roots of the first derivative, or a limit (e.g., for s approach-
ing 0). This computation can be automated using com-
puter algebra tools like Maple and its programming inter-
face OpenMaple.  

0inf { ( )}s
i i sP S e M sδδ −

≥> ≤⎡ ⎤∑⎣ ⎦

A great advantage of this approach is that it can be 
generalized to incorporate distributions other than uni-
form ones. Moreover, it can easily handle heterogeneous 
distributions with say some scores Si being uniformly 
distributed and others following, for example, hyperexpo-
nential or Zipf distributions. Finally, using results from 
[35] we can even handle dependent random variables, 
although the corresponding generalized Chernoff-Hoeff-
ding bounds may not be as strong as in the standard case. 
Assume that S1, …, Sm are our random variables of inter-
est. We construct a set of independent random variables 
T1, …, Tm such that Ti has the same distribution as the 
marginal distribution Si. For a partitioning δ = δ1 + … + = 
δm for the tail quantile of interest consider the Chernoff 
bounds εi with P[Ti > δi] ≤ εi. [35] have shown that 

i iP S δ> ≤⎡ ⎤∑⎣ ⎦ ...1inf {max{ | 1.. }}im i mδ δ δ ε+ + = = . While it is 
difficult to determine the best choice of the partitioning 
values δi, a good heuristic choice (that is guaranteed to 
yield correct bounds) is to set ∑⋅= i iii highhigh /: δδ  (i.e., 
choose the δi values in proportion to the highi values of 
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the index lists). Computing these generalized bounds can 
be programmed as OpenMaple procedures.  

3.2 Guarantees with Poisson Distributions 
As the computation of convolutions and their bounds us-
ing OpenMaple incurs non-negligible overhead, we are 
also interested in approximations that are computationally 
cheaper. A form of distribution that has nice theoretical 
properties, can be efficiently evaluated, and is a reason-
able fit for realistic score distributions (e.g., the tf*idf-
based score distributions for terms in large Web corpora) 
is the Poisson distribution. For the fitting to the real dis-
tribution we assume that Si is a discrete random variable 
with ni equidistant values vj = 1 – j ⋅ highi / ni (j=0..ni-1) 
where ni is the number of object ids in the index list Li. 
Then the probability for an object having local score vk is 

!

k
ii

i kP S v e
k

α α−= =⎡ ⎤⎣ ⎦ . Here αi is the parameter that we fit 

to the actual distribution.  
The particularity of the Poisson distribution is that the 

convolution of m such distributions with parameters α1, 
…, αm is again a Poisson distribution with parameter α = 
α1+…+αm, and it is the only distribution with this con-
venient property [2].  

As the highi values change during the index scans we 
actually need to predict P[∑i∉E(d)Si>v | Si≤highi for i∉E(d)] 
where v is the largest value smaller than the relevant δ in 
the virtual value discretization. We lower-bound this 
probability as follows: 

( ) |   (i E d i i iP S v S high for i E d∉⎡ > ≤ ∉∑⎣ )⎤

( )

⎦  

=   ( )1 |   i E d i i iP S v S high for i E d∉⎡ ⎤− ≤ ≤ ∉∑⎣ ⎦

=  ( ) (   (
1

  ( )
i E d i i i

i i

P S v S high for i d

P S high for i E d
∉⎡ ⎤≤ ∧ ≤ ∉∑⎣ ⎦−

≤ ∉⎡ ⎤⎣ ⎦

))
 

≥  ( )

( )
1

i E d i

i ii E d

P S v

P S high
∉

∉

⎡ ⎤≤∑⎣ ⎦−
≤⎡ ⎤∏ ⎣ ⎦

 

For computing the values of the cumulative distribution, 
we use the efficient numerical method given in [34] based 
on the Incomplete Gamma Function.  
3.3 Guarantees with Histograms 
Real score distributions may sometimes be impossible to 
capture with basic distribution functions and parameter 
fitting. In such cases the only remaining method is to ex-
plicitly track the distribution in the form of a compact 
histogram. Since histogram construction is not exactly 
inexpensive, we precompute a histogram for the score 
distribution of each index list. At query time we first 
compute the convolution of the query-relevant histograms 
(and possibly of subsets of them). For simplicity we con-
sider only equi-width histograms, but our approach could 
be easily generalized to more sophisticated histogram 
variants [26] (at higher run-time costs, however). For con-
servative probabilistic predictions we further assume that 

all values within one histogram cell coincide with the 
upper bound of the cell.  

We choose the same number n of cells (e.g., between 
10 and 100) for each basic histogram covering the score 
range (0.0, 1.0], and we use t⋅n cells for the convolution 
histogram over t basic histograms, with the same width 
1/n as the basic histograms covering the range (0.0, t]. 
Cell i (for i=0..n-1 or i=0..tn-1) covers the interval (lb[i], 
ub[i]] with lb[i]=i/n and ub[i]=(i+1)/n. Each cell stores 
the frequency freq[i] and the cumulative frequency 
cum[i] of scores that fall into its interval. The convolution 
H of basic histograms H1, ..., Ht is computed by 

[ ] [ ] [ ]
1 1

1 1( ,..., ) ...
. . ... .

t t
t ti i with i i i

H freq i H freq i H freq i
+ + =

= ⋅ ⋅∑  

[ ] [ ]∑ == ij ifreqHicumH ..0 ..  
The convolution histograms that we compute for a 

given query capture the complete distribution of possible 
global scores (t=m) and partial scores over unevaluated 
dimensions (here, we compute the convolution of the ba-
sic histograms for the t=|{1..m}-E(d)| unevaluated dimen-
sions). 

As the index scans proceed, we are actually interested 
in the conditional probabilities of the form 

( ) |   (i E d i i iP S S high for i Eδ∉ )d⎡ ⎤> ≤ ∉∑⎣ ⎦  where the highi 

values reflect the current positions in the index scans. 
Obviously dynamically rebuilding the histograms after 
every sorted access is out of the question. We have three 
ways of addressing this point. The first option is to con-
servatively bound the conditional probability, analogously 
to the Poisson approximation model: 

( ) |   i E d i i iP S S high for i Eδ∉ ( )d⎡ ⎤> ≤ ∉∑⎣ ⎦   ≥  

( )

( )
1

i E d i

i ii E d
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δ∉

∉

⎡ ⎤≤∑⎣ ⎦−
≤⎡ ⎤∏ ⎣ ⎦

which can be directly looked up in 

the precomputed histograms. 
The second option is to start with the full convolution 

histograms and dynamically “undo” the terms that con-
tribute to H.freq[i] as the highi values change during 
query execution. Suppose that highj changes from some 
value ub[k] to ub[k-1]. Then we modify all H.freq[i] val-
ues with vi ≤ ∑i highi as follows: .H freq i =⎡ ⎤⎣ ⎦  

( ,..., )1
1 1...1. . ... .i it

t twith i i it
and i kj

H freq i H freq i H freq i+ + =
=

− ⋅ ⋅ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑ .  

The subtrahend is also precomputed and additionally 
stored in cell k of the histogram for index list Lj. The 
computational overhead for the dynamic maintenance is 
O(tn) whenever one of the index scans crosses a histo-
gram cell boundary, but the, less critical, precomputation 
cost and the space for each histogram increase considera-
bly (O(t2n2) space instead of O(tn)).  

Finally, the third way is to periodically recompute the 
histograms, after every r sorted accesses with r being in 
the order of a few hundred. Each time a convolution his-
togram is rebuilt from the precomputed basic histograms, 

652



the current highi values are taken into account; so the re-
computation becomes cheaper and the histogram smaller 
as the index scans proceed towards lower local scores. 

3.4 Extensions and Generalizations 
Our framework for probabilistic predictions could be ex-
tended in three ways: 1) further classes of score distribu-
tions, 2) correlated local scores, and 3) more general score 
aggregation functions other than summations.  

As for score distributions, we can accommodate a 
wide variety of distributions into the Chernoff-Hoeffding 
bound approach discussed in Subsection 3.1. For exam-
ple, it would be straightforward to incorporate Zipf dis-
tributed scores where P[Si = vk] for equidistant values vk 
is proportional to 1/k and the cumulative distribution cor-
responds to the harmonic series, and we can also easily 
handle heterogeneous mixes of different distributions, say 
uniform for some index lists but Zipf for some highly 
skewed ones. For the histogram approach of Subsection 
3.3, more general distributions are a non-issue, because 
histograms are approximations of arbitrary distributions.  

As for correlations between the local scores from dif-
ferent index lists, the generalized Chernoff-Hoeffding 
bounds already provide an approach. The histogram ap-
proach, on the other hand, would have to use multidimen-
sional histograms to capture joint distributions. We are 
not convinced that this is practically viable except for 
specialized settings. Multidimensional histograms over all 
index lists may be very space-consuming or sparse or 
inaccurate, and the subspace that is relevant for a given 
query is known only at query time when histogram build-
ing would already be part of the user-perceived response 
time. Fitting a parameterized multidimensional distribu-
tion, e.g., a multivariate Normal distribution, to the data 
seems more promising, but the decision for a particular 
type of distribution function would have to be carefully 
justified. 

Finally, using monotonous score aggregation func-
tions beyond simple sums is already supported, to a large 
extent, within our framework. A large class of aggrega-
tion options can simply be cast into the precomputation of 
local scores, so that the actual aggregation step again be-
comes a simple summation. For example, with weighted 
summation the weights for each dimension can be fac-
tored into the local scores; IR-style tf*idf-based scores are 
of this type for idf values can be viewed as dimension 
weights. Also note that cosine similarity in IR is usually 
reduced to summation (i.e., scalar products between 
document and query vectors) by pre-normalizing (L2 
norm) vector lengths to 1. Using maximum for score ag-
gregation is even simpler than summation; instead of 
computing the convolution of several Si distributions, we 
merely compute max 1i i iiP S P Sδ δ> = − ≤⎡ ⎤ ⎡∏⎣ ⎦ ⎣ ⎤⎦ .  

4. Query Evaluation Algorithms 
Our query processing algorithms use the probabilistic 
models as predictors for the global scores of data objects 

that have not been fully evaluated or not seen at all in the 
index scans so far. Based on this central building block 
we have developed several algorithms that differ a) in 
their selection of candidates to which they apply the prob-
abilistic predictions and b) in their actions that they take 
when a threshold test for a candidate fails (i.e., the candi-
date is unlikely to be able to qualify for the top-k result). 
All algorithms maintain the set of current top-k objects 
and the set of candidates organized as a hash table based 
on object ids. 
4.1 Conservative Algorithm 
A naive algorithm would simply predict the scores of all 
candidate objects in every step of the index scans and 
drop all candidates whose probabilities of qualifying for 
the top-k result are sufficiently low. This would incur 
very high overhead for probabilistic threshold tests; 
moreover, the score prediction for an object d would have 
to be recomputed whenever one of the highi values in the 
set {1..m}− E(d) changes. A better way is to group the 
candidates by their E(d) values, placing all objects with 
the same set of evaluated dimensions into one partition 
using their bestscore as priority. Then, it suffices to test 
the best object per group, i.e., the one with the highest 
predicted score. This object dominates all other candi-
dates in the same group in terms of the probability of 
qualifying for the top-k result. Across groups, however, 
the top objects are not directly comparable.  

Based on this observation, the conservative algorithm 
maintains a priority queue for each E(d) group, up to 2m−1 
queues for a query with m specified conditions. Note that 
m is often much smaller than the dimensionality of the 
data space (e.g., for keyword queries over a text document 
space). The priority queues merely contain pointers to the 
hash-table entries of the candidate objects. 

As an item d is evaluated at the current scan position 
posi in index list Li, the conservative algorithm deletes d 
from its obsolete E(d) queue and, if its worstscore still 
fails the threshold min-k, inserts it into the E(d)∪{i} queue 
using its updated bestscore as priority; the insertion is 
possible with cost O(log n) using a binomial heap or am-
ortized cost O(1) using a Fibonacci heap [15]. If 
E(d)∪{i}={1..m}, i.e., d is completely evaluated, d is 
dropped from the candidate list.  

For periodic index pruning, e.g., after every r = 200 
index-scanning steps, the top elements of all queues are 
probabilistically tested against the current threshold min-
k; when a top element fails the test, then all elements of 
that queue are dropped from the candidate list. The algo-
rithm proceeds with fewer candidates and eventually stops 
when all queues have become empty. Note that there is 
also one queue for E(d)=∅ with a single virtual element, 
capturing the predicted score for an object that has not 
been seen at all so far.  

Advancing the scan pointer in one index list may af-
fect the priorities of other candidates, too, namely by pos-
sibly reducing the highi value of one dimension. But 
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within one queue, this change affects all elements in the 
same way; so we can simply track ∑{highi | i∉E(d)} per 
queue in space and time O(1).   

4.2 Aggressive Algorithm 
The aggressive algorithm is the extreme opposite of the 
conservative algorithm. It considers one candidate object 
for probabilistic testing, namely, a virtual element d with 
E(d)=∅ at the current scan positions. If the score predic-
tion for this object falls below the threshold min-k, the 
algorithm stops immediately. The prediction for this un-
known object is based on the high scores at the current 
scan positions only. This item’s bestscore yields an upper 
bound for all yet unseen documents, i.e., even without 
probabilistic pruning this algorithm typically stops before 
the truly best candidate would fail the min-k threshold 
and, thus, yields an approximate result only. The strength 
of the aggressive algorithm is its minimal overhead, but 
we do not expect it to perform well in terms of result pre-
cision. 
4.3 Progressive Algorithm 
In between the overly eager behavior of the aggressive 
algorithm and the substantial overhead of the conservative 
algorithm is the progressive algorithm that maintains a 
single priority queue for all candidate objects. Again, the 
queue elements are ordered by their bestscore values. In 
each step the priority of the current candidate, i.e., the one 
fetched from the index list, is updated and the queue is 
accordingly maintained.  

The algorithm is conservative for it does not immedi-
ately track the bestscore changes that result from reduced 
highi values in each step, but leaves the bestscore values 
higher than they actually are. Otherwise all queue ele-
ments would have to be updated, which would amount to 
rebuilding the entire queue. An additional implementation 
trick that we employ is that the queue is periodically trav-
ersed, e.g., again after every r=200 index-scanning steps, 
and we tentatively compute the up-to-date bestscore val-
ues of each queue element based on the current highi val-
ues. All elements that do no longer pass the threshold test 
are dropped from the queue. The priorities of the “surviv-
ing” elements are not updated to avoid a massive batch of 
queue operations. So this periodic removal of unneeded 
queue elements can be seen as a kind of garbage collec-
tion without having to rebuild the entire queue. 

In conjunction with the periodic garbage collection, 
the progressive algorithm invokes the probabilistic predic-
tor for each element of the queue using its up-to-date 
bestscore. All objects that fail this probabilistic threshold 
test are dropped from the queue. The algorithm stops 
when its queue becomes empty or the top element’s best-
score falls below the threshold min-k. 

4.4 Smart Algorithm 
The progressive algorithm could stop earlier if it recon-
sidered all elements in the priority queue with the chang-
ing highi values reflected in each step. In the smart algo-

rithm we periodically rebuild the entire priority queue of 
current candidates with the currently known highi values 
taken into consideration. By default the queue is rebuilt 
every r=200 steps. The rebuilding has amortized cost 
O(n) for n queue elements, using a Fibonacci heap, or O(n 
log n) with a binomial heap [15]. For an online algorithm 
operating on very large index lists this cost may still be 
out of the question. Therefore, the smart algorithm main-
tains only a bounded priority queue. Whenever it is re-
built only the best b elements are kept, with b being in the 
order of a few hundred. Newly encountered data objects 
are admitted to enlarge the queue until the next rebuild; so 
the maximum size is actually b + r but every rebuild trun-
cates the size back to b. 

As the priority queue is fully up-to-date after every re-
build, the smart algorithm can take more aggressive ac-
tions than the progressive method with regard to candi-
date pruning. If the top element of the rebuilt queue does 
not pass the probabilistic threshold test, the smart algo-
rithm immediately stops all index scans and terminates. 

4.5 Common Framework 
All four algorithms share the same algorithmic skeleton 
illustrated by the pseudocode of Figure 2. We refer to this 
code as the Prob-sorted family of algorithms. Note that, in 
addition to the probabilistic predictions and corresponding 
probabilistic threshold tests, all algorithms also include 
the original Fagin test to compare the maximum bestscore 
of all candidates against the worstscore of the current top-
k objects. If this test fails all index scans can be stopped 
immediately, and this extra test is so light-weight that we 
can always include it. 
Prob-sorted (RebuildPeriod r, QueueBound b): 
... 
scan all lists L  (i=1..m) in parallel: i
    …same code as TA-sorted… 
    // queue management 
   for all priority queues q for which d is relevant do 
         insert d into q with priority bestscore(d); 
   // periodic clean-up 
   if step-number mod r = 0 then 
         // dropping of queues; multiple unbounded queues 
         if strategy = Conservative then 
               for all priority queues q do 
                   if prob[top(q) can qualify for top-k] < ε then 
                       drop all elements of q; 
        // garbage collection; single unbounded queue 
        if strategy = Progressive then  
              for all queue elements e in q do 
                  best(e) := bestscore of e with current highi values; 
                  if best(e) < min-k then drop e from q; 
                  if prob[e can qualify for top-k]<ε then drop e from q; 
        // rebuild; single bounded queue  
        if strategy = Smart then 
              for all queue elements e in q do 
                  update bestscore(e) with current high  values; i
              rebuild bounded queue with best b elements;  
              if prob[top(q) can qualify for top-k] < ε then exit; 
        // no queues; greedy threshold approximation 
        if strategy = Aggressive then 
              if prob[virtual-element qualifies for top-k] < ε then exit;             
   if all queues are empty then exit; 
Fig. 2: Pseudocode for Prob-sorted family of algorithms 
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Let us finally comment on our implementation of the 
TA-sorted baseline algorithm. The original papers on TA 
do not specify any concrete data structures for the candi-
date set and how to determine the best candidate in each 
step. We decided to implement these aspects analogously 
to the progressive Prob-sorted algorithm, by maintaining a 
single priority queue with bestscore values as priorities. 
Like before, we do not update all queue elements when 
one of the highi values changes, but only update the ele-
ment currently encountered in the index scan and perform 
periodic garbage collection with tentative updates.  

5. Guarantees for Top-k Results 
The probabilistic predictions in our query processing 
strategies immediately lead to probabilistic guarantees 
from a user viewpoint if we restrict the action upon a 
failed threshold test to dropping candidates but stop the 
entire algorithm only if we run out of candidates. This is 
the situation given in the conservative and progressive 
algorithms. In this case the probability of missing an ob-
ject that should be in the true top-k result is the same as 
erroneously dropping a candidate, and this error, call it 
pmiss, is bounded by the probability ε that we use in the 
probabilistic predictor when assessing a candidate. For the 
recall of the top-k result, i.e., the fraction of truly top-k 
objects that the approximate method returns, this means 
that  P[recall = r/k] = P[precision = r/k] =  
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with r denoting the number of correct results in the ap-
proximate top k. We can then efficiently compute 
Chernoff-Hoeffding bounds for this binomial distribution. 
Note that the very same probabilistic guarantee holds for 
the precision of the returned top-k result, simply because 
recall and precision use the same denominator k. The pre-
dicted expected precision then is 
E[precision] = 0.. [ / ] / (r k P precision r k r k 1 )ε= = ⋅ = −∑ . 

For the strategies that test top elements of priority 
queues and, upon a failed probabilistic threshold test, stop 
the entire algorithm, carrying over the candidate-error 
probability ε to an argument about recall and precision 
guarantees would be more sophisticated.  

6. Experiments 
6.1 Setup 
All strategies of our framework are implemented in a 
comprehensive testbed, using Java and Oracle9i. We per-
formed experiments on a 3 GHz dual Pentium PC with 2 
GB of memory. Index lists were stored in the Oracle data-
base, but were fetched in large blocks and cached in the 
Java program. We used two different datasets with three 
different workloads in the experiments.  

The Gov setting uses the data of the TREC-12 Web 
Track which uses the .Gov Data Collection. It consists of 
about 1.25 million documents (mostly HTML and PDF) 
from a large crawl of the .gov Internet domain. We used 

the original 50 queries from the Web Track’s topic distil-
lation task, which are keyword queries with up to 5 key-
words. Examples are “legalization marijuana”, “Lewis 
Clark expedition”, “airbag injuries death”. For systematic 
experimentation we studied three variations of the local 
scores in the index lists: a) the original scores computed 
by tf * log idf, with tf and idf normalized by the maximum 
tf value of each document and the maximum idf value in 
the corpus, respectively, b) randomly assigned scores with 
a (0,1] uniform distribution, c) randomly assigned scores 
with a Zipf distribution starting from low scores, so that 
low scores are much more frequent 

In the expanded Gov (XGov) setting we wanted to 
study the impact of the number of query-relevant index 
lists and modified the queries by adding synonyms and 
other strongly related terms to the keywords of a query. 
These additional terms were taken from the synonym en-
tries and descriptions of the WordNet thesaurus [20], 
where we manually identified for each original keyword 
the relevant word sense. This query expansion typically 
doubled the number of keywords per query; the longest 
query contained 20 keywords (“legalization marijuana 
cannabis euphoric drug abuse pot smoke …”). 

The Imdb setting used the data of the Internet Movie 
Database (http://www.imdb.com) to study our methods’ 
performance on a combination of text and structured at-
tributes. The data contains about 375,000 movies and 
more than 1,200,000 persons (actors, etc.), and we pre-
pared it into a four-attribute object-relational table with 
the schema Movies (Title, Genre, Actors, Description) 
where Title and Description are text attributes and Genre 
and Actors are set-valued categorical attributes. Genre 
typically contains 2 or 3 genres, and actors were limited to 
those that appeared in at least 5 different movies. For 
similarity scores among Genre values and among actors 
we precomputed the Dice coefficient for each pair of 
Genre values and for each pair of actors that appeared 
together in at least 5 movies. So the similarity for genres 
or actors x and y is set to 2(# )

# #
movies containing x and y

movies with x movies with y+
, and 

the index list for x contains entries for similar values y, 
too. A typical query is Title ⊇ {Space} ∧ Genre ⊇  {SciFi} ∧ 
Actors ⊇ {Harrison Ford} ∧ Description ⊇ {Robot, War}. We 
compiled 20 queries of this kind by asking colleagues. 
Note that our similarity scoring does not require a match 
to satisfy all conditions.  

The algorithms compared in the experiments are the 
four Prob-sorted methods presented in Section 4: 
• Prob-con: the conservative algorithm, 
• Prob-agg: the aggressive algorithm,  
• Prob-pro: the progressive algorithm, and 
• Prob-smart: the smart algorithm. 
 
For each of them we considered different options for 
probabilistic prediction. The baseline against which we 
compare our methods is: 
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• TA-sorted: the threshold algorithm with sorted access 
only, in the implementation discussed in Section 4.5.  

All algorithms access index lists in round-robin manner 
and cache large index blocks in memory. 

6.2 Evaluation Metrics 
For efficiency comparison we collected the following 
measures: 
• accesses: # sorted access to all index lists altogether, 
• time: the wall-clock elapsed time, 
• memory: the peak level of working memory for prior-

ity queues. 
For assessing the quality of the approximate top-k query 
results we collected the following measures: 
• precision: the fraction of top-k results in an approxi-

mate result that belongs to the true top-k result, 
• recall: the fraction of top-k results in the true result 

that were returned by the approximate top-k query, 
• rank distance: the footrule distance [27] between the 

ranks of the approximate top-k results and their true 
ranks in the exact top-k result, i.e., 

1..
1 ( )i k i truerank i
k = −∑ . We did not use Spearman’s 

rank correlation as we wanted to assess only the top k 
ranks of the approximate result rather than all ranks, 
but the Spearman measure requires comparing two 
permutations of the same sets of possible ranks. 

• score error: the absolute error for approximate vs. 
exact top-k scores: ( ) (

1..
1 approx exact

i k i iscore score
k = −∑ ) . 

Note that precision and recall have identical values in our 
setup, because they have the same denominator k. The 
baseline for precision and recall is the top-k result of the 
exact TA-sorted algorithm.  
6.3 Results 
6.3.1 Baseline Experiment 
In the baseline experiment all probabilistic predictors use 
histograms with cell width 0.01 (i.e., n=100 bins for each 
basic histogram). Convolution histograms were precom-
puted at query initiation time, and the impact of changing 
highi values was taken into consideration by periodically 
(i.e., every 200 sorted-access steps) rebuilding the remain-
ing parts of the convolution histograms.  

We set the probabilistic prediction confidence level to 
90 percent, that is, ε is set to 0.1. For the smart strategy 
with a bounded priority queue the queue size was set to 
b=200 entries. We measured top-k queries with k=20.  

Figures 3 and 4 show the performance results for the 
five algorithms under comparison for the Gov and the 
Imdb settings, respectively. For Gov the chart is based on 
the original, tf*idf-derived, scores. We present the three 
efficiency metrics in terms of benchmark totals over all 
queries, and the three result-quality metrics as macro-
averages over all queries. For the Gov setting micro-
averaged values are heavily biased by a few long-running 
queries; for these queries the performance gains of Prob-

sorted over TA-sorted are even significantly higher than 
the macro-averaged values indicate. Figure 5 shows the 
corresponding results for the XGov setting, which posed a 
stress test to the queue management. 
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Fig.3: Performance of Prob-sorted vs. TA-sorted for Gov 
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TA-sorted 1003650 201.9 12628 1 0 0
Prob-con 463562 17.8 14990 0.71 119.9 0.18
Prob-agg 41821 0.7 0 0.18 171.5 0.39
Prob-pro 490041 69.0 9173 0.75 122.5 0.14
Prob-smart 403981 12.7 400 0.54 126.7 0.25
Fig.4: Performance of Prob-sorted vs. TA-sorted for Imdb 

 # 
so

rte
d 

 a
cc

es
se

s 

 el
ap

se
d 

tim
e 

[s
] 

 m
ax

  
qu

eu
e 

 
si

ze
 

 pr
ec

i-
si

on
 

ra
nk

 
di

st
an

ce
 

sc
or

e 
er

ro
r 

  

TA-sorted 22403490 7908 70896 1 0 0
Prob-con 10165677 6448 51893 0.90 10.9 0.038
Prob-agg 133745 2 0 0.35 80.7 0.182
Prob-pro 20006283 1791 12435 0.95 9.3 0.031
Prob-smart 18287636 1066 400 0.88 14.5 0.035

Fig.5:  Prob-sorted vs. TA-sorted for XGov 
 

Efficiency. The results demonstrate the significant cost 
savings that the Prob-sorted family of algorithms can 
achieve compared to TA-sorted. In terms of the number of 
sorted accesses the conservative algorithm Prob-con gains 
more than a factor of two, and the smart algorithm Prob-
smart achieves even a factor of four for Gov. In terms of 
run-times, the two probabilistic algorithms even reduce 
the cost by an order of magnitude. Note that the run-time 
is not simply a linear function of the sorted accesses but 
reflects also cache and queue management costs. For the 
Gov and Imdb settings Prob-con temporarily even created 
a larger queue than the TA-sorted baseline using periodic 
garbage collection, but Prob-con dropped this large queue 
quickly after initialization and then distributed the remain-
ing candidate items to multiple small queues. Interest-
ingly, the progressive algorithm Prob-pro did not do as 
well as expected; its capabilities for early pruning are 
limited and its queue management, which required many 
insert and delete operations, is a significant cost factor. 
The aggressive method Prob-agg outperformed all com-
petitors, but as expected, its result quality was rather poor; 
so we would not really consider it a winner. 
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For individual queries, especially those that involve 
very long index lists, the savings are even more impres-
sive. For example, for the Gov query “weather hazard 
extremes” Prob-con and Prob-smart needed 25802 and 
19401 sorted accesses with run-times 0.59 and 0.68 sec-
onds, whereas TA-sorted required 160002 accesses and 
ran in 55.60 seconds (for k=20, at precision 0.9 and 0.75, 
resp.). In the Imdb setting, the reductions of sorted ac-
cesses were not as high as for Gov but the run-time reduc-
tions reached a factor of about 10 at a high macro-
averaged precision of 0.71 to 0.75. A typical query like 
“Genre ⊇ {Western} ∧ Actor ⊇ {John Wayne, Katherine 
Hepburn} ∧ Description ⊇ {sheriff, marshall}” required 
10802 sorted accesses for both Prob-con and Prob-smart 
with run-times 0.41 and 0.51 seconds, whereas TA-sorted 
performed 26402 accesses in time 4.92 seconds (for k=20, 
both at precision 0.7).  

Finally, for XGov queries with more keywords per 
query the overhead for queue management and probabilis-
tic predictions became a truly decisive issue. Among the 
methods with acceptable to very good precision, Prob-con 
performed best in terms of sorted-access savings, but the 
run-time gains were only modest because of the overhead 
of maintaining up to 2m-1 queues. Prob-pro and Prob-
smart were the clear winners in terms of run-time, with 
acceleration factors up to 8 compared to TA-sorted. Inter-
estingly, these methods did not save that many sorted ac-
cesses but benefited greatly from their efficient queue 
management. 
Result Quality. The measurements of result quality show 
very good results for Prob-con and Prob-pro and still ac-
ceptable results for Prob-smart. Prob-con and Prob-pro 
achieved nearly 90 percent precision (and the same recall) 
for the Gov setting. For the Imdb setting, the precision 
figures were worse, one reason being that Genre scores 
had a major influence on the overall ranking and the small 
number of different values led to a fairly discontinuous 
score distribution with big gaps and many ties, causing 
some inaccuracy of probabilistic predictions. We will 
discuss the influence of the various predictors in Subsec-
tion 6.3.2.  

The other two result-quality metrics show that the 
user-perceived “loss” of an approximate result actually 
seems well tolerable. The average rank distance for Prob-
con and Prob-pro was only around 16. For k=20 or higher 
this seems acceptable, in particular, when we consider 
that the average rank distance is dominated by a few out-
liers with very high rank distance. In terms of score error, 
the loss even seems negligible. So by and large, the ob-
jects that are returned by the Prob-sorted algorithms are 
nearly as good as the exact top-k results.  

Again, the results for the Imdb setting were not quite 
as good as for Gov. We manually inspected a fair number 
of the results and found that in most cases the results 
would be considered as good matches by a human user. 
For example, the query “Genre ⊇ {Thriller} ∧ Actor ⊇ 

{Arnold Schwarzenegger} ∧ Description ⊇ {robot}” re-
turned top results Terminator3, The 6th Day, Total Recall, 
Die Hard 2, Star Wars IV, etc. (recall that top-k results do 
not necessarily have to satisfy all query conditions). 

For XGov, Prob-con, Pro-pro, and Prob-smart showed 
very good precision, rank distance, and score error values.  

6.3.2 Sensitivity Studies 
We studied the influence of several parameters on the 
performance of our four Prob-sorted algorithms: the 
probabilistic prediction confidence level 1−ε, the result 
size k for top-k queries, the number n of bins per basic 
histogram, and the maximum size b of a bounded priority 
queue for the smart algorithm.  

Figure 6 shows the results for varying the ε parameter 
(the vertical dashed line is the baseline setting). The 
curves show that for ε below 5 percent the progressive 
and smart algorithms achieve only marginal savings. For ε 
between 5 and 20 percent, on the other hand, these two 
methods offer excellent benefit/cost ratios. The conserva-
tive method performs best according to the theory of 
probabilistic guarantees. Already small ε values like 1 
percent lead to significant cost savings, and even ε values 
as large as 50 percent, which results in sorted-access sav-
ings of more than a factor of 4, still yield 70 percent pre-
cision. The aggressive method always exhibits great cost 
savings, but this is at the expense of precision values of 
40 to 50 percent only. Still, this may possibly be the pre-
ferred method in applications with tight response time 
demands. 

We also compared the measured precision with the 
expected precision that we predict as a function of ε ac-
cording to the formulas of Section 5. For Prob-con and 
Prob-pro the prediction model is fairly accurate. The ab-
solute difference between predicted and measured preci-
sion is only one or two percent for ε values of 0.2 or less; 
it increases for larger ε but the prediction is conservative 
in that it lower-bounds the measured precision. 
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Figure 6: Performance as a function of ε 
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For space limitation we do not include the charts for the 
sensitivity studies regarding the k, n, and b parameters 
and briefly discuss only the main insights. With increas-
ing k which was varied between 1 and 200, all methods 
exhibit linearly increasing sorted-access costs but with 
different gradients. For large k, the gains of Prob-con, 
Prob-pro, and Prob-smart compared to TA-sorted are even 
higher than in the baseline setting; at the same time the 
precision of the approximate top-k results becomes even 
better for high k. The performance for different numbers n 
of histogram bins is fairly stable over a wide range of 
settings. Between 50 and 1000 bins the relative perform-
ance of the different algorithms does not change much; 
below 50 bins the Prob-smart method does not work that 
well anymore but Prob-con and Prob-prog remain more 
robust and show consistently good performance even with 
down to 25 bins per histogram. Similarly, we found that 
the maximum queue size parameter b for the Prob-smart 
algorithm is largely uncritical. Queue size limits as low as 
b=100 still worked very well for k=20.  

6.3.3 Impact of Probabilistic Predictions 
Finally, we compared our different approaches for prob-
abilistic prediction: histograms vs. Poisson approxima-
tions vs. Chernoff bounds based on the assumption of 
uniform distributions vs. Chernoff bounds considering 
term correlations. We limit the presentation to results for 
the Prob-con algorithm with k=20, ε=0.1, n=100, and the 
Gov setting. Due to the high overhead of computing 
Chernoff bounds with OpenMaple, we removed the three 
most expensive queries from the Web Tracks’s topic dis-
tillation task which consumed about 40 percent of the 
overall run time with 50 queries.  
Figure 7 shows the performance comparisons for the 
original tf*idf scores. The dashed line is the predicted 
precision (for Prob-con this is simply 1−ε). Similar ex-
periments have been run for the artificially generated Uni-
form- and Zipf-distributed scores on the Gov index lists. 
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Figure 7: Precision of probabilistic predictors for tf*idf, 
Uniform-, and Zipf-distributed scores 

The charts show that histograms provide the most accu-
rate score predictions. A comparison with the Uniform- 
and Zipf-distributed scores shows that they are a flexible 
solution to capture different score distributions already for 
n as low as 50 to 100 buckets in (0,1]. Both the Poisson 
estimator and, particularly, the Chernoff-bound method 
(the latter assuming Uniform-distributed scores) are 
overly conservative and overestimate score probabilities 
for the tf*idf and the Zipf case. The difference between 
the Chernoff-bound methods with and without independ-
ence assumption is not really significant for the Gov data, 
but this could be different in other settings. For Uniform-
distributed scores the Chernoff-bounds are fairly accurate 
over a wide range of ε, whereas, as expected, Poisson 
estimators do not work for the Uniform case, because they 
underestimate the tail probability. The Zipf distribution is 
closer to the original tf*idf score distribution, but has a 
longer tail of low scores, for which the Poisson estimator 
works better, but, again, the Chernoff-bounds behave 
overly conservative. 
The advantage of the Poisson approximation method is its 
very little overhead, whereas the overhead of the histo-
gram method increases with dimensionality. But note that 
even with the higher-dimensional XGov workload the 
algorithms still achieved major run-time gains using his-
tograms with dynamic convolutions. The Chernoff-bound 
predictors are largely independent of the dimensionality, 
but they suffer from huge startup costs for invoking 
OpenMaple. For a practically viable solution one would 
have to hand-code the Maple computations (which in-
volve differentiation and finding roots numerically) in C 
or C++.  
Finally, our model for precision guarantees developed in 
Section 5 works very well for the Prob-con algorithm. 
The Prob-pro and Prob-smart algorithms deviate from this 
basic statistical model, because they merge all candidates 
into a single queue and Prob-smart even bounds this 
queue and heuristically stops after testing the top item, 
only. Here the predictions were reasonably accurate for 
small ε but degraded and became overly conservative for 
ε higher than 5 percent. Improving this is subject of future 
work. 
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6.4 Discussion 
Our comprehensive experiments have shown that Prob-
sorted algorithms can achieve major performance gains, 
in terms of both sorted accesses and actual run-time, and 
at the same time provide probabilistic guarantees for re-
sult precision and recall. Among the four competing algo-
rithms, Prob-con and Prob-smart turned out to be the most 
interesting ones. Prob-con is closest to the theory of prob-
abilistic guarantees and does best in terms of result qual-
ity; Prob-smart offers the best benefit/cost ratio. Both 
methods achieve run-time gains by an order of magnitude 
compared to TA-sorted. All four Prob-sorted methods are 
fairly robust with regard to parameter settings; there is no 
need for sophisticated tuning. For score predictions, we 
believe that histograms are the best choice from an engi-
neering viewpoint, but the other two methods showed 
good results and certainly deserve further studies, too. 

7. Concluding Remarks 
The novel Prob-sorted family of algorithms that we intro-
duced in this paper are based on two major cornerstones: 
1) probabilistic score predictions for trading off a small 
amount of top-k result quality for a drastic reduction of 
sorted accesses, and 2) intelligent management of priority 
queues for efficient implementation. We believe that our 
experiments have convincingly demonstrated the signifi-
cant benefits of our approach. We plan to continue the 
studies of efficient memory management for top-k algo-
rithms, and our future work also includes applying these 
techniques to ranked retrieval of XML data and integrat-
ing them into our XXL search engine [37].  
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