
Tamper Detection in Audit Logs

Richard T. Snodgrass, Shilong Stanley Yao and Christian Collberg

University of Arizona
Department of Computer Science

Tucson, AZ 85721-0077
USA

{rts,yao,collberg}@cs.arizona.edu

Abstract

Audit logs are considered good practice for
business systems, and are required by federal
regulations for secure systems, drug approval
data, medical information disclosure, financial
records, and electronic voting. Given the cen-
tral role of audit logs, it is critical that they
are correct and inalterable. It is not suffi-
cient to say, “our data is correct, because we
store all interactions in a separate audit log.”
The integrity of the audit log itself must also
be guaranteed. This paper proposes mecha-
nisms within a database management system
(DBMS), based on cryptographically strong
one-way hash functions, that prevent an in-
truder, including an auditor or an employee or
even an unknown bug within the DBMS itself,
from silently corrupting the audit log. We pro-
pose that the DBMS store additional informa-
tion in the database to enable a separate audit
log validator to examine the database along
with this extra information and state conclu-
sively whether the audit log has been com-
promised. We show with an implementation
on a high-performance storage engine that the
overhead for auditing is low and that the val-
idator can efficiently and correctly determine
if the audit log has been compromised.

1 Introduction and Motivation

OLTP (on-line transaction processing) applications
maintain audit logs so that the correctness of the trans-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,

Toronto, Canada, 2004

actions can be later checked. As a simple example,
every deposit to and withdrawal from a bank account
generates a separate audit record, so that the current
balance in the account can be checked. As one test, the
sum of all deposits minus the sum of all withdrawals
should equal the change in total accounts over that
period. If this auditing check fails the bank looks into
the discrepancy further.

A variety of federal laws (e.g., Code of Federal
Regulations for the Food and Drug Administration,
Sarbanes-Oxley Act, Health Insurance Portability and
Accountability Act, Canada’s PIPEDA) and stan-
dards (e.g., Orange Book for security) mandate audit
logs. The correctness of the auditing records them-
selves is critical. As Peha states, “An auditor should
be able to retrieve a set of records associated with
a given entity and determine that those records con-
tain the truth, the whole truth, and nothing but the
truth. There should be a reasonable probability that
any attempt to record incorrect, incomplete, or extra
information will be detected. Thus, even though many
transactions will never be scrutinized, the falsification
of records is deterred.” [17]

The message is clear: given the central role of audit
logs in performing auditing of interactions with the
data (modification, exposure) as well as of the base
data itself, it is critical that audit logs be correct and
inalterable. It is not sufficient to say, “our data is
correct, because we store all interactions in a separate
audit log.” The integrity of the audit log itself is still
in question.

Recent experience has shown that sometimes the
(human) auditors themselves cannot be trusted. (A
recent security survey states that the source of cyber-
security “breaches appears fairly evenly split between
those originating on the outside and those originating
on the inside.” [9, page 9].) In cases such as Enron and
WorldCom (cases that inspired the Sarbanes-Oxley
Act), supposedly independent auditing firms conspired
with the company under audit to hide expenses and
invent fictitious revenue streams. Just as the original
databases can be manipulated to tell a story, so can

504



the audit logs be manipulated to be consistent with
this new story.

This paper proposes mechanisms within a database
management system (DBMS), based on cryptograph-
ically strong one-way hash functions, that prevent an
intruder, including an auditor or an employee or even
an unknown bug within the DBMS itself, from silently
corrupting the audit log. We propose that the DBMS
transparently store the audit log as a transaction-time
database, so that it is available to the application if
needed. The DBMS should also store a small amount
of additional information in the database to enable a
separate audit log validator to examine the database
along with this extra information and state conclu-
sively whether the audit log has been compromised.
We propose that the DBMS periodically send a short
document (a hash value) to an off-site digital notariza-
tion service, to bound when changes were made to the
database.

In the following, we first review existing techniques
for maintaining the integrity of the audit log. We then
describe the context within which we have developed
our approach. In Section 4, we summarize the threat
model addressed by our approach. We then present a
simplified approach that enables validatable audit logs.
Section 6 discusses a range of refinements that provide
increase performance. We then summarize an initial
implementation of the general algorithm on Berkeley
DB [22] and evaluate the performance of this proto-
type, showing that supporting validatable audit logs
does not represent a significant performance hit in
space or time. We end with a review of related work
and discussion of outstanding problems.

Our contribution is to demonstrate that, with the
system model, techniques and optimizations we intro-
duce here, tamper detection in audit logs can indeed
be realized within a high-performance DBMS.

2 Existing Audit Log Techniques

The traditional way [3] to protect logging data from
tampering is to write it to an append-only device,
such as a Write Once Read Multiple (WORM) op-
tical drive or a continuous-feed printer. The security
of such schemes assumes, however, that the comput-
ing site will not be compromised. If this is a possible
attack scenario the logging data can be sent to a re-
mote site over the network, so called remote logging.
Log replication can be used to send the data to several
hosts to require the attacker to physically compromise
several sites.

Schneier and Kelsey [21] describe a secure audit
log system. The idea is roughly as follows. An un-
trusted machine U (on which the log is kept) initially
shares a secret authentication key A0 with a trusted
machine T . To add the j:th log entry Dj , U computes
K = hash(Aj) (an encryption key), C = EK(Dj) (the
encrypted log entry), Yj = hash(Yj−1, C) (the j:th en-

try in a chain of hashes, where Y
−1 = 0), and Zj =

MACAj
(Yj) (a keyed hash (Message Authentication

Code) of Yj). Then the j:th entry 〈C, Yj , Zj〉 is written
to the log, a new authentication key Aj+1 = hash(Aj)
is constructed, and Aj is destroyed. An attacker who
compromises U at time t can delete (but not read nor
modify) any of the first t log entries, since he will only
have access to At+1 but not to any of the previous
A0 . . . At. While there is no way to prevent the at-
tacker from deleting some or all of the log entries (or
appending his own entries), any such attempted tam-
pering will be detected by T on its next interaction
with U . Furthermore, since each log entry is encrypted
with a key derived from A0 (which is only stored per-
manently on T ) the attacker cannot read past log en-
tries to find out if his attack was noticed or not.

As applications require access to the database (and
often read access to the audit log), these existing tech-
niques are not applicable to tamper detection of trans-
actional database audit logs.

3 Context

We show how a database can be protected by having
the DBMS maintain the audit log in the background
and by using cryptographic techniques to ensure that
any alteration of prior entries in this audit log can be
detected. This approach thus applies to any applica-
tion that uses a DBMS.

As an example, assume that we are a pharmacolog-
ical research firm that develops new drugs, providing
data to the FDA for approval of those drugs. As part
of this effort we have a relational table, Administer,
that records what drugs were administered to which
patients during a drug trial. 62 FR 13430 requires
a computer-generated, time-stamped audit trail. We
define the table as follows, in the MySQL DBMS [7].

CREATE TABLE Administer (...)
AS TRANSACTIONTIME
TYPE = BDB
AUDITABLE = 1

The first line—which also specifies the columns and
primary and foreign key constraints for the table—is
supported by the conventional MySQL release, as is
the third line, which specifies that the Berkeley DB
storage system be used. The second line specifies that
this Administer table includes transaction-time sup-
port (this is an open-source extension that we have
implemented). A transaction-time database records
the history of its content [11]. All past states are re-
tained and can be reconstituted from the information
in the database. This is ensured through the append-
only property of a transaction-time database: modifi-
cations only add information; no information is ever
deleted. It is this basic property that we exploit to
validate the audit log (in fact, the table is the audit
log).

505



The last line specifies that this transaction-time ta-
ble be auditable, that is, that the system take addi-
tional steps so that an audit log in maintained and so
that later a separate audit log validator can examine
the database and state conclusively whether the au-
dit log has been compromised. These additional steps
are the primary topic of this paper. We have imple-
mented support for auditable tables and independent
validation in MySQL and Berkeley DB.

It is important to emphasize that the applications
that update and query this table need not be aware of
the last three lines of the CREATE TABLE statement.
Behind the scenes, transparently to the application,
the DBMS creates an audit log and ensures auditabil-
ity. This is because our approach ensures temporal
upward compatibility [2].

A transaction-time table includes all the columns
declared in the CREATE TABLE statement, along
with two additional columns, which are not normally
directly visible to the application: the Start and Stop
columns. These latter columns are maintained by the
DBMS. Specifically, the value of the Start column is
the time (to a granularity of, say, a millisecond) at
which that row was inserted into the table. The Stop
time of a newly inserted row will be the special value
“until changed,” or UC. When a row is deleted, the
deletion time is recorded in the Stop column; the row
itself is retained. A modification of a row is treated as
a deletion of the old value of the row and an insertion
of the new value. A special form of SELECT is avail-
able for the application to see these columns and past
versions of the table.

The rows that are currently relevant (that is, those
that have yet to be modified or deleted) all have a Stop
time of UC. These rows, along with the rest, which
have an explicit Stop time, form an audit log of the
table. A SELECT statement evaluated by an appli-
cation will, because of temporal upward compatibility,
see only current rows. A modification or deletion will
only affect current rows. Again, the Start and Stop
columns and the audit information are maintained be-
hind the scenes by the DBMS.

4 Threat Model

In this work, we assume a Trusted Computing Base
(TCB) consisting of correctly booted and functioning
hardware and a correctly installed operating system
and DBMS. More precisely, we assume that the TCB
is correctly functioning until such a time t when a pen-
etration occurs. Similarly, until time t the DBMS is
created, maintained, and operated in a secure manner,
and all network communication is performed through
secure channels (such as SSL), ensuring the correctness
of the internal state of the DBMS. Since the DBMS is
a transaction-time database, all previous states can be
reconstructed.

A penetration by an adversary (“Bob”) can take

many forms. An intruder (or an insider) who gains
physical access to the DBMS server will have full free-
dom to corrupt any database file, including data, time-
stamps, and audit logs stored in tuples.

Of course, physical access is not necessary to com-
promise a system. Malware (such as viruses, worms,
and trojans) can penetrate a machine by exploiting
bugs (such as buffer overflows) in trusted software.
The infection can occur over the network or through
DBMS extensions (Oracle cartridge, Sybase plugin,
DB2 extender). Regardless, the result is typically to
allow Bob full root access to the machine and the
DBMS server software. Once such access has been
established, the integrity of any data or software on
the machine is in question: the DBMS source code
(including any audit log algorithms), the data in the
database, and the audit log trails themselves could all
have been compromised. (The information stored in
the off-site digital notarization service is assumed to
remain secure and unaltered.)

Our scheme assumes the existence of a trusted no-
tarization service which, given a digital document, will
return a unique identifier. We also assume a trusted
and independent audit log validation service which,
given access to (a copy of) the database, will verify
the validity of the audit log. The integrity of these
services is assumed to remain intact even in the event
of a full DBMS compromise.

5 Basic Idea

We first outline our approach, an adaptation of Peha’s
“verifiable audit trails” to databases, making many as-
sumptions and simplifications. We then remove some
of these assumptions and simplifications to achieve a
more practical and robust system.

Figure 1(a) illustrates the normal operation of our
approach. The user application performs transactions
on the database, which insert, delete, and update the
rows of current state. Behind the scenes, the DBMS
retains for each tuple hidden Start and Stop times,
recording when each change occurred. The DBMS en-
sures that only the current state of the table is ac-
cessible to the application, with the rest of the table
serving as the audit log. Alternatively, the table itself
could be viewed by the application as the audit log.
In that case, the application only makes insertions to
the audited table; these insertions are associated with
a monotonically increasing Start time. Our approach
and implementation support both usages.

The basic idea is to store a “check field” in each
tuple. This check field cannot be computed directly
from the data (and timestamps) of the tuple, because
then Bob could simply recompute the check field after
he has altered the tuple. Indeed, if needed he could re-
play all of the transactions, making whatever changes
he wanted to the data or the timestamps.

We use a digital notarization service that, when pro-

506



DBMS Network

Database

(a) Normal Execution

User
Application

(Including
Audit Log)

DBMS

Network

Database

(b) Later, Audit Log Validation

Validator

(Including

Audit Log)

UDP Notarization
Service

UDP Notarization
Service

UDP

UDP

Figure 1: Normal Operation and Audit Log Validation

vided with a digital document, provides a notary ID1.
Later, during audit log validation, the notarization ser-
vice can ascertain, when presented with supposedly
unaltered document and the notary ID, whether that
document was notarized, and if so, when.

On each modification of a tuple, the DBMS obtains
a timestamp, computes a cryptographically strong one-
way hash function of the (new) data in the tuple and
the timestamp, and sends that hash value, as a digi-
tal document, to the notarization service, obtaining a
notary ID. The DBMS stores that ID in the tuple.

Later, Bob gets access to the database. If Bob
changes the data or a timestamp, the ID will now be
inconsistent with the rest of the tuple. Bob cannot ma-
nipulate the data or timestamp so that the ID remains
valid, because the hash function is one-way. Note that
this hold even when Bob has access to the hash func-
tion itself. Bob can instead compute a new hash value
for the altered tuple, but that hash value won’t match
the one that was notarized.

If an independent audit log validation service was
provided with the database (as illustrated in Fig-
ure 1b), that service could, for each tuple, hash the
data and the timestamp, provide it with the ID to the
notarization service, which will check the notarization

1Surety (www.surety.com) provides online digital notary ser-
vice. Secure one-way hashing is used to generate notary IDs
locking the contents and time of the notarized documents [10].
Telia’s Digital Notarization Service (www.trust.telia.com) uses
VeriSign’s Digital Receipt and Digital Timestamping technology
to create a tamper-proof digitally signed timestamp of a docu-
ment, and store the records of that transaction.

time with the stored timestamp. (There is a timing is-
sue in that the database obtains a timestamp first and
later notarizes the tuple. The notarization time will be
slightly later than the timestamp. Also, there will be
many tuples with identical timestamps, as they were
all modified within a single transaction. These details
will be discussed in later sections.) The validation ser-
vice would then report whether the database and the
audit log are consistent. If not, either or both had
been compromised.

Few assumptions are made on the threat model.
The system is secure until Bob gets access, at which
point he has access to everything: the DBMS, the
operating system, the hardware, and the data in the
database. We still assume that the notarization and
validation services remain in the trusted computing
base. This can be done by making them geographi-
cally and perhaps organizationally separate from the
DBMS and the database.

The basic mechanism just described provides cor-
rect tamper detection. If Bob modifies even a sin-
gle byte of the data or its timestamp, the indepen-
dent validator will detect a mismatch with the no-
tarized document, thereby detecting the tampering.
Bob could simply re-execute the transactions, mak-
ing whatever changes he wanted, and then replace
the original database with his altered one. However,
the notarized documents would not match in time.
Avoiding tamper detection comes down to inverting
the cryptographically-strong one-way hash function.

However, the basic approach exhibits unacceptable
performance. Interactions with the notarization ser-
vice should be infrequent, because such interactions
are slow, requiring non-local network transmissions,
and expensive, in that each notarized document re-
sults in a charge. Additionally, the space overhead
is somewhat excessive, in that a notary ID must be
stored in each tuple. Such IDs, on the order of 256
bits (32 bytes), are onerous for very small tuples.

In subsequent sections, we refine this approach to
address these performance limitations. As we will
see, it is challenging to achieve adequate performance
while retaining the desirable properties of the basic ap-
proach. Our goal is to realize tamper detection in the
context of a high-throughput transaction processing
system. Existing approaches are simply inadequate in
this context.

6 Minimizing Notarization Service In-
teractions

The basic approach just described interacts with the
notarization service for each tuple that is modified.
This interaction requires that a packet containing the
hashed value of the tuple’s data and timestamp (32
bytes) be sent to the service, which responds with an-
other 32-byte notary ID, which is stored in the tuple.
A transaction could easily modify thousands or even

507



millions of tuples, rendering this approach impractical.
Throughout, we attempt to minimally impact the

actual transaction processing and also attempt to min-
imize the validation time, at a cost of more work should
tampering be detected. Our expectation is that an in-
volved forensic analysis would be necessary upon de-
tecting actual evidence of tampering. Rather, we at-
tempt to minimize the effort to certify that the audit
log has not been altered.

6.1 Opportunistic Hashing

The first step is to reduce interactions with the nota-
rization service to one per transaction, rather than one
per tuple. In this section, we first give an overview of
the design and then explain the two key techniques we
utilized.

As a refinement of the basic approach, we hash all
the tuples modified by a transaction to compute a 20-
byte hash value that is sent to the notarization ser-
vice when the transaction commits. The notary ID
returned from the notarization service is written to a
separate Notarization History Table, which contains
one tuple for each transaction. (This potential hot
spot will be addressed in the next section.) Validation
must also be on a per-transaction basis. The audit log
validator (referred to from now on as simply the val-
idator) scans all of the pages of the audited tables,
maintaining a running hash value for each transac-
tion, with each transaction identified by a transaction
start or stop time within a tuple. After the database
has been scanned, the validator has the hash value
for every transaction. It can then check the nota-
rization history table to see which transaction(s) were
corrupted. This requires storing in main memory the
hash value for each transaction. For high-performance
systems completing hundreds or thousands of transac-
tions a second, there may not be a sufficient amount
of memory to store all of these values, and multiple
passes over the database may be required. Note that
if Bob changes a transaction time within a tuple, say
to the transaction time of a different tuple, neither of
these two transactions will match their notarized doc-
uments.

This seemingly innocuous change has wide-ranging
implications. The data for the transaction may com-
prise many pages, which are generally not simultane-
ously in main memory. (Pages are written to disk when
they are replaced by the buffer manager, either before
or after the transaction commits [19].) One could dur-
ing commit processing read in all of the pages that
had been modified by the transaction and hash those
tuples written by the transaction, to compute a sin-
gle hash value for the entire transaction. (One could
also stamp those pages, replacing the tuple ID with
the commit time.) However, this imposes additional
I/O on the commit, potentially doubling the I/O (if
all the pages had been written out by the time the

transaction committed).

Our solution is to opportunistically hash the trans-
action’s data. Each tuple that is modified by a trans-
action is individually hashed at the time of the modi-
fication, when that tuple is present in main memory.

There are two key techniques to support the op-
portunistic hashing. The first technique, incremental
hashing, is used to address the apparent contradiction
of tuple-based hashing and transaction-based hash val-
ues. As an example, transaction T touches three tu-
ples t1, t2 and t3. A single hash value H(T ) needs to
be computed from the three tuples as a whole. How-
ever, opportunistic hashing requires that each tuple
ti (1 ≤ i ≤ 3) of T is hashed independently as soon
as it is processed by the auditing module. This im-
plies that the hashing needs to be done incrementally.
Whenever an unhashed tuple is encountered, it is in-
crementally hashed so that the hashing of that trans-
action progresses one more step. When the last tuple
of a transaction is incrementally hashed, the hashing
of that transaction is then fully accomplished and the
final hash value is produced.

We utilize the well-accepted cryptographically
strong hash function SHA-1 [25]. One of the advan-
tages of SHA-1 is that its API explicitly supports in-
cremental hashing. In SHA-1, the document to be
hashed is divided into 512-bit blocks. Each block is
processed in sequential order. For the first block, a
160-bit constant is used as the initial hash value. For
each block, starting with the intermediate hash value
from the previous block and based on the data in
the current block, a new intermediate hash value is
computed. If there are no subsequent blocks, the in-
termediate hash value of the current block is the fi-
nal hash value. To leverage the SHA-1 hash function
to build our incremental hash algorithm, we maintain
the intermediate hash state of the SHA-1 function for
each transaction. The intermediate hash state includes
the intermediate hash value and the left-over data (a
block). Along with a few other bookkeeping variables
in the intermediate hash state (e.g., the offset of the
left-over data), the total space required by a transac-
tion to store the intermediate hash state is less than
100 bytes. This is far less than the space overhead of
keeping all the tuples until the transaction commits.

The space overhead of storing the intermediate hash
state can be further optimized down to 20 bytes. If
we pad each tuple to the block boundary, there will
never be left-over data. Thus we can eliminate the 64
bytes overhead of storing the left-over data and some
bookkeeping variables.

Although the incremental hashing enables oppor-
tunistic hashing, it also introduces a new problem. In
incremental hashing, the order in which tuples of a
transaction are hashed is critical. Different hashing
orders will result in different hash values. It has been
proven that all known associative (order-independent)

508



hash functions are cryptographically weak [18], so we
have to ensure the same hashing order for the appli-
cation and the validator. To enable the validator to
recompute the same hash value as the one computed
when the application was running, the hashing order
during validation should be the same as when the ap-
plication was running.

The second key technique to support opportunistic
hashing is motivated by the hashing ordering problem
just mentioned. In order to maintain the order consis-
tency, a tuple sequence number is used to indicate the
hashing order.

When the transaction is running, whenever a tu-
ple is hashed, a sequence number, unique within the
transaction and monotonically increasing, is assigned
to the tuple and is stored in the tuple header. This
sequence number indicates the order in which tuples
were hashed during the transaction was running. We
can further optimize the space allocation in the tuple
header for storing sequence numbers. We can have two
bits in the existing flag in the tuple header to indicate
how many bytes are needed to store the sequence num-
bers of this tuple. For most small transactions with
less than 256 tuples, only one extra byte is needed to
store the sequence number.

When the validator is running, to hash the tuples of
a transaction in exactly the same order as they were
hashed when the transaction was running, tuples of
a transaction are sorted in ascending sequence num-
ber order and are incrementally hashed in that order.
Because tuples do not necessarily arrive in sequence
number order while scanning the database, there will
be holes (noncontinuous sequence numbers) of unseen
tuples; these holes are gradually filled as the scan ap-
proaches the end of the database. To reduce the space
overhead caused by storing the tuples, whenever a tu-
ple is inserted into the sorted list we check the list to
see if we can hash a subset of the consecutive tuples.
Whenever there are no holes at the beginning of the
queue, we can hash the leading tuples until the first
hole of an unseen tuple and discard the hashed tuples
so as to reclaim the memory. This sorted tuple list can
be efficiently implemented with a priority queue.

At this point, only one special case is left to be
explained about the opportunistic hashing. A trans-
action inserts a tuple. The page containing the newly
inserted tuple is “stolen” by the DBMS (evicted before
the transaction commits), which causes the tuple to be
hashed towards the transaction hash value. Then the
transaction deletes the same tuple, whose default be-
havior in DBMS is that the tuple is physically deleted.
At the end the transaction commits. In this case, dur-
ing the validation the expected transaction hash value
can never be obtained, because the deleted tuple does
not physically exist in the database and thus can not
be hashed towards the transaction. This problem is
solved by carefully handling deletions. When a tuple

is deleted it is not physically deleted. Instead its start
and stop time are both filled with the transaction’s ID,
which later is stamped with the transaction time. The
tuples with identical start and stop times are regarded
as transient inside the transaction. They never appear
in the query results, but they participate in the hash-
ing of the transaction twice, one is for insertion and
the other for deletion.

Opportunistic hashing reduces the space overhead
tremendously, as there is little per-tuple space re-
quired. (Specifically, two bits are required per tuple
to indicate whether the Start and Stop times, respec-
tively, have been hashed, two bits are needed for the
sequence number size, and one to four bytes are needed
for the sequence number itself.) The interaction with
the notarization service is reduced to one per trans-
action. While the data itself remains secure, the no-
tarization service knows for each period of time how
many transactions were executed. A downside is that
validator no longer can ascertain the immutability of
each individual tuple. Rather, it can only check the
consistency of the tuples in that transaction (identi-
fied by the transaction time stored in those tuples)
with the associated hash value stored in the notariza-
tion history table, either of which may be corrupted
by the attacker.

An alternative to the approach of hashing the tuples
of a transaction was also considered. This alternative
hashes the tuples on a page instead. Unfortunately,
tuples can migrate between pages (say, because of a B-
tree node split); maintaining sufficient information for
the validator to determine which page a particular tu-
ple was on when a particular hash value was computed
turned out to be doable, but quite difficult. Utilizing
a sequence number nicely avoids this problem.

6.2 Linked Hashing

Interacting with the notary service on each transac-
tion is still quite expensive, especially in modern high-
performance systems, which can complete thousands
of transactions a second.

An attractive solution is to use partial result au-
thentication codes [3] to link transactions. At database
creation we get the timestamp, hash the schema and
the timestamp, notarize this value, and store it in the
notarization history table. Then, for each transaction,
we hash the data of the transaction as before, using
opportunistic hashing. At commit, we rehash a doc-
ument containing this value and the previous hashed
value, to obtain a new hashed value. Periodically, say
at midnight, we notarize the hashed value of the most
recent transaction, resulting in a notary ID. We hash
the most recent hashed value with its notary ID, to
compute a new value used to link subsequent transac-
tions.

To check the validity, we repeat the hashing, in
transaction-time sequence, checking the values we ob-

509



tain for the transaction at midnight with the notariza-
tion service. Doing so requires a single linear scan of
the database, followed by the linked hashing.

The benefit is greatly reduced interaction with the
notarization service, from one per transaction to, say,
one interaction per day, with a concomitant reduction
of notarization history table to one tuple per day. The
downsides are reduced information on attacks (we only
know that the information stored on a particular day
was corrupted) and an inability to do checking after
an attack.

6.3 Interacting with Timestamping

The time assigned by the notarization service will be
(slightly) after that assigned by the database stamp
module. To address this problem we introduce the
Transaction Ordering List (TOL). Before a transac-
tion is committed, the user data (that is, the explicit
columns, as we do not yet know the timestamp of the
transaction) of the tuples modified by the transaction
is hashed. When the transaction commits, the trans-
action time (which has just been determined) and the
hash value are hashed together to get the final hash
value of the transaction. Thus we do not have to de-
lay the tuple hashing until the transaction is commit-
ted.

7 Implementation

In our implementation, the audit facility is built on top
of the TUC (Temporal Upward Compatibility), CLK
(Clock), and STP (Stamper) modules we previously
added to the underlying Berkeley DB so that it can
support transaction time. We also added several more
transaction-time related commands (e.g., AS TRANS-
ACTIONTIME) and flags in MySQL so that MySQL
can support transaction time. We then added an au-
dit (AUD) module. A notarization service requester
(NSR) utility and a database validator (DBV) utility
were implemented as separately running programs.

While Berkeley DB is reading or writing a disk page,
or while a tuple that can be stamped is accessed, STP
will scan the page to do the stamping (replacing the
transaction IDs with their transaction time) and some
bookkeeping. This is the perfect opportunity to piggy-
back the hashing of the tuples onto this STP page
scan. With further analysis of the relationship of the
STP and AUD modules, we found we can completely
put AUD behind STP to form a clean, modularized
architecture.

The auditable DBMS architecture and the AUD
module internal structure are shown in Figure 2. In
this figure, each process is represented by a dotted
line rectangle, each piece of software is represented by
a solid line rectangle and each internal module is rep-
resented by a rounded solid line rectangle. Berkeley
DB serves as the storage manager for MySQL and is

MySQL

Berkeley DB

Transaction Time Support

User Application

NSR

Direct Call

ODBC/JDBC

Shared
Memory

Transaction Time Support

STP AUD

Figure 2: Auditable DBMS via MySQL+Berkeley DB

linked into the MySQL as a library. The user applica-
tion running in another process interacts with MySQL
through various interfaces, such as ODBC and JDBC.
The NSR runs in a separate process but shares its
memory region with Berkeley DB, where the database
environment information is stored and shared.

AUD hashes each tuple into the transaction hash
value and maintains the hash value chain across trans-
actions. We call the last transaction on the hash chain
the tail transaction, its transaction time the tail time,
and its hash value the tail hash value. NSR is trig-
gered every day. When triggered, it obtains the tail
hash value and tail time from AUD, hashes them and
sends the hash value as a document to the notariza-
tion service to be notarized. The notarization service
will reply with a notary ID (NID) consisting of the
notarization time and a secure timestamp computed
from the document received and the time when the
notarization occurred (the notarization service has its
own trusted time source). The NSR hashes the NID
along with the tail hash value to compute a new value
to serve as the beginning of the next transaction hash
chain. It also stores the (tailtime ,NID) tuple in a no-
tarization history table.

DBV (the audit validator) is run when a database
audit is needed. It reads the entire audit log, recom-
puting the transaction hash values. According to the
tail time information stored in the notarization history
table, all the transaction hash values are grouped into
hash chains, so that for each hash chain we have a cor-
responding tuple in the notarization history table. For
each hash chain, transaction hash values are linked and
the tail time and tail hash value are recomputed and
sent to the notarization service. Encountering a vali-
dation that is refused by the notarization service im-
plies something is corrupted after the beginning of the

510



Berkeley DB

MySQL

Berkeley
DB

Network

DBV

Berkeley
DB

Network

User

Database

Notarization

History

User

Database

Notarization

History

(a) When the application is normally running

(b) When the DBV is doing the validation

User
Application

NSR

Direct Call Direct Call

Direct Call

ODBC/JDBC

Shared
Memory

IO IO

IO IO

UDP

UDP

UDP

Notarization
Service

UDP

Notarization
Service

Figure 3: AUD Module Architecture

transaction chain. DBV then displays the time when
the invalid transaction is discovered in the database
and a list of pages that are potentially involved in the
unmatched hash value.

Figure 3(a) illustrates the detailed architecture of
the auditing module during a normal run of the appli-
cation. Figure 3(b) shows the validator validating the
audit log. In the figure, each process is again repre-
sented by a dotted line rectangle. Different pieces of
software are represented by solid line rectangles.

8 Performance

We studied the performance of the auditing system
and the various database parameters’ impact on the
auditing system performance.

8.1 Opportunistic Hashing

We first compare the time and space complexity of
the opportunistic hashing approach and the naive ap-
proach, during transaction processing and during val-
idation. In the naive approach, for both phases, all
tuples are kept and sorted in main memory until be-
ing hashed at transaction commit.

As far as main memory space is concerned, when the
transaction is running, the naive approach has O(n)
(where n is the number of tuples per transaction) space
overhead to store the tuples of a transaction, while the
optimized approach only has constant space overhead

to store the intermediate hashing state. When the val-
idator is running, the naive approach has O(n) space
overhead to sort and hash the tuples, which is the same
as that of the optimized approach. However the actual
space overhead of the optimized approach is lower, be-
cause tuples are discarded as the validator scans the
database.

As far as CPU time is concerned, when the transac-
tion is running, the optimized approach does not sort
tuples at all, while the naive approach has O(n lg n)
cost to sort the tuples in a priority queue. When the
validator is running, the time complexity of the sorting
is the same for both naive and optimized approaches.

Since the performance improvement due to the op-
portunistic hashing is obvious from this analysis, we
did not run experiments on it.

8.2 Notarization Service Interaction

A trivial analysis can illustrate the dramatic perfor-
mance improvement due to the minimization of the
notarization service interaction. If there are t trans-
actions per day, the basic approach requires t nota-
rization service interactions per day. However, with
the opportunistic hashing and linked hashing, only one
such interaction is needed. This is a dramatic reduce
in the network load. If the notarization service cost
is calculated based on the number of interactions, the
total service cost is reduced by a factor of t. The same
analysis applies to the validator. This analysis sug-
gests that the optimization to minimize the notariza-
tion service interaction is critical.

Concerning asynchronous notarization, suppose the
round trip time (from the time a request is send to
the time a response is received) of a notarization is r
seconds and the system throughput is t transactions
per second. For each notarization, the audit system
with asynchronous notarization can finish r · t more
transactions per notarization than one without it.

8.3 Experiment Design

We now turn to a more detailed, empirical analysis
of our implementation, which includes all of the op-
timizations just discussed. We simulated a bank ac-
count balance scenario. The database was populated
with tuples inserted in random order. Each tuple rep-
resented a bank account and the key represented the
unique account number. The data represents the ac-
count balance.

For all of our experiments the disk page was 8 KB.
The tuple size was 250 bytes, implying 32 tuples per
page. The experiments were all run on a 3.0GHz Pen-
tium IV running Fedora 1 Linux, with the default
buffer pool size of 264KB, accessing data from a lo-
cal EIDE disk.

The notarization was done every five seconds. The
notarization service response time was two seconds
(from the DBMS sending the notarization request until

511



receiving the notary ID back from the notarization ser-
vice, a quite conservative estimate). This reflects the
worst case, because in the real world application, the
notarization will not be done that frequently. It would
usually be around one notarization per day, which im-
poses much less notarization overhead than what we
did here. We chose five seconds here just to accommo-
date the experiments, which run for a relatively short
amount of time (much less than a day!). We imple-
mented our own notarization service, rather than using
one of the commercial services.

8.4 Validation Overhead

As discussed in Section 6.1, validation involves a linear
scan of the audit log, which costs O(n) time according
to the size of the audit log. (Since an intruder could
have changed any byte of the audit log, necessarily the
entire audit log must be read by the validator.) As an
initial experiment, we ran small transactions (inserting
four tuples each), and then validated the audit log.
We varied the number of transactions that were run
before validation and observed the total running time,
which consists of CPU time, sleep time and I/O time.
Validation time was under 1% of the time required to
create the audit log.

8.5 Impact of the Number of Transactions per
Application

We then studied the scalability of the auditing system
as the number of transactions grows. The database
was initially populated with 4M tuples to simulate
that many different bank accounts. implying a start-
ing database of approximately 1GB. Then according
to different experiments, insertion and/or deletion op-
erations wrapped in transactions were applied on ran-
domly selected tuples. In order to simulate the data
access hot spots (i.e., some of the accounts are very
active and represent a greater percentage of the total
accesses), the access to the tuples follows a normal dis-
tribution with an average equal to half of the largest
key and standard deviation equal to 1

8
of the largest

key.
We ran an application that performed updates on

this database changing the balance of accounts to a
new value (with the audit log retaining the old value
in an archival tuple). Each transaction updated four
tuples. We ran the application with different number
of transactions, and observed the total running time
and the number of I/Os with and without the auditing
system.

We can see from Figure 4 that the auditing running
time overhead increases proportionally to the number
of transactions, at about 9% over the non-auditing
database (for all the experiments in this paper, the
auditing overhead was between 9% and 16%).

The auditing system introduces essentially no I/O
overhead (either no or one I/O, for a slightly larger

0

20

40

60

80

100

0 2 4 6 8 10 12

T
im

e 
(s

ec
)

Number of Transactions (thousand txn)

AUD-Total Time
nonAUD-Total Time

Figure 4: Performance: Changing the Number of
Transactions per Application

log). For example, at 12,000 transactions, the NSR
made only 44 I/O requests.

8.6 Impact of Transaction Size

We then studied the impact of transaction size (num-
ber of tuples modified per transaction) on the auditing
system performance. The database configuration was
identical to the above. We ran the application with
10,000 transactions, but varied the number of tuples
updated per transaction, from 2 to 64. Then we ob-
served the total running time and the number of I/Os
with and without auditing system. From Figure 5, we
see that the overhead of auditing is again about 11%,
independent of transaction size.

8.7 Impact of Tuple Size

We then turned to the impact of the tuple size on the
auditing system performance. The database configura-
tion was identical to that above. Here each transaction
modified four tuples. We fixed the data bandwidth (to-
tal bytes of data manipulated) and varied the number
of transactions in inverse proportion to the tuple size,
namely (10 bytes/tuple, 10,000 transactions) to (1000
bytes/tuple, 100 transactions). Note that the x-axis of
Figure 6 is logarithmic.

Here the time overhead for hashing ranged from
16% in the worst case (for very small tuples) to an
insignificant overhead for large tuples. From this ex-
periment and the fact that hashing operations count
for most of the auditing system overhead, we can infer
that the number of hashing operations instead of the
total bytes of data hashed dictates to first order the
auditing system overhead.

512



0

50

100

150

200

250

0 10 20 30 40 50 60

T
im

e 
(s

ec
)

Number of Tuples Modified Per Transaction

AUD-Total Time
nonAUD-Total Time

Figure 5: Performance: Changing the Transaction Size

0

10

20

30

40

50

60

10 30 100 300 1000

T
im

e 
(s

ec
)

Tuple Size (byte)

AUD-Total Time
nonAUD-Total Time

Figure 6: Performance: Changing the Tuple Size
While Fixing the Data Bandwidth

8.8 Impact of the Notarization Service Re-
sponse Time

In this experiment, we studied the impact of the nota-
rization service response time on the auditing system.
The “response time” is defined as the time interval
from sending the notarization service request until the
DBMS received the notary ID back from the notariza-
tion service. There were 10,000 transactions in this
application and each updated four tuples. We ran the
application with various notarization response time,
namely 1, 2, 3, and 4 seconds (the system was exe-
cuting about 100 transactions per second, so there are
many hundreds of transactions backed up when the
response time is four seconds) and observed the CPU
time, total running time and number of I/Os with the
auditing system.

The notarization service response time does not af-
fect the auditing system performance. The total time

was around 98 seconds, independent of the response
time. When the notarization takes longer time to re-
turn the notary ID, the currently running transactions
will accumulate in the TOL in the AUD module, which
causes an undetectable CPU overhead to maintain the
TOL data structure management.

9 Related Work

There has been related work in several fields: security,
operating systems, and databases. We address each in
turn.

Mercuri raises the need to audit the audit log [14].
Peha [17] uses, as we do, one-way hash functions and a
“trusted” notary to hash and store every transaction.
Our approach differs in that we make no assumptions
about the DBMS, or even the hardware it executes on,
remaining in the trusted computing base following an
intrusion; Peha on the other hand advocates a “no-
tary on a chip”. Unlike Peha, we integrate hashing
with stamping of tuples in the table, and we consider
system issues such as the need to hash tuples and us-
ing partial result authentication codes to link transac-
tions. Peha simply batches transactions together by
hashing all the data in all the transactions, which will
undoubtedly result in very poor performance, as we
discussed in detail in Section 6.1. Peha goes into more
detail on how customers, notarizers, validators, and
auditors can use public key encryption to coordinate.
Note that since we send the notarization service only
hash values, no private data that is revealed to that
external service. It may still be useful to encrypt the
tuples that flow from the database to the validator, if
that process communicates with the DBMS over non-
secure channels.

As mentioned in Section 2, Schneier and Kelsey ad-
dress audit logs that are used for later forensic investi-
gations into detected intrusions [21]. Their require-
ments differ considerably from ours. In particular,
they render the log entries impossible for the attacker
to read. They use a hash linking in a similar way
to our algorithm. They do not consider efficiency is-
sues, which are critical in our situation where an online
transactional database is being logged.

Merkle proposed a digital signature system based
on a secure conventional encryption function over a
tree of document fragments [15]. This work could be
utilized within an notarization service, but is not di-
rectly applicable to our problem of hashing the data
of individual transactions.

Devanbu et al. applied the Merkle Tree authenti-
cation mechanism to both relational [6] and XML [5]
data. Here the model is different: queries over static
data which has been previous digested are evaluated
by an insecure server. The query results are sent to
clients, which can independently verify, using the di-
gest, that the result contains all the requested records
and no superfluous records. While our approach also

513



uses a hashing approach similar to Merkle and this
work (though not tree-based), we focus on modifica-
tions made by the perhaps compromised server.

The file system equivalent of a transaction-time
database is a read-only file system, in which new files
can only be added; existing files cannot be modified [8],
or a read-write system in which the files are logged,
such as in the Ivy system [16]. These systems sign the
data, so that programs that read a file can be assured
that it has not been corrupted. They share with the
present paper the need for high performance.

POSTGRES [24] and Dali [4] were two different ap-
proaches of protecting critical DBMS data structures
against software errors. The former used hardware
protection, while the latter used a wordcode software
mechanism and also proposed a recovery algorithm for
the corrupted transactions. They mainly dealt with
abnormal corruptions caused by software errors in-
stead of human hackers. And the protection was lim-
ited to the in-memory data structures instead of the
whole database on disk. If Bob directly changed the
data in the disk file, this intrusion would not be de-
tected by these mechanisms.

Liu, Ammann and Jajodia propose an algorithm
that rewrites the execution history backing out mali-
cious transactions while preserving the good transac-
tions [1, 13]. This assumes that the malicious transac-
tions had been identified according to the application
semantics; they did not deal with intrusion detection.
Perhaps our detection approach could be coupled with
their repair technology.

10 Summary and Future Work

Motivated by audit log requirements, we have pre-
sented a new approach to providing audit logs for
transaction processing systems that can effectively and
efficiently detect tampering. We based our approach
on existing cryptographic techniques such as strong
cryptographic hashing, partial result authentication
codes, and off-site digital notarization services. Our
contributions are as follows.

• We showed how a transaction-time database can
be used as the basis for tamper-detecting audit
logs, transparent to the application.

• To reduce the expense of interacting with the no-
tarization service on a per-tuple basis, an oppor-
tunistic hashing algorithm was proposed to com-
pute the data hash value of transactions, so as to
enable per-transaction notarization. Incremental
hashing and tuple sequence numbers are proposed
to support opportunistic hashing.

• To further minimize the expense of interact-
ing with notarization services, linked hashing of
transactions was introduced, by means of partial
result authentication codes.

• We used an in-memory data structure, the trans-
action ordering list, to handle non-monotonic as-
signment of transaction times that result from
sophisticated timestamping algorithms as well as
handling delays from the off-site notarization ser-
vice.

• We designed our validator to make a single scan
of the audited tables, interacting with the nota-
rization service infrequently.

• We developed an implementation within the high-
performance Berkeley DB data storage manager,
and showed through experiments that the over-
head never exceeds 16%, that to a first approxi-
mation the tuple size dictates the auditing system
overhead, rather than the total number of bytes
hashed, and that the notarization service response
time minimally impacts system performance.

There is more work that can be done. We’ve fo-
cused in this paper on certifying in a definitive fash-
ion that an audit log is pristine. If an audit log has
been tampered with, a detailed forensic analysis would
be required and would involve going back to other
records, perhaps even to physical records, to document
the fraud. In such circumstances, it would be helpful
for the validator to provide information enabling the
analysis to determine fairly precisely who performed
the attack, when the attach occurred, and which data
was compromised. To provide this information about
the intrusion, various hints, such as page-level hash
values, and the algorithms of inferring detailed intru-
sion information from these hints need to be devel-
oped. It is also possible for the DBMS and applica-
tions to log activities through additional data stored in
the database. That additional data would be helpful
in analyzing intrusions. Of course, such data should
be stored in audited tables.

The validator should be enhanced to differentiate
corruption of the hints from corruption of the data,
and should be able to contend with multiple intrusions.
The appropriate notarization granularity (an hour, a
day?) should be investigated. And we want to look at
partitioning to eliminate the need to scan all pages of
audited tables.

Finally, we want to produce and evaluate mecha-
nisms that leverage tamper detection of audit logs to
produce tamper-resistant audit logs, which cannot be
corrupted, yet are still accessible to the application,
and accord with our very general threat model.

References

[1] P. Ammann, S. Jajodia, and P. Liu, “Recov-
ery from Malicious Transactions,” IEEE Trans-
actions on Knowledge and Data Engineering
15(5):1167–1185, September 2002.

514



[2] J. Bair, M. Böhlen, C. S. Jensen, and R. T. Snod-
grass, “Notions of Upward Compatibility of Tem-
poral Query Languages,” Business Informatics
(Wirtschafts Informatik), Vol. 39, No. 1, Febru-
ary, 1997, pp. 25–34.

[3] M. Bellare and B. Yee, “Forward Integrity for Se-
cure Audit Logs,” Technical Report, Computer
Science and Engineering Department, University
of California at San Diego, November 1997.

[4] P. Bohannon, R. Rastogi, S. Seshadri, A. Silber-
schatz, and S. Sudarshan, “Using Codewords to
Protect Database Data from a Class of Software
Errors,” in Proceedings of the IEEE International
Conference on Data Engineering, 1999, pp. 276–
285.

[5] P. Devanbu, M. Gertz, A. Kwong, C. Martel,
G. Nuckolls, and S. G. Stubblebine, “Flexible Au-
thentication of XML documents,” in Proceedings
of the ACM Conference on Computer and Com-
munications Security, Philadelphia, PA, Novem-
ber, 2001, pp. 136–145.

[6] P. Devanbu, M. Gertz, C. Martel and S. G. Stub-
blebine, “Authentic data publication over the In-
ternet,” Journal of Computer Security 11(3):291–
314, 2003.

[7] P. DuBois, MySQL, Second Edition, SAMS,
2003.

[8] K. Fu, M. F. Kaashoek and D. Mazieres, “Fast
and secure distributed read-only file system,”
in Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation,
pp. 181-196, October 2000.

[9] L. A. Gordon, M. P. Loeb, W. Lucyshyn, and
R. Richardson, 2004 CSI/FBI Computer
Crime and Security Survey, Computer Secu-
rity Institute, 2004.

[10] S. Haber and W. S. Stornetta, “How To Time-
Stamp a Digital Document,” Journal of Cryptol-
ogy 3, pp. 99–111, 1999.

[11] C. S. Jensen and C. E. Dyreson (eds),
A Consensus Glossary of Temporal Database
Concepts—February 1998 Version,” in Tempo-
ral Databases: Research and Practice,
O. Etzion, S. Jajodia, and S. Sripada (eds.),
Springer-Verlag, pp. 367–405, 1998.

[12] C. S. Jensen and D. B. Lomet, “Transaction
Timestamping in (Temporal) Databases,” in Pro-
ceedings of the International Conference on Very
Large Databases, Roma, Italy, pp. 441–450, 2001.

[13] P. Liu, P. Ammann and S. Jajodia, “Rewriting
Histories: Recovering from Malicious Transac-
tions,” Distributed and Parallel Databases Jour-
nal (8):1:7–40, January 2000.

[14] R. T. Mercuri, “On Auditing Audit Trails,”
CACM 46(1):17–20, January 2003.

[15] R. C. Merkle, “A Certified Digital Signature,”
Advances in Cryptography—Annual International
Cryptography Conference, Vol. 435, pp. 218–238,
1989.

[16] A. Muthitacharoen, R. Morris, T. M. Gil and
B. Chen, “Ivy: A Read/Write Peer-to-Peer File
System,” in Proceedings of USENIX Operating
Systems Design and Implementation, 2002.

[17] J.M. Peha, “Electronic commerce with verifiable
audit trails,” in Proceedings of ISOC, 1999.
www.isoc.org/isoc/conferences/inet/99/-
proceedings/1h/1h 1.htm, viewed on March
26, 2003.

[18] M. Rabi and A. T. Sherman, “An observation on
associative one-way functions in complexity the-
ory,” in Information Processing Letters, Vol 64,
Issue 5, pages 239-244, 1997.

[19] R. Ramakrishnan and J. Gehrke, Database
Management Systems, Third Edition, 2003.

[20] B. Salzberg, “Timestamping After Commit,” in
Proceedings of PDIS Conference, pp. 160–167,
1994.

[21] B. Schneier and J. Kelsey, “Secure Audit Logs
to Support Computer Forensics,” ACM Trans-
actions on Information and System Security
2(2):159–196, May 1999.

[22] Sleepycat Software Inc., Berkeley DB, 2001.

[23] M. Stonebraker, “The Deisgn of the
POSTGRESS Storage System,” in Proceed-
ings of the International Conference on Very
Large Databases, pp. 289–300, 1987.

[24] M. Sullivan and M. Stonebraker, “Using Write
Protected Data Structures to Improve Software
Fault Tolerance in Highly Available Database
Management Systems,” in Proceedings of the
International Conference on Very Large Dsta
Bases, pp. 171–180, 1991.

[25] National Institute of Standards and Technology,
“Secure Hash Signature Standard,” August 2002.

515


