
Merging the Results of Approximate Match Operations

Sudipto Guha
U of Pennsylvania

sudipto@central.cis.upenn.edu

Nick Koudas Amit Marathe Divesh Srivastava
AT&T Labs–Research

fkoudas,marathe,diveshg@research.att.com

Abstract

Data Cleaning is an important process that has been at
the center of research interest in recent years. An im-
portant end goal of effective data cleaning is to identify
the relational tuple or tuples that are “most related” to
a given query tuple. Various techniques have been pro-
posed in the literature for efficiently identifying approx-
imate matches to a query string against a single attribute
of a relation. In addition to constructing a ranking (i.e.,
ordering) of these matches, the techniques often asso-
ciate, with each match, scores that quantify the extent
of the match. Since multiple attributes could exist in the
query tuple, issuing approximate match operations for
each of them separately will effectively create a number
of ranked lists of the relation tuples. Merging these lists
to identify a final ranking and scoring, and returning the
top-K tuples, is a challenging task.

In this paper, we adapt the well-known footrule dis-
tance (for merging ranked lists) to effectively deal with
scores. We study efficient algorithms to merge rank-
ings, and produce the top-K tuples, in a declarative way.
Since techniques for approximately matching a query
string against a single attribute in a relation are typi-
cally best deployed in a database, we introduce and de-
scribe two novel algorithms for this problem and we
provide SQL specifications for them. Our experimen-
tal case study, using real application data along with a
realization of our proposed techniques on a commercial
data base system, highlights the benefits of the proposed
algorithms and attests to the overall effectiveness and
practicality of our approach.

1 Introduction
The efficiency of every information processing infrastruc-
ture is greatly affected by the quality of the data residing
in its databases (see, e.g., [9]). Poor data quality is a re-
sult of a variety of reasons, including data entry errors,
poor integrity constraints or lack of standards for record-
ing values in database fields (e.g., addresses). Data of poor
quality could instigate a multitude of business problems,

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

for example inefficient customer relationship management
(inability to retrieve customer information during a service
call), billing errors (sending a bill to a wrong address) and
distribution delays (erroneous delivery of goods) impact-
ing the overall effectiveness of a business. Recognizing the
importance of this problem, a variety of commercial prod-
ucts (see, e.g., [1]) and research prototypes (see, e.g., [21])
target the space of data cleaning, offering an array of tech-
niques to identify and correct data quality problems. At
a high level, data cleaning solutions can be classified into
two broad categories: (a) those that operate on top of an
RDBMS using an SQL interface to express and realize data
cleaning tasks [16, 17, 18, 7] and (b) those that extract the
relevant data out of a database and operate on them using
proprietary techniques and interfaces [1].

The majority of cleaning techniques focus on the identi-
fication of problems on attribute values of string type (e.g.,
customer names, addresses, product names, etc.) which
abound in customer related databases. These include tech-
niques for indexed retrieval of strings based on notions of
approximate string match [7], correlating string attributes
using string similarity predicates (e.g., cosine similarity,
edit distance and variants thereof) [17, 18, 6, 5] and deploy-
ing algorithms and/or rule engines for automatically cor-
recting/transforming strings into canonical forms [1, 3, 22].
These techniques will successfully match a query string (or
a collection of strings) approximately (for suitably defined
notions of approximate match) against the values of an at-
tribute in a relation R. For a given query string, such tech-
niques can tag each matching attribute value with a score
quantifying the degree of similarity (closeness) of the query
string to the attribute value string. As a result, they can ef-
fectively return a scored ranking of the attribute values (and
hence the tuples) in R with respect to the query string. It is
then up to the user, to observe the highest scoring attribute
values and identify the one(s) that should be declared as
good approximate matches.

Although such techniques are effective in identify-
ing approximate matches between a string and the val-
ues of a relational attribute, it is often the case that
multiple attributes should be involved in the approxi-
mate match operation. Consider for example a relation
R(custname; address; location), recording the name of a
customer, the customer address, and the geographical coor-
dinates (latitude, longitude) of the customer address. Given
a tuple of query strings,Q (possibly obtained from a dif-
ferent database), we wish to obtain approximate matches

636

RelationR
tuple id custname address location

t1 John Smith 800 Mountain Av Springfield 5,5
t2 Josh Smith 100 Mount Av Springfield 8,8
t3 Nicolas Smith 800 Spring Av Union 11,11
t4 Joseph Smith 555 Mt Road Springfield 9,9
t5 Jack Smith 100 Springhill Lake Park 6,6

Query
Qcustname Qaddress Qlocation

John Smith 100 Mount Rd Springfield 5.1,5.1

Scored Rankings
custname address location

t1 (1.0) t2 (0.95) t1 (0.95)
t2 (0.8) t1 (0.8) t5 (0.9)
t5 (0.7) t4 (0.75) t2 (0.7)
t4 (0.6) t3 (0.3) t4 (0.6)
t3 (0.4) t5 (0.1) t3 (0.3)

Figure 1: Example

with tuples ofR. Let Qcustname; Qaddress; Qlocation be
the values specified inQ. For each of these values assume
there is an agreed upon methodology to generate approx-
imate matches with tuples ofR. The specific methodol-
ogy used for each attribute is orthogonal to our discus-
sion; any of the known techniques could be applied. For
example, forQcustname one could utilize the technique
of [17] deploying string edit distance to generate approx-
imate matches with attribute values from attributecust-
nameof R. This effectively creates an ordering (ranking)
of relation R based on non-decreasing values of the edit
distance (possibly thresholded) betweenQcustname and
R(custname). For Qaddress one could decide to utilize
the techniques of [18, 7] and generate a list of approxi-
mate matches using theaddressattribute ofR. A rank-
ing of R will be obtained in this case as well, based on
tf-idf and cosine similarity ofQaddress andR(address).
Finally, for Qlocation we could choose spatial closeness
(in terms of some spatial norm, e.g., Euclidean distance
betweenQlocation andR(location)) and generate a corre-
sponding list of matches (and, hence, ranking ofR). Fig-
ure 1 presents an example of such (scored) rankings. No-
tice that the resulting rankings and scores heavily depend
on the specific methodology applied to derive them.

Although in principle one could use the information
conveyed by only one ranking to form an answer, this is
not necessarily a good choice. For example, tuplet5 ranks
second (with a score of 0.9) in the ranking onlocation,
but ranks poorly on the other query attributes. Evidently, a
more conclusive answer could be obtained by merging the
positions and/or scores of the tuples in all rankings. This
can be accomplished with the use ofmerging functionsop-
erating on the tuples of the various rankings. For purposes
of exposition, consider a merging function that sums the
scores of the tuples in the various rankings. In this case no-
tice that tuplet1 achieves a better value (2.75) in that sum
than any other tuple inR. Intuitively, this is a better ap-
proach, as it is obtained by examination of all the query at-
tributes and the results of all the induced rankings. It is ev-
ident that, in the presence of different rankings, principled
techniques are required to derive a final ranking by taking
into account information conveyed by all rankings. Such

principled techniques can be realized as merging functions
operating on the tuples of rankings. The derivation of a
final ranking can then be cast as an optimization problem
over the values of such merging functions.

Given that a variety of approximate match techniques
are fully expressible in a declarative way, and best deployed
in a database, rankings can be easily generated by directly
operating onR using SQL. Thus, they can be readily ma-
terialized as relations as an input to the merging. The re-
sult of the merging itself may be used as an input to other
queries/operations in the database. As a result, it is desir-
able to express methodologies that merge the information
conveyed by the rankings in a declarative way as well.

In this paper, we study efficient techniques to merge
rankings produced as a result of approximate match oper-
ations, and their declarative expression. In particular, we
consider the top-k selectionproblem, and propose efficient
algorithms for this problem. This is defined as the task of
deriving an optimal final ranking (for suitably defined no-
tions of optimality) of user-specified lengthk when indi-
vidual rankings to be merged are generated with respect to
a single query tuple. We make the following contributions:

† We study the top-k selection problem in the context
of merging results of approximate match operations
and show how it can be modeled as an instance of the
minimum cost perfect matching problem.

† We show how the preferred solution to the minimum
cost perfect matching problem, namely theHungarian
Algorithm (HA), can be adapted in the context of the
top-k selection problem.

† We propose a modification ofHA tailored to the top-k
selection problem, calledMHA, analytically show its
superiority overHA, and provide its full SQL speci-
fication.

† We propose a new algorithm, calledSSP , specifically
for the top-k selection problem, and fully specify the
algorithm in SQL as well.

† We present a thorough performance evaluation of all
the applicable algorithms using real data sets on a
commercial database system, identifying their relative
performance and applicability.

In section 2, we introduce background material, and for-
mally define the problem of interest on ranked lists. Sec-
tion 3 presents our proposed techniques, including com-
plete SQL specification of our proposed solutions. Sec-
tion 4 details a performance evaluation of our proposals. In
section 5, we discuss the enhancements of our basic tech-
niques to deal with scores. In section 6 we review work re-
lated to the problems of interest in this paper. Finally, sec-
tion 7 concludes the paper by discussing additional prob-
lems of interest in this important area.

2 Background and Definitions
Let R be a relation of cardinalityn consisting ofm at-
tributes and lett1; : : : ; tn denote the tuples ofR. A ranking
of R is an ordered list¿ = fx1 „ x2 „ : : : „ xng, where

637

xi 2 R and „ is some ordering relation onR. Such a
ranking can be obtained by applying a suitable approximate
match operation between a query value and the values of an
attribute ofR. Without loss of generality, we assume that
rankings ofR are complete in the sense that everyti 2 R
belongs to the ranking. If this is not the case (for example
if the approximate match predicate is thresholded) and the
ranking containsS ‰ R tuples, we obtain a complete rank-
ing by padding the partial ranking at the end (with the same
rank value) with all the “missing”R n S tuples. Semanti-
cally, this declares that we are indifferent about the rela-
tive ordering of the missing tuples and are all equivalently
placed at the end of the ranking obtained. For a ranking¿ ,
we use the notation¿(ti) to refer to the position of tupleti

in the ranking (a highly ranked tuple has a low numbered
position). At times an approximate match operation used
to generate a ranking provides an approximate match score
(see, e.g., [18, 17, 7]).

Given a query tupletq with m values, let¿1; : : : ¿m de-
note the resulting rankings ofR after applying approximate
match operations on corresponding values oftq and at-
tributes ofR. We will deploymerging functionsto synthe-
size new rankings ofR out of¿1; : : : ; ¿m. A variety of such
functions have been proposed in the literature [10, 8, 20].
The bulk of our discussion equally applies to metric merg-
ing functions [13]. To ease presentation, we adopt for the
bulk of the paper one instance of such a function, namely
the footrule distance. We stress however that our method-
ologies are orthogonal to the choice of a metric merging
function.

Definition 1 (Footrule Distance) Let ¾ and ¿ be two
rankings ofR. The footrule distance between the two rank-
ings is defined asF (¾; ¿) =

Pn
i=1 j¾(ti)¡ ¿(ti)j.

Thus, the footrule distance is the sum of the absolute
differences of the positions of tuples ofR in the two rank-
ings. Notice thatF (¾; ¿) can be divided byn

2

2 if n is even

or n2¡1
2 if n is odd (this maximum value is attained when

rankings are ordered in opposite ways) and a normalized
value between 0 and 1 can be obtained. It is evident that
F (¾; ¿) can be defined over the approximate match scores
of the corresponding rankings as well. For simplicity of
exposition, we adopt definition 1 for the bulk of the paper.
Such a measure generalizes in a natural way to account for
multiple rankings. The footrule distance between rankings
¾ and¿1; : : : ; ¿m is defined as

F (¾; ¿1; : : : ; ¿m) =

mX

i=1

F (¾; ¿i)

To a large extent, any interpretation of results obtained
will be in terms of this distance measure. While such a
measure seems natural we will not delve into the discussion
of it’s goodness. We refer the reader to the vast bibliogra-
phy [10, 20, 8] discussing and analyzing the relative good-
ness and applicability of the various distance measures.

We are now ready to define formally the main problem
of interest in this paper:

Problem 1 (top-k selection problem) Given a query tu-
ple tq specifyingm attribute values, let¿i; 1 • i • m
be the rankings obtained as a result of approximate match
operations onR. Thetop-k selection problemaims to ef-
ficiently identify the firstk (for a user specified parameter
k) tuples of the ranking¾ of R that minimizes the footrule
distanceF (¾; ¿1; : : : ; ¿m).

The firstk tuples of the ranking¾ of R are derived as
a result of the minimization ofF (¾; ¿1; : : : ; ¿m). Each tu-
ple ti in ¾ is tagged with a cost, referred to as theranking
cost as the result of this minimization. A tupleti at po-
sition j; 1 • j • k, in ¾ has a ranking cost¾r(ti; j) =Pm

l=1 j¿l(ti)¡ jj. The answer to the top-k selection prob-
lem is a set (of cardinalityk) of triples (ti; j; ¾r(ti; j)),
wherej is the rank (position) ofti in the result¾, such that
among all possible mappings of the tuplesti to positions
j0; 1 • j0 • k,

Pk
j0=1 ¾r(ti; j0) is minimized.

The bulk of this paper deals with merging ranked lists.
In section 5, we discuss how our techniques can be ex-
tended to effectively deal with approximate match scores.

3 Top-k Selections

In this section we develop our proposed solutions to the
top-k selection problem. We first show that the problem
can be modeled as a modification of a well-studied prob-
lem, namely theminimum cost perfect matching[2] prob-
lem and show how such an instance can be obtained given
our setting. We start from an existing technique to solve
the minimum cost perfect matching problem, namely the
Hungarian algorithm(HA), and show how this algorithm
can be adapted to obtain a solution to our top-k problem.
We then propose aModified Hungarian Algorithm(MHA)
that takes advantage of the special structure of the top-k
selection problem, resulting in improved performance. We
also design a new solution for the top-k selection problem,
the Successive Shortest Pathsalgorithm (SSP), and pro-
vide its declarative specification. In section 4, we present a
comparative evaluation of the three algorithms.

Given an edge-labeled bipartite graphG = (N1 [
N2; E), let cij ; i 2 N1; j 2 N2 be the edge cost associated
with each edge inE. A minimum cost perfect matching in
G is the set of edgesE

0 ‰ E of minimum cumulative cost,
such that eachi 2 N1 is incident to exactly onej 2 N2 in
E

0
and vice versa. The solution to the minimum cost per-

fect matching can be reached by solving a linear program
minimizing the overall sum of edge costs [2].

Given rankings¿i; 1 • i • m, provided as a result of
approximate match queries onR, we construct a bipartite
graphG as follows. Assume that each ranking¿i is a com-
plete ranking ofR (thus containsn tuples). We instantiate
n nodes corresponding to each tuplet1; : : : ; tn of R and
n nodes corresponding to the positions1 throughn of the
target ranking¾. For each of then2 pairs of tuplesti and
positionsj with 1 • i; j • n we introduce the edge(ti; j)
with a ranking cost¾r(ti; j) =

Pm
‘=1 j¿‘(ti)¡jj. This will

instantiate a full bipartite graphG. A solution of the mini-
mum cost perfect matching problem onG would produce a
minimum cost assignment of each of then tuples to exactly

638

0
@

1 2 3
t1 5 3 20
t2 6 2 3
t3 1 3 20

1
A

Figure 2: Example matrix for graphG

one of then positions, such that no two tuples are assigned
to the same position.

The top-k selection problem is a modification of the
minimum cost perfect matching problem, in which we re-
strict our interest in identifying only thek tuples of R
matching the firstk positions of¾ having minimum sum of
ranking costs. Notice that a solution to the minimum cost
perfect matching problem onG, restricted to the firstk po-
sitions, does not necessarily yield a solution to the top-k se-
lection problem; the cumulative cost might be sub-optimal.
To illustrate this point consider the following example. Let
G consist of three tuple vertex nodes and three position
nodes. The matrix representation ofG with each entry ex-
pressing the cost associated with the corresponding edge is
shown in figure 2. A solution to the top-2 problem for this
graph isft3; t2g (with a cost of 3) but the minimum cost
perfect matching solution isft3; t1; t2g (with a cost of 4,
restricted to the first two positions).

3.1 The Hungarian Algorithm (HA)

Let S be the n £ n matrix, corresponding to the ma-
trix representation of the bipartite graphG, with elements
¾r(ti; j); 1 • i; j • n. The Hungarian algorithm solves
the minimum cost perfect matching problem by providing
a solution to the corresponding linear problem established
on S. We start by briefly reviewing this method below; we
refer the interested reader to the bibliography on the subject
for further details [2]. We then show how such an algo-
rithm can provide a solution to the top-k selection problem
as well.

We refer to a row or column of a matrix as aline. A
set of elements of a matrix is independent if no two of the
elements lie on the same line. If a letterc is written next to
a row or column of a matrix, we say that the corresponding
line iscovered.

Theorem 1 (Konig’s Theorem) For a square matrix A,
the maximum number of independent zeros of A is equal
to the minimum number of lines required to cover all the
zeros in A.

This theorem forms the basis for the Hungarian method.
The algorithm operates as follows:

1. Subtract the smallest element in each column ofS
from every element in the column yielding matrixS1.

2. Subtract the smallest element in each row ofS1 from
each element in the row yielding matrixA. A contains
at least one zero in every row and column and it is said
to be instandard form.

3. Findkm the maximum number of independent zeros
of A. Using Konig’s theorem, this is the minimum
number of lines required to cover all the zeros inA.

If km = n then there aren independent zeros inA
and the row and column position of these zero ele-
ments provide a solution to the minimum cost perfect
matching problem.

4. If km < n, let N denote the matrix of non covered
elements ofA and leth be the smallest element in
N . Add h to each twice covered element ofA and
subtracth from each non covered element ofA. Let
the resulting matrix beA⁄. Repeat step 3 using matrix
A⁄ instead ofA.

This procedure is guaranteed to terminate after a finite
number of steps, due to the reduction at each step of the
sum of the elements in the resulting matrices (A, A⁄, etc).
It remains to specify the procedure to identify the maxi-
mum number of independent zeroskm.

Identifying maximum number of independent zeros:

The procedure starts by searching each column ofA until
a column with no entry marked with the special marker0⁄
is found (if every entry contains a0⁄, thenkm = n and
the problem is solved). This column is referred to aspiv-
otal and it is searched for all its zeros. The rows in which
these zeros appear are searched for0⁄ in turn until a row
containing no0⁄ is found. The zero in this row and the piv-
otal column is marked with the special marker0⁄. If each
0 in the pivotal column has a0⁄ in its row, then these row
numbers are listed in any order:i1; : : : ; it. Further terms
are added as follows: Consider the0⁄ in row i1 and all ze-
ros in its column; add to the sequence the row numbers of
these zeros in any order (avoiding duplication). Continue
with the 0⁄’s in rows i2; : : : ; it as well as with the terms
of the sequence afterit. There are two possibilities, either
a row is is reached which does not contain a0⁄ or every
row whose number is afterit contains a0⁄. In the former
case a transfer of a0⁄ happens as follows: row number
is was added to the sequence because rowis contained a
0 in the column of a0⁄ belonging to some rowir. This
0⁄ in the row ir is transferred to the zero in rowis thus
staying in the same column. Further transfers may happen
until the0⁄ is transferred from a zero in a row in the initial
sequencei1; : : : ; it. Then the zero in this row and in the
pivotal column can be marked by a0⁄. In the latter case,
let v be the rows in the sequence. These rows contain a0⁄.
Thev columns containing these0⁄’s along with the pivotal
column contains 0’s only in thev rows represented in the
sequence. It follows that thesev rows along with the re-
mainingn¡v ¡1 columns contain all the zeros inA. Thus
the matrix can be replaced byA⁄ (as dictated in step 4) and
the algorithm can proceed to step 3.

Figure 3 presents an example operation ofHA on the
data obtained from example 1. Due to space limitations,
we do not provide the full SQL specification of algorithm
HA.

Our top-k selection problem cannot be solved by a di-
rect application of this procedure, since an answer to the
minimum cost perfect matching problem restricted to the
first k positions is not necessarily an answer to the top-k
selection problem. We observe, however, that it is possible

639

0
B@
1 2 5 8 11
3 2 3 6 9
11 8 5 2 1
8 5 2 1 4
7 4 3 4 5

1
CA

0
B@
0 0 3 7 10
2 0 1 5 8
10 6 3 1 0
7 3 0 0 3
5 1 0 2 3

1
CA

(a) Initial matrix from example 1 (b) After step 2

0
BB@
0⁄ 0 3 7 10 c
2 0⁄ 1 5 8 c
10 6 3 1 0 c
7 3 0⁄ 0 3 c
5 1 0 2 3

1
CCA

0
B@
0⁄ 0 3 7 10
2 0⁄ 1 5 8
10 6 3 1 0⁄
7 3 0 0⁄ 3
5 1 0⁄ 2 3

1
CA

(c) Conflict in row 4 columns 4,3 (d) Final result

Figure 3: (a) Initial Matrix (b) after step 2 (c) Conflict in
row 4 and columns 4,3, the covered rows are shown at that
point. The0⁄ in row 4 column 3 is moved to row 5 column
3. A 0⁄ can now be placed at row 4 column 4 and the
algorithm proceeds by placing the final0⁄ at row 3 column
5 (d) final result,t1; t2; t5; t4; t3

to modify this procedure in a way that deriving a solution
to the top-k selection problem becomes possible.

In the top-k selection problem one is only interested in
the firstk positions of the ranking. Thus, when realizing
matrix A for a suppliedk value, we only need to com-
pute the elements¾r(ti; j); 1 • i • n; 1 • j • k of A.
Algorithm HA however, requires a square matrix (of size
O(n2)) to operate correctly since it solves ann £ n match-
ing problem (otherwise the corresponding program will be
under specified).

We observe that we can still utilize algorithmHA for
the top-k selection problem by inserting a large positive
constant1 for each of the remainingn(n ¡ k) elements.
This serves two purposes: (a) it creates a squareA matrix
as required by algorithmHA and (b) it guarantees that the
solution extracted from the solution of the corresponding
minimum cost perfect matching onA is a correct solution
to the top-k selection problem. By inserting a large positive
constant in the corresponding positions ofA we essentially
add edges of very high cost in the corresponding bipartite
graph. Since such edges are of high cost they can never par-
ticipate in an assignment concerning the firstk positions.

A natural question arises regarding the necessity of
thosen(n ¡ k) additional elements for the algorithm’s cor-
rectness. The basic form of execution of algorithmHA for
the top-k selection problem requires inserting and main-
taining these additionaln(n ¡ k) values. To see this con-
sider the following: at any iteration of the algorithm, when
searching for the maximum number of independent zeros
it is possible that step 4 of the algorithm executes. Leti be
the column that instigates the execution of step 4. Notice
that during the execution of step 4 the contents of any of
the elements ofA might change but the contents of column
i do not. As a result, the contents of columni (for any i)
are always required, since they might be affected in later it-
erations. Consequently, all columns have to be maintained
during the entire execution of the algorithm, bringing the
total space requirement toO(n2).

From a performance standpoint, such an adaptation of

1Greater than the maximum value among¾r(ti; j); 1 • i • n; 1 •
j • k

HA for the top-k selection problem only reduces the initial
overhead of constructing matrixA. Subsequent operations
however, will be on the entire matrixA of n2 elements. The
running time of this procedure isO(n3) since each of the
n columns will be considered and, in the worst case, the
algorithm will have to examineO(n2) elements inA for
each column considered.

3.2 Algorithm MHA

In this section, we propose a modification of the basicHA
algorithm for the top-k selection problem, which operates
in spaceO(nk), with worst case running timeO(nk2).

One observation regarding the operation of algorithm
HA is that since the algorithm provides a solution to a lin-
ear program, the optimal solution is not affected by a re-
arrangement of the columns of matrixA. Thus, consider
populating matrixA as follows: insert a large positive con-
stant to positions(i; j) of A with 1 • i • n; 1 • j • n¡k
and populate the remaining positions withnk ranking costs
¾r(ti; j); 1 • i • n; 1 • j • k at matrix positions
(i; n ¡ k + j). Denote the resulting matrix asA

0
. Al-

gorithm MHA operates similarly toHA on matrix A
0
.

Now consider the operation ofHA on this modified matrix.
While searching for the maximum independent number of
zeros in the firstn ¡ k columns the algorithm can place
0⁄ in positions(l; l); 1 • l • n ¡ k of A

0
immediately.

The reason is that onceA
0

is in standard form positions
1 • i • n; 1 • j • n ¡ k of the matrix are all zero. The
final solution is now represented by the position of the0⁄’s
in columnsn ¡ k + 1 : : : n. The following invariant holds
at any point in the execution of the algorithm:

Invariant 1 All columns from 1 ton ¡ k are identical, dif-
fering only in the positions of their0⁄’s. Moreover, for any
row containing no0⁄, the corresponding entry for this row
and any columnj; 1 • j • n ¡ k is 0.

As a result of this invariant, it is evident that it is no
longer required to explicitly materialize the entiren£ (n¡
k) sub matrix ofA

0
with large positive values. It is suffi-

cient to only maintainO(n) values representing the state
of all the 0⁄ elements of theA

0
matrix in the firstn ¡ k

columns. This has the potential for improved efficiency
and performance as algorithmMHA has to operate on a
matrix of sizeO(nk) as opposed to one of sizeO(n2) as
HA does. The running time of this procedure isO(nk2)
since onlyk columns will be considered and, in the worst
case, the algorithm will have to examineO(nk) elements
in A for each column considered.

Figure 4 presents an example operation of algorithm
MHA on the data of figure 1. For purposes of exposition
we show the entries of the entire matrix during the execu-
tion presented in figure 4. Notice that for this top-2 ex-
ample, only15 (3*n) entries are required to be explicitly
maintained.

3.2.1 SQL Specification ofMHA

Complete SQL specification in procedural SQL of algo-
rithm MHA is provided in figures 5 and 6. Such forms of

640

0
B@
1 2 M M M
3 2 M M M
11 8 M M M
8 5 M M M
7 4 M M M

1
CA

0
B@

M M M 1 2
M M M 3 2
M M M 11 8
M M M 8 5
M M M 7 4

1
CA

(a) Initial matrix for top-2 (b) After rearrangement

0
B@
0⁄ 0 0 0⁄ 0
0 0⁄ 0 2 0
0 0 0⁄ 10 6
0 0 0 7 3
0 0 0 6 2

1
CA

0
B@
0 0 0 0⁄ 0
0 0 0 2 0⁄
0 0 0⁄ 10 6
0⁄ 0 0 7 3
0 0⁄ 0 6 2

1
CA

(c) Conflict in row 1 column 4 (d) Final result.

Figure 4: (a) Initial Matrix suitable for top-2 problem
(b) after rearrangement of columns (c) Conflict in row 1
columns 1,4. The0⁄ in column 1 row 1 is moved to col-
umn 1 row 4 and the0⁄ is placed at row 1 column 4. In
the next iteration another conflict appears between row 2
columns 5,2. The0⁄ in column 2 row 2 is moved to row 5
column 2 and a0⁄ is placed at column 5 row 2. (d) final
solution is,t1; t2

procedural SQL are offered by all major RDBMS systems.
Figure 5 contains variable declarations and initializations
required by the main procedure body shown in figure 6.
The schema associated with this procedure is not provided
due to space limitations; it can be easily derived from the
procedure body, however.

Block 1 initializes the Top relation by placing a0⁄ in
each of the lastn ¡ k columns. We then iterate over each
remaining column. Within every iteration, block 2 tries to
place a0⁄ directly in the current column. If that is not
possible, block 3 determines whether a0⁄ can be placed in
the current column by carrying out a series of transfers, as
described in section 3.1. If possible, block 4 performs these
transfers. Block 5 handles the final case when we find a set
of km < n lines which cover all the zeroes of the matrix.

3.3 Algorithm SSP

In this section we propose an alternate solution to the top-k
selection problem which we refer to asSuccessive Short-
est Paths(SSP). We first provide the intuition behind this
algorithm with the example shown in figure 7.

The figure presents an example of a top-k selection
problem represented as an instance of a minimum cost
perfect matching problem. With a database consisting of
five tuples the corresponding full bipartite graphG is con-
structed. An edge between a nodeti and a positionj in fig-
ure 7 is assumed to have a ranking cost of¾r(ti; j). We re-
fer to the nodes inG corresponding to tuples (t1 to t5) as tu-
ple vertices and to the nodes corresponding to positions (1
through5) as position vertices (or simply positions). Let’s
observe, in an inductive way, issues arising when, having
constructed a top-i answer, we wish to extend it and con-
struct a top-(i+ 1) answer.

First, constructing a top-1 answer given the graph of fig-
ure 7 is an easy task. We just select the edge with minimum
ranking cost incident to position1. The corresponding tu-
ple (say tuplet3 in figure 7) is the top-1 answer. Assume
that through some mechanism we have identified the top-i
answers (e.g.,i = 3 in figure 7 and the answer is indi-
cated by the highlighted edges). Using the top-i solution

DECLARE COMMONCOL integer DEFAULT -1;
DECLARE pivot INTEGER;
DECLARE rcount INTEGER;
DECLARE rowmin FLOAT;
DECLARE colmin FLOAT;
DECLARE elemposmin FLOAT;
DECLARE r integer;
DECLARE c integer;
DECLARE cold integer;
DECLARE cnew integer;
DECLARE found integer;

SET c = 1;
WHILE (c • K) DO

select min(cost) into colmin
from Graph
where pos = c;

update Graph
set cost = cost - colmin
where pos = c;

SET c = c + 1;
END WHILE;
IF (K < N) THEN

update GTail
set cost = 0
where pos = COMMONCOL;

ELSE
SET r = 1;
WHILE (r • N) DO

select min(cost) into rowmin
from Graph
where elem = r;

update Graph
set cost = cost - rowmin
where elem = r;

SET r = r + 1;
END WHILE;
END IF;

delete from Top;

Figure 5: Initialization forMHA

to construct the top-(i + 1) solution two cases of inter-
est arise; we will usei = 3 in figure 7 to illustrate these
cases. Assume that the top-3 solution(ti; j); 1 • j • 3
identified isStop¡3 = f(t2; 1); (t3; 2); (t1; 3)g. Thus the
associated total cost of the top-3 solution is Ctop¡3 =
¾r(t2; 1) + ¾r(t2; 2) + ¾r(t1; 3). Constructing the top-4
solution involves including a new tuple in the solution.

The first case arises when following a direct edge from
position4 (position(i+1)) to a tuple which is currently un-
matched (i.e., not present in the top-3 solution). In this case
a candidate solutioncan be constructed by adding the new
tuple, say,(t4; 4) to the current top-3 set. A top-4 candidate
solution is obtained as a direct extension of the current top-
3 solution. If the total cost of the top-3 solution plus the
ranking cost of the new tuple (say tuplet4 in figure 7) as-
signed at position4 in minimum (among all possible four-
tuple sets assigned to positions1 through4), then this is the
top-4 solution. A second case arises when we follow a path
from position4 via some other tuple vertex (or vertices)
currently inStop¡3 in the bipartite graph, to a tuple which is
currently un-matched. Consider for example the path from
position4 to tuple vertext3 to position2 and back to tuple
t4 (which is currently un-matched). This path defines a new
candidate solution which can be obtained by modification
of Stop¡3 by removing(t3; 2) and adding(t3; 4); (t4; 2)
with a total costCtop¡3+¾r(t3; 4)+¾r(t4; 2)¡¾r(t3; 2).

641

CREATE PROCEDUREMHA(IN K integer, IN N integer)
LANGUAGE SQL
BEGIN

– Initialization for MHA
1. SET pivot = N;
WHILE (pivot > K) DO

insert into Top values(pivot, pivot);
SET pivot = pivot - 1;
END WHILE;

SET pivot = K;
pivotiter:

WHILE (pivot ‚ 1) DO
2 delete from SimpleAugment;

insert into SimpleAugment
select Graph.elem, pivot
from Graph
where pos = pivot and cost = 0

and elem not in (select elem from Top)
fetch first 1 rows only;

select count(*) into rcount from SimpleAugment;

IF (rcount> 0) THEN
insert into Top
select elem, pos
from SimpleAugment;
set pivot = pivot - 1;

iterate pivotiter;
END IF;

3. delete from Reach4;
insert into Reach4(elem, parent)

select Graph.elem, N+1
from Graph
where pos = pivot and cost = 0;

SET cold = -1;
SET found = 0;

select count(*) into cnew from Reach4;

WHILE (found = 0 AND cnew> cold) DO
SET cold = cnew;

insert into Reach4(elem, parent)
select Graph.elem, min(Reach4.elem)
from Reach4, Top, Graph
where Top.elem = Reach4.elem

and Top.pos• K
and Graph.pos = Top.pos and Graph.cost = 0
and Graph.elem not in (select elem from Reach4)
group by Graph.elem;

insert into Reach4(elem, parent)
select GTail.elem, min(Reach4.elem)
from Reach4, Top, GTail
where Top.elem = Reach4.elem
and Top.pos> K
and GTail.pos = COMMONCOL and GTail.cost = 0
and GTail.elem not in (select elem from Reach4)
group by GTail.elem;

select count(*) into cnew from Reach4;
select count(*) into found
from Reach4
where Reach4.elem not in (select elem from Top);

END WHILE;

4. delete from Augment;
insert into Augment

select Reach4.elem
from Reach4
where Reach4.elem not in (select elem from Top)
fetch first 1 rows only;

select count(*) into rcount from Augment;

IF (rcount> 0) THEN
delete from AugmentingPath1;
insert into AugmentingPath1
with AugmentingPath(elem, parent, level) as (

select Reach4.elem, Reach4.parent, 0
from Reach4, Augment
where Reach4.elem = Augment.elem
UNION
select Reach4.elem, Reach4.parent,

AugmentingPath.level+1
from Reach4, AugmentingPath
where Reach4.elem = AugmentingPath.parent

and AugmentingPath.level< N)
select elem, parent
from AugmentingPath;

insert into Top values(N+1, pivot);

delete from TempTop;
insert into TempTop
select AugmentingPath1.elem, Top.pos
from Top, AugmentingPath1
where Top.elem = AugmentingPath1.parent;

delete from Top
where elem in

(select parent from AugmentingPath1);
insert into Top

select * from TempTop;

SET pivot = pivot - 1;
iterate pivotiter;
END IF;

5. select min(cost) into elemposmin
from Graph
where elem not in

(select elem from Reach4) and (
pos = pivot or pos in (
select Top.pos from Top, Reach4
where Top.elem = Reach4.elem))
and pos• K;

update Graph
set cost = cost - elemposmin

where elem not in (select elem from Reach4) and (
pos = pivot or pos in

(select Top.pos from Top, Reach4
where Top.elem = Reach4.elem))
and pos• K;

update Graph
set cost = cost + elemposmin
where elem in (select elem from Reach4) and (
pos != pivot and pos not in (
select Top.pos from Top, Reach4
where Top.elem = Reach4.elem))
and pos• K;

update GTail
set cost = cost + elemposmin

where elem in (select elem from Reach4);
END WHILE;

delete from Top
where pos> K;

END

Figure 6:MHA in Procedural SQL

642

t1

t2

t3

t4

t5

1

2

3

4

5

Figure 7: Example Matching

Notice that if more than one already matched vertices in
Stop¡3 are present in the path a similar expression for the
total cost can be obtained by adding toCtop¡3 the rank-
ing costs associated with the edges that are not present in
Stop¡3 and subtracting the ranking costs associated with
the edges present inStop¡3. The top-4 solution can be de-
rived by identifying the path with the lowest cost, among
all possible paths from position4 to an un-matched tuple
vertex and making the suitable modifications toStop¡3 in
order to deriveStop¡4.

One observation from the above discussion is that dur-
ing the construction of the top-i solution the entire graph
G is not required. The computation can be correctly per-
formed by manipulatingGi, the bipartite subgraph ofG
corresponding to the firsti positions. Paths involving posi-
tions greater thani will be considered at later steps, incre-
mentally towardsk.

The above example leads to a natural procedure, thesuc-
cessive shortest paths(SSP) algorithm to incrementally
evaluate the answer to a top-k selection problem. The al-
gorithm is presented in pseudo-code in figure 8. Starting
from a new positioni the algorithm obtains the subgraph
Gi of interest at this iteration, identifies the transitive clo-
sure to un-matched tuple vertices in graphGi and maintains
the one with the cheapest cost, accounting for positive edge
costs when the edge is not present in solutionSi¡1 and neg-
ative edge costs when it is present. Finally, it adjusts solu-
tion Si¡1 to obtain the new top-i solution, incrementally up
to the desired value ofk.

The incremental construction of the top-k answer pro-
vided by algorithmSSP in figure 8 can be optimized. We
introduce an optimization of this basic scheme that can sig-
nificantly reduce the computation involved. We refer to this
optimization asEarly Stopping(ES). It provides a criterion
for terminating the search for the least cost path early on in
the search and subsequently avoiding the computation of
the transitive closure.

Early Stopping:

During the incremental construction of the top-k answer,
algorithmSSP considers positions successively. When a
new position is considered the paths to all un-matched tu-
ples are computed. It is easy to show that if at iterationi+1
of the algorithm the edge of minimum ranking cost incident
to positioni + 1 is also incident to an un-matched vertex
tuple, then this edge belongs to the top-(i+ 1) answer:

Algorithm SSP (k) f
for (i = 1 to k) f

obtain subgraphGi of G
if (i == 1) f
let ti the tuple vertex incident to the cheapest
edge at position1; add(ti; 1) to S1

g
elsef
1) Starting from positioni compute the
transitive closure to all currently
un-matched vertex nodes inGi

2) Compute the cost of each path in the
closure accounting for the negative edge
cost when traversing an edge inSi¡1 and
positive edge cost when the edge is not inSi¡1

3) Identify all edges in the cheapest pathe1; : : : em

and modifySi¡1 (add/remove edges) accordingly to
obtainSi

Si = Si¡1
for (j = 1 to m)f

if ej 2 Si¡1 thenSi = Si= ej

elseSi = Si [ej

g
g

g
g

Figure 8:SSP pseudo code

Optimization 1 (Early Stopping) At iterationi+1, if the
cheapest edge out of the (i+1)st position is unmatched then
the top-(i+ 1) answer contains this edge.

This optimization enables us to terminate the search pro-
cess for the top-(i+1) answer immediately, without having
to evaluate the transitive closure from the(i + 1)-th posi-
tion. In this case the top-(i+1) answer can be obtained by
extending the top-i answer by the edge of smaller cost out
of positioni+ 1 to an un-matched tuple vertex.

3.3.1 SQL Statements forSSP

Figure 9 presents theSSP algorithm in procedural SQL
(without any optimization introduced). The schema re-
quired by this procedure is omitted due to space constraints;
it can be easily derived from the procedure body. Block 1
initializes the Top relation to the cheapest edge out of posi-
tion 1. We then iterate over all positions from2 tok. Within
each iteration, block 2 computes the transitive closure from
the current position to all unmatched positions. Block 3
picks an unmatched tuple with the smallest distance from
the current position and block 4 computes the path from the
current position to this unmatched tuple. Finally, block 5
updates the old solution using this path to obtain the new
solution which includes the current position.

Early stopping can be also incorporated by inserting the
statements of figure 10 in the sequence of the statements
of figure 9 immediately after the firstWHILE loop. The
statements in figure 10 identify whether the least cost tuple
vertex which is a target of the current position, is in the cur-
rent solution. If not, then they augment the current solution
and start a new iteration.

643

CREATE PROCEDURE ssp(IN k integer, IN N integer)
LANGUAGE SQL
BEGIN
DECLARE index INTEGER DEFAULT 1;
DECLARE iter INTEGER DEFAULT 1;
DECLARE rcount INTEGER;
DECLARE matchsum FLOAT DEFAULT 0;

1. delete from Top;
insert into Top(elem, pos)

select min(elem), pos
from graph
where pos = 1 and cost =

(select min(cost)
from graph where pos = 1)
group by pos;

SET index = 2;
start:
WHILE (index• k) DO
2. delete from R1;

insert into R1(selem, delem, cost)
select Top.elem, G2.elem, G2.cost - G1.cost
from Top, Graph G1, Graph G2
where Top.elem = G1.elem and Top.pos = G1.pos

and Top.pos = G2.pos;

delete from Reach4;
insert into Reach4(elem, parent, cost)

select elem, N+1, cost
from Graph
where pos = index;

SET iter = 1;
WHILE (iter • index) DO

delete from RR;
insert into RR(elem, parent, cost)
select Y.elem, X.elem, X.cost + R1.cost
from Reach4 X, R1, Reach4 Y
where X.elem = R1.selem and Y.elem = R1.delem

and X.cost + R1.cost< Y.cost;

delete from R41;
insert into R41(elem, cost)
select elem, min(cost)
from RR
group by elem;

delete from Reach4
where elem in (select elem from R41);
insert into Reach4(elem, parent, cost)

select RR.elem, min(RR.parent), RR.cost
from RR, R41
where RR.elem = R41.elem

and RR.cost = R41.cost
group by RR.elem, RR.cost;

SET iter = iter+1;
END WHILE;
3. delete from Augment;

insert into Augment
select elem
from Reach4
where elem not in

(select elem from Top)
order by cost
fetch first 1 rows only;

4. delete from AugmentingPath1;
insert into AugmentingPath1
with AugmentingPath(elem, parent, level) as (
select Reach4.elem, Reach4.parent, 0
from Reach4, Augment
where Reach4.elem = Augment.elem
UNION
select Reach4.elem, Reach4.parent,
AugmentingPath.level+1
from Reach4, AugmentingPath
where Reach4.elem = AugmentingPath.parent

and AugmentingPath.level< N)
select elem, parent
from AugmentingPath;

5. insert into Top values(N+1, index);
delete from TempTop;

insert into TempTop
select AugmentingPath1.elem, Top.pos
from Top, AugmentingPath1
where Top.elem = AugmentingPath1.parent;

delete from Top
where elem in

(select parent from AugmentingPath1);
insert into Top

select * from TempTop;
SET index = index+1;
END WHILE;
END

Figure 9:SSP in Procedural SQL

4 Experimental Evaluation

In this section, we present the results of an experimental
case study of the proposed algorithms in a real application
scenario, varying various parameters of interest in order to
understand the algorithms’ comparative performance.

4.1 Implementation

We first provide implementation details on the realization
of the algorithms in an RDBMS and some observations on
the performance of various SQL constructs and then we
detail our experimental case study. Our experiments were
conducted on DB2 V8.1 Personal Edition running on a Dell
PowerEdge server P2600 with two Intel Xeon processors
having 3GB of memory and 400 GB of disk. We main-
tained the default configuration parameters DB2 ships with,
only increasing the transaction log size to 524 MB.

The procedural SQL statements of figures 6 and 9 use

recursive SQL statements with UNION semantics as spec-
ified in the SQL3 standard. However, no major RDBMS
up to date supports an efficient implementation of this con-
struct. In particular, DB2 V8.1 supports this construct only
with UNION ALL semantics. As a result, since no dupli-
cate elimination takes place at various stages of the recur-
sion, the number of intermediate tuples generated is very
large, and performance is affected. In order to alleviate this
problem, we simulated the effects of recursion as follows:
instead of using the recursive statement directly, we embed-
ded the join clauses in an iterative statement, issuing dupli-
cate elimination statements after each iteration. This re-
sulted in great performance benefits for all the approaches
discussed in this paper. We note that as RDBMSs start im-
plementing recursion with SQL3 semantics, the need for
such workarounds will decrease.

644

delete from CheapElem;
insert into CheapElem(elem)

select elem
from graph
where pos = index
and cost = (select min(cost)

from graph where pos = index)
and elem not in

(select elem from Top)
fetch first row only;

select count(*) into rcount from CheapElem;
IF (rcount> 0) THEN

insert into Top(elem, pos)
select graph.elem, graph.pos
from graph, CheapElem
where graph.elem = CheapElem.elem
and graph.pos = index;

SET index = index+1;
iterate start;
END IF;

Figure 10: Enabling Early Stopping inSSP

2
4

6

50

100

200

300

0

5

10

15

20

25

30

Ti
m

e
(S

ec
on

ds
)

Number of Rankings

N

Figure 11: Construction Time for GraphG as a function of
n and the number of rankings

4.2 Experimental Case Study

We implemented all three algorithms as outlined using a
commercial RDBMS and we conducted experiments to
evaluate their performance. In our experiments we used
a database containing real customer data with various as-
sociated attributes. We utilized the technique of Gra-
vano et al. [18] on various attributes to obtain approximate
matches. On a table containing seven million rows it re-
quired, in our implementation, approximately 20 seconds
to perform an approximate match on an attribute with aver-
age length 17 characters and approximately 25 seconds on
an attribute with average length 28 characters.

In our first experiment, we seek to quantify the time
required to construct the bipartite graphG on which the
various techniques operate to provide answers to top-k se-
lection problems. Figure 11 presents this time for differ-
ent number of rankings and different ranking sizes. The
construction time appears more sensitive to the size of the
rankings as opposed to the number of rankings used. No-
tice that, once such a graph is constructed for some value
of n (size of the rankings) it can be utilized to answer top-k
selection queries for anyk • n.

HA
MHA

SSP

k=10,N=200

k=10,N=300

k=10,N=400

k=20,N=200

k=20,N=300

k=20,N=400

0

100

200

300

400

500

600

Ti
m

e
(S

ec
on

d)

Figure 12: Performance ofHA, MHA, SSP as a function
of n andk

Our second experiment compares the performance of
the three algorithms. Figure 12 presents their performance,
as the size of the rankings increases for two distinct values
of k. It is evident that the overhead of algorithmHA is
prohibitive and its scalability is limited. We chose to keep
the scale of this experiment small, as the performance of
HA quickly deteriorated. AlgorithmMHA andSSP , in
contrast, appear much faster.

This prompted us to conduct a more detailed experi-
ment, comparing the performance ofMHA andSSP . The
result of this experiment is presented in figure 13, for vary-
ing values ofk andn (thex-axis in figure 13 presents pairs
of k; n values). In particular, we varyn from 200 to 1800
and for each value ofn we present performance results for
four values ofk (10,20,30,40). A main observation from
this experiment is that there exists a crossover point in the
performance of the algorithms which depends on the rela-
tive size ofk to n. For example, for small values ofn (up
to 600 in figure 13)SSP offers performance advantages
overMHA for values ofk up to 10. In that range,SSP is
more than 50% faster thanMHA. For values ofk above
10, MHA is faster thanSSP , especially ask increases.
As the value ofn increases (beyond 600 in figure 13) this
crossover point is experienced at a value ofk between 20
and 30. In these cases, whenk is below 20,SSP is up to
three times faster thanMHA, especially for largen. For
values ofk greater than 30,MHA is clearly the algorithm
of choice.

These observations lead us to the conclusion that for
small values ofk comparative ton SSP is the algorithm of
choice. As the value ofk increases, compared ton, MHA
offers great performance advantages. Overall, if only the
first few top ranking results are required then algorithm
SSP appears the algorithm of choice. For larger values
of k, algorithmMHA should be used.

5 Dealing With Scores
Up until now, for simplicity of exposition, we have pre-
sented techniques to merge ranked lists, where the list tu-
ples did not have associated scores. Approximate matching
techniques used in data cleaning, however, typically asso-
ciate values matching a query string with a score quantify-
ing the degree of similarity (closeness) of the query string

645

0

50

100

150

200

250

300

350

400

10
-2

00

20
-2

00

30
-2

00

40
-2

00

10
-4

00

20
-4

00

30
-4

00

40
-4

00

10
-6

00

20
-6

00

30
-6

00

40
-6

00

10
-8

00

20
-8

00

30
-8

00

40
-8

00

10
-1

00
0

20
-1

00
0

30
-1

00
0

40
-1

00
0

10
-1

20
0

20
-1

20
0

30
-1

20
0

40
-1

20
0

10
-1

40
0

20
-1

40
0

30
-1

40
0

40
-1

40
0

10
-1

60
0

20
-1

60
0

30
-1

60
0

40
-1

60
0

10
-1

80
0

20
-1

80
0

30
-1

80
0

40
-1

80
0

K-N

Ti
m

e
(S

ec
on

ds
)

SSP

MHA

Figure 13: Comparative Performance ofMHA andSSP as a function ofn andk

to the attribute value string. These scores thus carry more
information than the positions of tuples in the ranked lists.
In such situations, it would be desirable for (a) the merging
technique to use the scores (and not just the rankings) of
the tuples in each of the lists to determine the tuple ranks
in the merged list, and (b) the tuples in the merged list to
be associated with scores, to preserve the closure property.
We discuss both these issues in this section.

5.1 Merging Scored Rankings

Essentially, the basis for merging ranked lists discussed in
previous sections was to minimize the overall discrepency
in rank positions of the individual tuples, as quantified by
the total ranking cost, where the ranking cost of tupleti wrt
positionj was given by¾r(ti; j) =

Pm
‘=1 j¿‘(ti)¡jj. This

ranking cost was used as the edge cost between tupleti and
positionj in the bipartite graph, as described in section 3,
and the solution to our top-k selection problem was based
on the minimum cost perfect matching problem over this
bipartite graph.

Carrying this analogy to use the scores associated with
each of the tuples in the input ranked lists, we define the
scored ranking costof tupleti wrt positionj as

¾s(ti; j) =

mX

‘=1

j¿s
‘ (ti)¡ s‘(j)j

where¿s
‘ (ti) is the score associated with tupleti in the

scored ranked list¿‘, ands‘(j) is the score associated with
the tuple in thejth rank position in list¿‘. The bipar-
tite graph can now be defined as before, except that the

edge costs are given by the scored ranking costs¾s(ti; j),
instead of the ranking costs¾r(ti; j). Of course, for the
absolute score differences to be meaningfully comparable
across lists, the scores in each of the lists would need to be
normalized to, say, be a value in[0; 1]. This was done in
the example of figure 1.

Our techniques,MHA andSSP , can now be usedun-
changedon the resulting bipartite graph to identify solu-
tions to the top-k selection problem, taking scores into ac-
count. The rankings in the merged list obtained by using
scores may be different from those obtained by simply us-
ing the input rankings. It is, however, noteworthy that if the
scores associated with the tuples in the input ranked lists
were uniformly distributed in accordance with their rank
positions (for example, the tuple in rank positionj had a
score of(n ¡ j + 1)=n), the final rankings in the merged
list would be identical.

5.2 Computing Scores in the Merged Ranking

Just as scores are useful when provided by the approximate
matching techniques used in data cleaning, they can be use-
ful in the result of the merging. However, the scores that are
associated with the tuples in the merged list need to satisfy
some robustness properties. First, the scores need to be
consistent with the rankings, i.e., there should not be any
inversions between the rank order and the score order. Sec-
ond, the merged scoring should be idempotent, i.e., if two
identical scored ranked lists were merged, the score of each
tuple in the merged list should be identical to its scores in

646

the input lists.2 Third, the score of a tuple in thejth po-
sition of the merged list can be no larger than the average
score of the tuples in thej’th positions of them input lists.
These robustness properties eliminate some obvious candi-
dates, such as computing the score of a tuple in the merged
list as the average of its scores in them input lists.

We describe next an intuitive scoring function that pre-
serves the above robustness properties. Letsa(j); 1 • j •
k, be the average score of the tuples in thej’th positions of
the m input lists. Letdsa(j) = sa(j) ¡ sa(j ¡ 1); 2 •
j • k; this is the difference in the average scores between
consecutive positions in the input. Next if, in the merged
ranking, tupleti is at positionj, letsrca(j) = ¾s(ti; j)=m;
this is the average (over them input lists) of the score dif-
ferences used in the scored ranking costs in the solution to
the top-k problem. Then, the scores of the tuples at rank
positionsj in the merged list are computed as follows:

score(j) = sa(j)¡ srca(j); j = 1

score(j) = score(j ¡ 1)¡max(dsa(j); srca(j)); j > 1

It is easy to verify that the scores computed as described
above satisfy the above robustness properties. A more de-
tailed discussion on this merged-scoring function is outside
the scope of this paper.

6 Related Work
Data cleaning has attracted lots of research attention in
recent years [16, 21, 17, 18, 4, 19, 7]. Most of the re-
cent works [19, 4, 7] deal with various aspects of the clas-
sic record linkage problem [15], while others aim to of-
fer a declarative framework for cleaning and approximate
matching tasks [16, 17, 18]. Various string distance met-
rics have been proposed for quantifying approximate string
matches including string edit distance, cosine similarity
[17, 18, 4] and combinations and extensions thereof [6, 5].

Various functions for merging ranked data have been
proposed and studied in the statistical literature [10, 8, 20],
including theSpearman’s footruleandKendall’s tau. Such
functions have been utilized in the problem of merging the
results of various search engines [11]. Variants of such
measures have also been considered for similarity search
and classification [14]. The metric properties for a large
class of functions merging ranked lists have also been stud-
ied [13]. We are not aware of any work addressing issues of
realization of such merging functions in SQL. A different
approach to merging scored lists is to use a combining rule,
such as min or average, that combines individual scores to
obtain an overall score; this approach has been well investi-
gated in recent years (see, e.g., [12] and references therein).

7 Conclusions
We have considered the problem of merging rankings pro-
duced as a result of approximate match operations in rela-
tional databases, with the objective of identifying a consen-
sus ranking (under specific metric merging functions) and
identifying a few top ranking results. In this context, we

2Note that rank merging satisfies this idempotence property.

introduced the top-k selection problem for which we have
identified and proposed applicable algorithms providing
their full declarative specification. Our experimental case
study using real application data, identified the cases under
which two of the proposed algorithms, namelyMHA and
SSP , are beneficial.

Such problems are of profound interest in practical data
cleaning scenarios and we believe research in this direc-
tion is well warranted. Future work could investigate in-
corporation of approximations (e.g., in the spirit of [14])
in a declarative (SQL) framework and quality/performance
issues arising in this setting. Moreover, being able to ef-
ficiently perform such merging operations in bulk, when a
set of queries is provided, is an interesting open question.

References
[1] MindBox Inc. www.mindbox.com.
[2] R. K. Ahuja, T. Magnanti, and J. Orlin.Network flows. Prentice

Hall, 1992.
[3] V. Borkar, K. Deshmukh, and S. Sarawagi. Automatic segmentation

of text into structured records.Proceedings of SIGMOD, 2001.
[4] W. Cohen. Integration of heterogeneous databases without common

domains using queries based on textual similarity.Proceedings of
SIGMOD, 1998.

[5] W. Cohen, P. Ravikumar, and S. Fienberg. A comparison of string
distance metrics for name-matching tasks.Proceedings of IIWeb
Workshop, Aug 2003.

[6] W. Cohen, P. Ravikumar, and S. Fienberg. A comparison of string
metrics for matching names and records.Proceedings of KDD Data
Cleaning Workshop, Aug 2003.

[7] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust and
efficient fuzzy match for online data cleaning.Proceedings of SIG-
MOD, 2003.

[8] D. Critchlow. Metric methods for analyzing partially ranked data.
LNS, Springer-Verlag, 1985.

[9] T. Dasu and T. Johnson.Exploratory data mining and data cleaning.
John Wiley, 2003.

[10] P. Diaconis and R. Graham. Spearman’s footrule as a measure of
disarray. J. of the Royal Statistical Society, 39(2), pages 262–268,
1997.

[11] C. Dwork, R. Kumar, M. Naor, and D. Shivakumar. Rank aggrega-
tion methods for the web.Proceedings of WWW10, 2001.

[12] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms
for middleware.Proceedings of PODS, 2001.

[13] R. Fagin, R. Kumar, and D. Shivakumar. Comparing top-k lists.
Proceedings of SODA, 2003.

[14] R. Fagin, R. Kumar, and D. Shivakumar. Efficient similarity search
and classification via rank aggregation.Proceedings of SIGMOD,
2003.

[15] I. P. Fellegi and A. B. Sunter. A theory for record linkage.Journal
of the American Statistical Association, 64(328), pages 1183–1210,
Dec. 1969.

[16] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and E. Saita.
Declarative data cleaning.Proceedings of VLDB, 2001.

[17] L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas, S. Muthukrishnan,
and D. Srivastava. Approximate string joins in a database (almost)
for free. Proceedings of VLDB, 2001.

[18] L. Gravano, P. Ipeirotis, N. Koudas, and D. Srivastava. Text joins in
an RDBMS for web data integration.Proceedings of WWW, 2003.

[19] M. Hernandez and S. Stolfo. The merge purge problem for large
databases.Proceedings of SIGMOD, 1995.

[20] J. Marden.Analyzing and modeling rank data. Chapman Hall, 1995.
[21] S. Sarawagi. Special issue on data cleaning.IEEE Data Engineering

Bulletin, 23(4), 2000.
[22] S. Sarawagi and A. Bhamidipaty. Interactive deduplication using

active learning.Proceedings of KDD, 2002.

647

