
Accurate and Efficient Crawling for Relevant Websites

Martin Ester

Hans-Peter Kriegel

Matthias Schubert

Simon Fraser University
School of Computing Science

Burnaby BC,
 Canada V5A 1S6

ester@cs.sfu.ca

University of Munich
Institute for Computer Science

Oettingenstr. 67,
D-80538 Munich, Germany

{kriegel,schubert}@dbs.informatik.uni-muenchen.de

Abstract
Focused web crawlers have recently emerged as
an alternative to the well-established web search
engines. While the well-known focused crawlers
retrieve relevant webpages, there are various
applications which target whole websites instead
of single webpages. For example, companies are
represented by websites, not by individual
webpages. To answer queries targeted at
websites, web directories are an established
solution. In this paper, we introduce a novel
focused website crawler to employ the paradigm
of focused crawling for the search of relevant
websites. The proposed crawler is based on a
two-level architecture and corresponding crawl
strategies with an explicit concept of websites.
The external crawler views the web as a graph of
linked websites, selects the websites to be
examined next and invokes internal crawlers.
Each internal crawler views the webpages of a
single given website and performs focused
(page) crawling within that website. Our
experimental evaluation demonstrates that the
proposed focused website crawler clearly
outperforms previous methods of focused
crawling which were adapted to retrieve websites
instead of single webpages.

1. Introduction
Focused web crawlers have recently emerged as an
alternative to the established web search engines like

Google [12]. A focused web crawler [3] takes a set of
well-selected webpages exemplifying the user interest.
Searching for further relevant webpages, the focused
crawler starts from a set of given pages and recursively
explores the linked webpages. While the crawlers used for
refreshing the indices of web search engines perform a
breadth-first search of the whole web, a focused crawler
explores only a small portion of the web using a best-first
search guided by the user interest. Compared to web
search engines, focused crawlers obtain a much higher
precision and return new pages which are not yet indexed.
Recently, focused web crawlers have received a lot of
attention in the research areas of database systems,
information retrieval and data mining [2,3,5,6,8,17].
Web search engines index individual webpages. Web
directories provide a more abstract view on the web,
listing relevant websites for a variety of topics. A website
is a linked set of HTML-documents published by the
same person or institution serving a common purpose. For
several applications, the information about the topics of
websites allows more accurate retrieval than the
information about topics of single webpages. For
example, companies are represented by entire websites,
not by individual webpages. As another example, when
looking for the price of a new computer, it is very helpful
to search only the websites of computer retailers instead
of searching the whole World Wide Web (WWW).
However, using a web directory for addressing these
problems has several drawbacks. Web directories offer in
most cases only a very small portion of the websites that
are relevant to a given topic. The given categorization
might totally lack the topic a user is interested in. Last but
not least, web directory services might not be up-to-date
due to manual maintenance. In this paper, we therefore
extend focused crawling to the search for relevant
websites offering a method to significantly increase the
recall of existing web directories. Additionally, such a
crawler can act as an alternative approach for searching
the web for topics not yet listed in any web directory.
To adopt focused crawling for website retrieval, the
simplest way is to use one of the well-established methods

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment.
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

396

for focused webpage crawling and, in a step of post-
processing, analyse the resulting webpages in order to
find relevant sites. This analysis can be done by looking
for relevant homepages or by applying a website classifier
[11] to all pages retrieved from a given website. However,
this approach is severely limited by the fact that there is
no guarantee that the crawled webpages are representative
of their corresponding websites.
In this paper, we argue that in order to achieve efficient
and accurate website crawling the concept of websites has
to be integrated into the focused crawler itself. Therefore,
we introduce a novel focused crawler directly searching
for relevant websites instead of single pages. The
proposed focused website crawler is based on a two-level
graph abstraction of the World Wide Web (WWW)
representing both webpages and websites together with
their links. The crawling task is divided into two major
subtasks corresponding to the two different levels of
abstraction:

• An internal crawler views the webpages of a
single given website and performs focused
(page) crawling within that website.

• The external crawler has a more abstract view of
the web as a graph of linked websites. Its task is
to select the websites to be examined next and to
invoke internal crawlers on the selected sites.

The proposed two-level architecture allows the crawler to
control the number of pages to be downloaded from each
website and enables it to find a good trade-off between
accurate classification and efficient crawling. Our
experimental evaluation demonstrates that website
classification based on the homepages is considerably less
accurate than classification methods employing more than
one webpage. Furthermore, we compare our prototype of
a focused website crawler to a focused webpage crawler
with website post-processing and show that the introduced
methods of focused website crawling clearly increase the
efficiency as well as the accuracy of retrieving relevant
websites from the WWW. The outline of the paper is as
follows. After this introduction, we briefly survey related
work. In section 3, we define the task of focused website
crawling and a basic solution. Section 4 presents our
novel approach to focused website crawling. Section 5
reports the results of our experimental evaluation. The last
section summarizes the paper and discusses several
directions for future research.

2. Related Work
In this section, we discuss related work on focused
crawling as well as on text and web classification. One of
the first focused web crawlers was presented by [8] which
introduced a best-first search strategy based on simple
criteria such as keyword occurrences and anchor texts.
Later, several papers such as [2] and [3] suggested to
exploit measures for the importance of a webpage (such

as authority and hub ranks) based on the link structure of
the world-wide-web to order the crawl frontier. These
measures, which are very successfully used to rank result
lists of web search engines, also proved to be very
effective in focusing a crawler on the topic of interest of a
user.
Recently, more sophisticated focused crawlers such as [5],
[9] and [17] incorporate more knowledge gained during
the process of focused crawling. [9] introduced the
concept of context graphs to represent typical paths
leading to relevant webpages. These context graphs are
used to predict the link distance to a relevant page and,
consequently, are applied to order the crawl frontier. [17]
explored a reinforcement learning approach, considering
the successful paths observed, to weight the links at the
crawl frontier based on the expected number of relevant
pages reachable. [5] extends the architecture of a focused
crawler by a so-called apprentice which learns from the
crawler’s successes and failures and is later consulted by
the crawler to improve the ratio of relevant pages visited.
Like a human user, the apprentice analyses the HTML
structure of a webpage to judge the relevance of the
outlinks of this page. To the best of our knowledge, all
focused crawlers presented in the literature search for
individual webpages and not for whole websites. The only
site-oriented features of established page crawlers are the
measures to prevent so-called spider traps and the
prevention of host-to-host reinforcement proposed by
Bharat and Henzinger [1]. A spider trap is an infinite loop
within the WWW that dynamically produces new pages
trapping a web crawler within this loop. A common
approach to avoid most spider traps limits the maximum
number of pages to be downloaded from a given website
in order to escape the trapping situation [6]. However,
these crawlers do not have any means to control the
search within a website.
Most text classification algorithms rely on the so-called
vector-space model. In this model, each text document is
represented by a vector of frequencies of the most
relevant terms. Due to the typically high dimensionality of
the vector space, most frequencies are zero for any single
document and many of the standard classification
methods perform poorly. However, methods that do not
suffer so much from high dimensionalities have been very
successful in text classification, such as naive Bayes [19],
support vector machines [14,19] or centroid based text
classification [13]. An increasing number of publications
especially deal with the classification of webpages. In
particular, several methods have been proposed to exploit
the hyperlinks for improving the classification accuracy.
[7] introduces several methods of relational learning
considering the existence of links to webpages of specific
classes. [4] presents techniques for using the class labels
and the text of neighboring webpages.
Most existing methods aim at classifying single
webpages, not complete websites. [11] introduced the
problem of website classification and presented several

397

methods based on the representation of a website as a
labeled website tree where the labels are drawn from a set
of page classes. However, all methods require that the
user defines an appropriate (for the task of website
classification) set of page classes and provides sufficient
numbers of training webpages for each of these classes.
We argue that this large overhead is a major obstacle for
practical applications. Furthermore, [11] only deals with
the classification of given websites, but does not present a
focused website crawler. While it suggests a simple
search strategy for exploring a given website, this strategy
is not suitable as an “internal crawl strategy”.
Furthermore, there is no “external crawl strategy” and no
discussion of the interaction between these components.
Though the approach described in [15] overcomes the
first problem of defining page classes it does not treat any
aspects of focused web crawling.

3. The Task of Focused Website Crawling

3.1. A Graph-Oriented View of the WWW

We identify a webpage p by its URL. Then,
content(p) → σ∈Σ* denotes the string we receive when
trying to download p. Furthermore, we assume a function
f: Σ* →T ≅ Nd which transforms a string (for example, the
contents of a webpage) into a d-dimensional feature
vector. Let Λ(p) be the set of all links (p,q1), (p,q2,),
…,(p,qn,), from p to qi ≠ p. The link (p,q) points from the
source page p to the destination page q. Links within the
same webpage are ignored. We define the webpage graph
as a directed graph G= (V,E) with V being the set of all
existing webpages (extended by a special element which
is needed to represent broken links) and E being the union
of Λ(p) for all p ∈ V.
The goal of focused website crawling is to retrieve new
relevant websites from the WWW. A website is a linked
set of webpages that is published by the same person,
group or institution and usually serves a common purpose,
e.g. to present a whole organization or company.
Unfortunately, this intuitive definition is not well suited
for automatic retrieval. Since there is no reliable way to
find out who really published a webpage and for what
purpose, there is no exact method to determine the
webpages belonging to a certain site. Nonetheless, no-one
would deny the existence of websites and thus, in order to
retrieve relevant sites it is necessary to find a pragmatic
definition that is suitable for the majority of cases. In this
paper, we take advantage of the characteristic that a very
large percentage of all websites is published under one
dedicated domain or subdomain. For the cases that a
website is spread over several domains/subdomains, we
do not loose any results, but may have some duplicates in
the result set. However, if large websites are classified
more than once, their chance of being part of the result
increases as well. The other problem of our definition is

the case that one domain hosts several websites. Thus,
websites without a domain of there own are not
discovered. However, websites without a domain of there
own are important in rare cases only and there is no
search system on the WWW that can claim to achieve
100% recall.
Formally, for each page p, host(p) returns the domain or
subdomain of p, i.e. the substring of the URL of p
between the protocol and the file section. We define a
website W as a subgraph W=(V’,E’) of the webpage graph
with the following properties:

)()(:', vhostuhostVvu =∈∀
)()(:',' vhostuhostVvVu ≠∉∈∀

')(')(:' VendestinatioVesourceEe ∈∧∈∈∀ .
We define the homepage as the webpage that is
referenced by the URL consisting of the domain name
only (e.g. http://www.cs.sfu.ca). Thus, each website has a
unique homepage that can be accessed knowing the
website name only. Compared to the webpage graph, the
website graph (which is the conceptual view of our
website crawler onto the WWW), has several important
differences: We distinguish two different types of nodes
at different levels of abstraction, page nodes and site
nodes. We distinguish two different types of edges,
representing inter-site links and intra-site links. Edges for
intra-site links point to page nodes, but edges representing
inter-site links point to site nodes. These differences are
due to the fact that a focused website crawler searches for
whole websites and visits one website after another
starting the exploration of a new website from its home
page. For a more formal definition, let G= (V,E) be the
webpage graph. We distinguish between intrinsic links
(p,q) with host(p) = host(q) and transversal links with
host(p) ≠ host(q). Let U denote the union of V and let W
be the set of all existing websites. We define the website
graph as a directed graph WG=(U,D) with the set of
edges D given as follows:

DqpqhostphostEqp ∈⇒=∈∀),()()(:),(
DqhostpqhostphostEqp ∈⇒≠∈∀))(,()()(:),(

Figure 1 depicts a small sample portion of the website
graph consisting of three websites. Intrinsic links are
represented by dashed arrows, transversal links by solid
arrows.

http://www.astronomy.net

.../astroguide/ .../articels/

.../NASA's_Observatorium/

http://www.nasa.gov

.../about/ .../news/

.../career/

.../events/

.../launches/.../contact/

.../flights/

http://adswww.harvard.edu/

.../abs_doc/faq.html .../whatsnew.html

.../help_pages/overview.html

Figure 1: Sample portion of the website graph.

398

3.2. Retrieving Websites with Focused Crawling

A focused webpage crawler [3] takes a set of well-
selected webpages exemplifying the user interest.
Searching for further relevant webpages, the focused
crawler starts from the given pages and recursively
explores the linked webpages. The conceptual view of the
WWW of a focused page crawler is the webpage graph.
The crawl frontier consists of all hyperlinks (or the
referenced webpages) from downloaded pages pointing to
not yet visited pages. The performance of the crawler
strongly depends on the crawling strategy, i.e. the way the
frontier is ordered.
There are several ways of post-processing the results of
focused page crawlers to adapt them for the task of
retrieving relevant websites. The simplest way is to select
all homepages of websites found within the relevant pages
of a crawl and to conclude that all corresponding websites
are relevant. However, the classification of websites based
on the homepage alone is not as accurate as more
sophisticated methods of website classification. A
homepage might consist of structural information only,
e.g. frame tags or provide not much text. Thus,
homepages often do not contain a meaningful description
of the purpose of a website. As a consequence this
approach to extract relevant websites from the results of a
focused webpage crawl suffers from inaccurate results.
Furthermore, since the webpage crawler does not prefer
homepages over other webpages, the rate of newly
discovered websites tends to be rather low.
Another approach of post-processing is to group the
resulting webpages by their website (i.e. domain) and
apply a website classifier like [15] to each set of
webpages. Though this approach promises better
classification accuracy, it still has drawbacks. Since the
set of webpages downloaded for each site is controlled by
the page crawler which is not conscious of websites at all,
this selection of pages might not be well suited for
representing the website. Thus, the crawler does not
guarantee that enough webpages per site are downloaded.
In our experiments, it turned out that usually more than
50% of the websites that were classified as relevant by
this method, were represented by one webpage only. On
the other hand, the efficiency suffers from the effect that
very relevant websites might be scanned completely due
to the high relevance scores of most of their pages. In
addition to the number, also the selection of webpages of
a conventional focused crawler causes a problem. Since a
focused crawler prefers relevant pages, a website might be
represented by the pages closest to the relevant topic. But
this selection is not a good representation for websites that
are irrelevant. Thus, websites containing some pages with
relevant information, belonging, however, to the other
class are misclassified. For example, a university might be
classified as relevant for skiing because there are some
student pages referring to this topic. We argue that in
order to achieve high classification accuracy and to

control the number of pages to be downloaded, a focused
website crawler requires an explicit concept of websites
and corresponding crawl strategies.

3.3. Focused Website Crawling

Website crawling can be considered as the process of
successively transforming a subgraph G0 of the website
graph WG with V0={W1,…,Wn}, n ≥ 1, where Wi is a
website, 1≤ i ≤ n, into a sequence of subgraphs G1,…,Gm
such that in each step exactly one website node from WG
is added to Gi to obtain Gi+1. V0 is called the set of start
websites. In the context of focused website crawling, we
assume two classes of websites, a class of relevant sites
(the target class) and a class of irrelevant sites (the
“other”-class) with respect to some user interest. The set
of start sites V0 should (mainly) consist of relevant sites.
To distinguish between relevant and irrelevant websites,
some (automatic) classifier is required which predicts the
class of a website (V’,E’) based on the feature vectors f(p)
of the pages p∈ V’. The website classifier is a function
that takes a website from W and a website class from the
set of classes C and returns a numerical confidence value
for this website w.r.t. the given class.

]1..0[: →×CWconfidence
A website is called relevant, if its confidence for the
target class Ctarget exceeds its confidence for the “other”
class.

},{: falsetrueWrelevance →
The website classifier is trained using the start websites
that can be provided either explicitly by the user (if
available) or implicitly by selecting some subtrees (and
the corresponding websites listed in these subtrees) of a
directory service like [10,12,18].
Based on the website classifier and the notion of relevant
websites, we introduce the following performance
measure for focused website crawlers. The pages per
relevant site rate (pprs-rate) of the website crawler after
step s is defined by the ratio of the number of downloaded
webpages to the number of relevant websites found, i.e

|})(|)\({|

)(
)()\(

trueWrelevanceGGW

Wpages
Gpprs

wss

GGW
s

wss

=∈
=

−

∈
∑

−

where pages(W) = {p ∈ W ∩ (Gs\Gs-w)} denotes the set of
pages in W that were visited so far and w is the beginning
of the time interval that is observed. The pprs-rate thus
measures the average effort to retrieve one additional
relevant website. It depends on two factors: (1) the
number of pages that have to be downloaded within a
relevant website (to be controlled by an internal crawler)
and (2) the number of pages downloaded from irrelevant
websites that were examined before finding the relevant
website (to be controlled by the external crawler).
The task of a focused website crawler is to find as many
relevant sites as possible, while downloading as few
webpages as possible. A website crawl terminates if the
wanted number of relevant sites is found or the pprs-rate

399

decreases significantly. In the next section, we will
introduce our architecture of a focused website crawler.

4. A Focused Website Crawler

4.1. The Architecture

Focused website crawling is performed on two levels. The
external or website level traverses the first level of the
website graph. The external crawl orders the (hyperlinks
to) yet unknown websites and invokes internal crawls on
the top-ranked ones. Since there are much less domains
than webpages, the external crawl frontier is rather small
compared to the crawl frontier of an ordinary focused
crawler. Thus, even for large crawls ranking can be done
on-the-fly and sophisticated ranking algorithms can be
applied. The second level is the internal or webpage level.
It examines the current website to identify its purpose and
extracts links to other websites while downloading as few
webpages as possible. Since the webpages within the
internal crawl frontier are needed for a limited time only
and their number is usually small, it can be stored in main
memory. Thus, expensive I/O operations are avoided and
the crawl frontier can be accessed and updated very fast.
Let us note that several internal crawlers examine
different websites simultaneously. Thus, it is guaranteed
that the data is drawn from several remote hosts at the
same time which ensures a high overall download rate.
Furthermore, controlling the number of pages visited from
each website helps to keep the additional load at each
website as low as possible, helping to increase the
acceptance of the focused crawler within the webmaster
community.
Figure 2 shows our architecture for a focused website
crawler. The external crawler stores the external frontier
consisting of websites only. To decide which website has
to be examined next, it ranks the external frontier. To
expand the frontier and to decide, if a chosen site is
relevant, the external crawler invokes an internal crawler.
The internal crawler traverses the website building an
internal crawl frontier that is restricted to the pages of this
site. During this traversal it examines the webpages to
determine the site class. Furthermore, it collects all
transversal links to other unexplored websites together

with the confidence w.r.t. the target class of their source
pages. As a result, the internal crawler returns information
about the website class and the set of transversal links
from the domain to new unexplored domains. Note that
these transversal links are not real hyperlinks, but an
aggregation of all hyperlinks that are found within the
website directing to pages located within an other website.
Thus, the number of transversal links from one site to
another website is limited to one.

4.2. The External Crawler

The task of the external crawler is to order the external
crawl frontier (consisting of links to not yet visited
websites) and to decide which site has to be examined
next by an internal crawler. The external crawler starts its
traversal of the website level from the user-specified start
websites and expands the graph by incorporating the
newly found websites. Since the task of the external
crawler is similar to the task of a focused crawler for
webpages, most of the methods mentioned in section 2 are
applicable to order the external frontier. The major
difference is that distillation takes place at another more
abstract level. Thus, the relevance scores attached to
nodes and edges may be determined in a different way in
order to achieve good results.
During a crawl, we distinguish two different sets of nodes
of the website graph: Nodes corresponding to already
examined websites are elements of Vex and so-called
border nodes that have not yet been examined, are
elements of Vbd. The task of the crawler is to rank the
elements of Vbd with respect to the information gained
while examining the elements of Vex. Each website W ∈
Vbd is reachable by at least one link contained in some
website Vi ∈ Vex.
The (external) crawling strategy employed in this paper is
simple but effective and is very similar to the basic
crawler proposed in [5]. Note that most of the established
crawling strategies [2,3,5,6,8,17] are applicable as well.
For every node W ∈ Vbd, a ranking score is calculated as
follows:

)(

),(
)()(

WL

WVweight
Wrank

ex

WLV
i

exi

∑
∈=

where Lex(W) ={ V | V ∈ Vex ∧ ∃ edge(V,W) } and
edge(Vi,W) denotes that there is at least one link from
node Vi to node W. Furthermore, weight(V,W) is a
function that determines the confidence for each edge that
its destination is relevant to the topic. In other words, an
unknown website is judged by the average weight of the
known edges referencing it. Thus, the website W with the
highest rank(W) should be crawled first. The edges do not
directly correspond to the hyperlinks, but represent an
aggregate of all hyperlinks leading from one website to
another. Let us note that this method solves the same
problem as the host-to-host cleaning improvement
suggested in [1], i.e. it avoids that strongly connected

www….
www….
www….
www….
www….
….

www….
results

www….
www….
www….
www….
….

www….
transversal links

www….
www….
www….
www….
….

www….
www….
www….
www….
www….
….

Database

External Crawler

W W W
external crawl strategy

http://www.lm..

...

http://www.lm..
internal frontier

Site: www.domain.com

http://www.lm..

Page Classifier

Internal Crawler Threads

external frontier

internal crawl strategy

http://www.lm..
...

cl. result

transversal links
www….
www….
www….
www….
www….
….

www….
results

www….
www….
www….
www….
….

www….
transversal links

www….
www….
www….
www….
….

www….
www….
www….
www….
www….
….

Database

External Crawler

W W W
external crawl strategy

http://www.lm..

...

http://www.lm..
internal frontier

Site: www.domain.com

http://www.lm..

Page Classifier

Internal Crawler Threads

external frontier

internal crawl strategy

http://www.lm..
...
http://www.lm..
...

cl. result

transversal links

Figure 2: Architecture of the focused website crawler.

400

domains are overemphasized. The remaining task is how
to determine the weights for the edges. To answer this
question, we investigated the following three approaches :

• Global edge weights: Each edge is weighted by the
confidence w.r.t. the target class of the website the
edge is contained in:

),(),(arg ettglobal CWconfidenceVWweight =

where confidence(W,C ett arg) denotes the
confidence value for website W w.r.t. the target
class.

• Local edge weights: Each edge is weighted by the
average confidence w.r.t. the target class of the
webpages containing links pointing to the given
website:

)]},([|{

]|Pr[

),())},((|{

qpVqWpp

ptarget

VWweight qpVqWppp
local

∧∈∃∧∈
=

∑
∧∈∃∧∈∈

 where Pr[target|p] is the confidence of page p
being contained in a target class website. These
confidences for single webpages are also collected
within the website classifier, but do not correspond
to the complete set of webpages downloaded for
classification.

• Combined edge weights: This is a combination of
both methods integrating both scores to combine
local and global aspects by taking the average
weight of both methods.

2
),(),(

),(
VWweightVWweight

VWweight globallocal
combined

+
=

The advantage of local edge weights is that they
distinguish the transversal links according to the relevance
of the source pages of a link. Thus, transversal links found
on irrelevant pages are weighted less than those found on
highly relevant webpages. On the other hand, local edge
weights might consider the links from source pages
containing sparse text only as irrelevant since the page
itself can be classified only poorly. This shows the
strength of global edge weights. Since global edge
weights consider the relevance of the complete site, they

transfer relevance from other relevant pages to the link
pages which do not provide enough content for proper
classification. Combined edge weights incorporate both
aspects. The links found in pages containing not enough
text for reliable classification are at least judged by the
relevance of the website and relevant pages transfer more
importance to the links than irrelevant ones. Figure 3
displays an example for all three methods of edge
weighting.
The performance of the external crawler influences one
important aspect of the pprs-rate: the number of relevant
sites that are examined compared to all websites that are
crawled by an internal crawler. We will refer to this ratio
as the website harvest rate. However, this aspect is not the
only influence on the pprs-rate. Even an optimal external
crawler will achieve very bad pprs-rates, if the internal
crawler explores large numbers of webpages per site.

4.3. The Internal Crawler

The internal crawler is responsible for the main advantage
of a dedicated website crawler namely that the results are
more reliable due to better classification accuracy. On the
other hand, the efficiency strongly depends on the ability
of the internal crawler to restrict the number of
downloaded webpages per site to as few pages as
possible. Furthermore, additional goals have to be
fulfilled like the avoidance of spider traps and the
retrieval of new promising transversal links.
The main task of the internal crawler is to select a
representative sample set of webpages from a website W
and determine for each page pi the likelihood (called
confidence in this context) of pi appearing in website class
Ck. To determine this probability
Pr[wi| wi ∈ W ∧ W ∈ Ck], we employ a text classifier. To
choose the sample set, we employ focused crawling using
a so-called internal crawl strategy. To determine the class
of an entire website W, for each class Ck we calculate the
probability that W was generated by the process
corresponding to class Ck.
Additionally, there are several other side goals of the
internal crawler like collecting new transversal links and
avoiding spider traps.
4.3.1 The Webpage Classifier
The task of the webpage classifier is to decide how likely
it is that a certain webpage pi appears in a website W of
Class Ck. The task of this classifier is slightly different
from the task of the classifier in an ordinary focused
crawler. A webpage that is likely to appear in a typical
website does not necessarily have to be relevant for the
user interest. The page classifier should be capable to
handle multi-modal classes, i.e. classes that are strongly
fractioned into an unknown number of subclasses. This
feature is important because the webpages found in
websites of a common class provide several pageclasses,
e.g. contact-pages, directory pages etc.. For our crawler,
we employed a centroid based k-nearest neighbor (kNN)

0.6

0.9

0.5

7.0
2

5.09.0
=

+

conftarget(W)=0.6

65.0
2

6.0
2

5.09.0

=
+

+

global edge weight

local edge weight

combined edge weight
website U∈Vbdwebsite W∈Vex

0.6

0.9

0.5

7.0
2

5.09.0
=

+ 7.0
2

5.09.0
=

+

conftarget(W)=0.6

65.0
2

6.0
2

5.09.0

=
+

+

65.0
2

6.0
2

5.09.0

=
+

+

global edge weight

local edge weight

combined edge weight
website U∈Vbdwebsite W∈Vex

Figure 3: The three variants of edge weights for two
sample websites W and U. The confidence of W w.r.t. the
target class is 0.6. There are two pages in W referencing
pages in U, one page with confidence (w.r.t. the target
class) 0.9 and the other with confidence 0.5.

401

classifier as described in [13]. This variant of kNN
classification constructs the centroid of the training word
vectors for each class. The class is now determined by
choosing that class belonging to the closest centroid. In
order to achieve multi-modality, we adopted an idea
mentioned in the summary of [13]. We clustered each
training set using the k-means algorithm and represented a
class as the set of centroids of the resulting clusters. Let
us note that we started our prototype by using naive Bayes
classification, but changed to this classifier due to its
better accuracy.
Formally, each class Ck of our classifier is represented by
a set of centroids CSk. Let dmin(p, CSk) denote the distance
of the word vector p of a given webpage to the closest
element of CSk. Then we estimate the confidence value
for p belonging to Ck as follows:

[]
∑
∈

=

kj CSc
j

k
k cpd

cpd
Cp

)],(ln[
)],(ln[

|Pr
min

min .

In other words, we use the logarithm of the distance to the
closest centroid in CSk and normalize over all classes. Let
us note that we use the logarithm to weight close
distances higher than far distances. If a page has a large
distance to the centroids of all classes, the confidence
values are very similar for all classes. The closer the
distance to a centroid is, the more sensitively the distance
is measured. The resulting confidences are used by the
local and combined edge weights for determining the
weights of the transversal links.
To train the classifier, we first select a set of relevant
websites. The websites in our experiments, for example,
were taken from common directory services [10,12,18].
To represent the “other”-class, we choose several
websites belonging to a variety of other non-relevant
topics. Since we need to learn which kinds of webpages
might occur in a relevant site and which not, we have to
draw a representative sample of webpages from each
training website. The pages downloaded during the
process of classification of a website are limited to a small
set around the homepage, since these pages are most
likely connected to the purpose of the site. Thus, we
should use these pages for training as well. We restrict the
training pages to the first k pages when traversing the
website using breadth first search. This simple method
worked out well in our experiments.
4.3.2 The Internal Crawl Strategy
The internal crawl strategy determines the sample of
pages downloaded from the website to be classified. Each
internal crawl is started at the homepage. As mentioned
before, the information about the purpose of a website is
usually located around the homepage since most
publishers want to tell the user what a website is about,
before providing more specific information.
Analogously to a focused page crawler, the internal
crawler traverses the web using a best-first search
strategy. However, the internal crawl is restricted to the

webpages of the examined site. The goal is to find a set of
webpages reflecting the site’s purpose in a best possible
way. This is a major difference to focused page crawlers
which try to find as many relevant pages as possible.
However, looking for relevant pages is only appropriate
for site classification, if the examined website belongs to
the target class. If the given website belongs to the other
class, the crawler should prefer pages that typically occur
in non-relevant websites in order to find a good
representation. Thus, the internal crawler should rank the
pages by their confidences for any class compared to the
average confidences over all classes.
To solve this problem, our internal crawling strategy
works as follows. Like in the external crawler, we again
build the crawling strategy similar to the basic crawler in
[5]. The ranking score of a webpage p is defined as the
average weight of the links referencing p:

()

)(

),(
)()(

pL

pqweight
prank

in

pLq
i

ini

∑
∈=

where Lin is the set of pages read so far that link to p. To
represent the contribution of a page for the decision in
favor of either class, we determine the weight of link
(qi,p) as:
 []()targetqpqweight ii |Prvar),(=
where Pr[qi|target] is the confidence of qi w.r.t. the target
class obtained by the page classifier. The internal frontier
is sorted in decreasing order of these confidence values.
4.3.3. The Website Classifier
The combination of the page classifier and the internal
crawl strategy produces a sequence of webpages
downloaded from the site. Furthermore, each webpage is
classified and is associated with a confidence w.r.t. the
target class.
The following statistical model incrementally (i.e. after
each download of a new page) aggregates these page
confidences to calculate an overall confidence (w.r.t. the
target class) for the entire website. In our model, each
website class defines a statistical process that can generate
any webpage with a certain probability. A website W
belonging to that class Ck is a set of webpages generated
by drawing pages from the corresponding probability
distribution. In the following, we present a maximum-
likelihood classifier that assigns a website to the class
with the highest probability of having generated the
observed website W.
Let Wt denote the sample of site W that the internal
crawler has retrieved by time t. The probability that the
class Ck has generated Wt is given by

∏
∈

=
Wp

kikt
i

CpCW]|Pr[]|Pr[.

Applying Bayes theorem, the desired probability is:

∑
∈

⋅
⋅

=

Ci
iti

ktk
tk CWPC

CWPC
WC

]|[]Pr[
]|[]Pr[

]|Pr[.

402

Unfortunately, this formalization suffers from two
practical limitations:

• The apriori probabilities Pr[Ck] are unknown for
the WWW. However, the application of focused
crawling enables us to make a suitable estimate.
Since the focused website crawler focuses to
relevant sites, the probability distribution within
the whole web is expected to be very different
from the probability distribution within relevant
sites close to the frontier. Thus, we can use the
rate of relevant sites found so far as an estimate
for Pr[Ck].

• Since there is no classifier guaranteeing 100 %
accurate class predictions, the confidence values
are not always realistic as well. The class
prediction values generated by the classifier
always suffer from a certain classification error.
Thus, the combination of these results should
consider this inaccuracy.

To incorporate the possibility of classification errors, we
extend our model by integrating the classification error
observed on the training data into the model. Thus, we
obtain an error corrected probability for the occurrence of
page p in a website of class Ck and the classification error
perr:

errothererrkerrk pCppCppCp ⋅+−⋅=∧]|Pr[)1(]|Pr[(]|Pr[
The idea is that the probability that the prediction is made
correctly is the confidence value multiplied with the
probability that the classifier is correct. Additionally, we
have to consider the case that the classifier made a wrong
prediction. Thus, we have to add the confidence value of
the “other”-class multiplied with the error probability
perr. To estimate perr, we calculate the accuracy of the
page classifier on the set of webpages in the training
websites using 10-fold cross validation.
Using the error corrected probabilities avoids the effect
that the influence of a single page is overestimated during
classification. Even if the classifier outputs are 1.0 and
0.0, our process does not automatically overestimate the
impact of a single page. Thus, the calculated value for
Pr[Wt |Ck] will usually produce meaningful values after
some pages have been considered.

To stop classification, we define a certain confidence
threshold pthreshold and the internal crawl stops
classification as soon as this confidence level is reached.
By choosing pthreshold the internal classifier can be adjusted
to find an appropriate trade-off between accuracy and
efficiency. However, if its value is chosen too high, the
crawler will require too many pages with respect to a
website’s purpose. This is problematic, because the
performance suffers significantly and the reservoir of
characteristic pages within one website is limited. To
conclude, after the confidence for Wt reaches pthreshold, we
assume that the class of W is identical to the class of Wt
and we denote:

]|Pr[),(ttargettarget WCCWconfidence = and

()]|Pr[]|Pr[)(totherttarget WCWCWrelevance >= .
Figure 4 illustrates the complete process of website
classification. The displayed example describes the
common case that a website starts with a frame page and,
thus, the prediction of the class based only on the
homepage would be wrong.
4.3.4. Retrieving Transversal Links and Terminating
the Internal Crawler
Besides the primary goal to achieve accurate classification
of the examined website, the internal crawler has a
secondary objective of retrieving enough transversal links
for extending the external crawl frontier. Therefore, the
internal crawler collects all transversal links, i.e. the links
leading to new unexplored websites. Additionally, the
crawler stores the confidence values Pr[p|Ctarget] of the
source pages of the link. These values are used to
calculate local and combined edge weights.
Since, according to the above stop condition,
classification might be finished after a few pages only, it
is possible that the internal crawler has not yet found
enough interesting transversal links. In such cases we
want to continue the crawl until a reasonable number of
transversal links has been extracted. To decide if enough
links have been found within a website, we define the
linkWeight as a measure for the contribution of page p to
the set of relevant transversal links found within the site:

() []()cLTCpplinkWeight ptarget +⋅= |Pr

where LTp is the set of transversal links found in p and c ≥
1 is an constant. Furthermore, we define the LinkRank for
the set of webpages Wt as :

()
]|Pr[

1)(
ttragetWp

t WC
plinkWeightWLinkRank

t

⋅= ∑
∈

.

To employ the LinkRank for ensuring that enough
relevant links are found, we continue the internal crawl
even after classification has finished until it reaches a
certain level lthreshold. The idea of this heuristic is that each
webpage contributes its linkWeight to the LinkRank of the
website. The more links are contained in p and the more
relevant p is, the more will p contribute to the LinkRank.
The constant c is added to ensure that the linkWeight has

page confidence

pthr= 0.9, perr=0.9

1

4

3

2
Welcome to

Website crawling
Dgdfg

Dfgdfgdfgdfgdfgf
Dfgdfgdfgdfgdfg

dgdfgdgdfg
dfgdfgdfgdfgf dfgdfgdfgdfgf

Dfgdfgdfgdfgdfg
dgdfgdgdfg

other
target

0.6 0.05 0.4 0.2
0.4 0.95 0.6 0.8

site confidence
other
target

0.58 0.18 0.14 0.05
0.42 0.82 0.86 0.95

internal crawler / page classifier

0.58 < 0.9
(other)

0.82 < 0.9
(target)

0.86 < 0.9
(target)

0.95 > 0.9
target

1 2 3 4

page confidence

pthr= 0.9, perr=0.9

1

4

3

2
Welcome to

Website crawling
Dgdfg

Dfgdfgdfgdfgdfgf
Dfgdfgdfgdfgdfg

dgdfgdgdfg
dfgdfgdfgdfgf dfgdfgdfgdfgf

Dfgdfgdfgdfgdfg
dgdfgdgdfg

other
target

0.6 0.05 0.4 0.2
0.4 0.95 0.6 0.8

site confidence
other
target

0.58 0.18 0.14 0.05
0.42 0.82 0.86 0.95

internal crawler / page classifier

0.58 < 0.9
(other)

0.82 < 0.9
(target)

0.86 < 0.9
(target)

0.95 > 0.9
target

1 2 3 4

Figure 4: Illustration of website classification during an
internal crawl

403

Table 1: Overview of the training database.
topic number of

websites in db
websites
provided by

horses 32 YAHOO
astronomy 39 YAHOO
sailing 39 Google
mountain
biking

34 DMOZ

skate boarding 35 DMOZ
boxing 33 DMOZ
other 132 All

at least some value and thus the LinkRank grows
constantly until lthreshold is reached. The LinkRank
increases slower for relevant websites and faster for
irrelevant ones. Thus, an internal crawl of a relevant
website will encompass more webpages than an internal
crawl of an irrelevant site, which usually terminates after
classification. This way relevant websites add more new
links to the external frontier than irrelevant ones.
Let us note that we continue the crawl to reach lthreshold by
employing the mentioned internal crawling strategy. We
argue that if a website is relevant, the crawling strategy is
targeted to find new relevant pages which are most likely
to contain relevant links. For websites classified to the
other class, lthreshold is reached rather fast anyway and
switching the crawl strategy is not necessary.
An additional benefit of the internal crawler is that it
makes the website crawler robust against spider traps.
Since the number of webpages retrieved from one website
is explicitly controlled, the crawler might run into a spider
trap only in those rare cases where a site consists mostly
of pages without any meaning to the classifier. To ensure
termination in such cases, it is sufficient to restrict the
number of pages downloaded from one domain. Unlike in
page crawlers, no additional database table is needed to
store websites containing a spider trap. This is not
necessary within the focused website crawler since the
crawler will not visit a website more than once.

5. EXPERIMENTAL EVALUATION

5.1. The Test Environment

We performed our experiments for the topics listed in
table 1. For each topic, we first acquired a sample set of
relevant websites taken from a category in [10,12,18].
Additionally, we selected a random mixture of websites to
represent all other topics on the web. For each category,
table 1 provides the number of training websites, and the
directory service the websites were taken from. We stored
the websites in a training database, to have a stable test
environment consisting of 20,793 HTML-documents from
335 websites.
We implemented 2 focused crawlers. The first is our
prototype of a focused website crawler. The second is a

focused webpage crawler that crawls the internet by using
only one frontier of webpages. To provide a fair
comparison, both crawlers are based on the same
algorithm for page classification and ranking. The design
of our focused webpage crawler is illustrated in Figure 5.
The system starts its crawl on a defined set of webpages
(in our case the homepages of the websites found in a
directory service). Each new unexplored webpage is
stored in the crawling frontier. The page classifier
generates confidence values for each webpage that is
explored. Within the frontier, each unexplored webpage is
measured by the average confidence value for the target
class of the webpages linking it. The webpage providing
the highest average confidence value within the frontier is
examined next. In order to prevent spider traps and to
keep the load for each website at an acceptable level, we
implemented a guard module as described in [6]. This
guard module prevents the page crawler from accessing
webpages in websites that already contributed an
extraordinarily high number of webpages to the already
explored part of the web graph. To test the crawlers, we
performed various crawls on the WWW. This test bed
seemed to be suited best, although it is not guaranteed that
the web stays the same between two crawls. However,
due to the more stable character of the website graph, we
argue that the influence to the results is negligible. Let us
note that we performed some of the experiments again
after several weeks and achieved almost identical results.
On the other hand, downloading a representative section
of the website graph to provide a static test environment is
difficult. Since the part of the WWW visited by a website
crawler tends to be spread over several thousands hosts, it
is difficult to find a closed section that allows a realistic
behaviour of the tested crawlers.
Our experiments were run on a workstation that is
equipped with two 2.8 Ghz Xeon processors and 4 Gb
main memory. As a database system we used an
ORACLE 9i database server hosted on the same machine.
Both crawlers were implemented in Java 1.4, with the
exception of the ranking algorithms and the guard module
which were partly implemented in PL/SQL to improve the
runtime performance.

www….
www….
www….
www….
www….
….

www….
results
www….
www….
www….
www….
….

www….
links
www….
www….
www….
www….
….

www….
www….
www….
www….
www….
….

Database

Webpage Crawler

W W W

frontier
webpage classifier:
- confidence values
- Links

Guard module

www….
www….
www….
www….
www….
….

www….
results
www….
www….
www….
www….
….

www….
links
www….
www….
www….
www….
….

www….
www….
www….
www….
www….
….

Database

Webpage Crawler

W W W

frontier
webpage classifier:
- confidence values
- Links

Guard module

Figure 5: Architecture of our focused webpage crawler.

404

Table 2: Classification results using 10-fold cross validation within the training database for the internal crawler
and the homepage classifier.

topic perr Pthre

shold
pages
per site

prec.
int crw.

rec.
int crw

f-meas.
int. crw.

prec
homep.

rec.
homep.

f-measure
homepage

f-measure
improve.

horses 0.85 0.9 6.9 0.84 0.97 0.90 0.49 0.88 0.63 0.27
astronomy 0.90 0.9 6.3 1.00 0.90 0.95 0.86 0.79 0.83 0.12
sailing 0.88 0.9 6.3 0.90 0.97 0.94 0.77 0.92 0.84 0.10
mountain
biking

0.86 0.8 6.3 0.81 0.97 0.88 0.76 0.83 0.79 0.11

skate
boarding

0.88 0.8 3.2 0.76 1.00 0.86 0.74 0.89 0.81 0.05

boxing 0.88 0.9 7.4 0.79 0.79 0.79 0.74 0.72 0.73 0.05

5.2. Evaluation of Website Classification

Our first experiment demonstrates the higher accuracy
that can be achieved for website classification by using
the internal crawler compared to a homepage classifier.
The homepage classifier uses the same centroid based
kNN-classifier as the internal crawler, but is trained and
tested on homepages only. The internal crawler used in
these experiments terminates its crawl after a confidence
threshold of pthreshold is reached and does not continue the
crawl to find interesting links. Since this test needs
labelled test data, we performed 10-fold cross-validation
on the topics stored in the training database (table 1).
Table 2 displays the precision, recall and f-measure (as
trade off between precision and recall) for the tested
topics when employing the website classifier and the
homepage classifier. Additionally, the table reports the
classification error perr and the average number of
webpages that the website classifier downloaded per
website. For the training of the page classifier of the
internal crawler, we used the first 25 webpages of each
training website when applying a breadth-first traversal.
For all of the tested topics, the internal crawler obtained
significantly higher f-measures than the homepage
classifier. For the topic horses, it even increased the f-
measure from 0.63 to 0.9, i.e. by 0.27. Thus, by
classifying the websites by more than one page, the
classification accuracy was substantially increased. Let us
note that a manual analysis of the crawled websites
confirmed the hypothesis that especially commercial
websites often do not provide a meaningful homepage.
The average number of pages used for classification was
between 3.2 and 7.4 indicating that website classification
does not require large numbers of webpages per site for
making more accurate predictions.

5.3 Evaluation of the Crawling Performance

To demonstrate the performance of the complete focused
website crawler, we performed numerous crawls. Since
we retrieved a total number of approximately 50,000
potentially relevant websites, we could manually verify
only samples from each crawl. Table 3 displays a sample
of relevant websites retrieved for the topic horses. The

first five domains were retrieved after approximately 250
websites were visited, the last five at the end of the crawl
after about 2500 relevant websites had been retrieved.
This example illustrates that the crawler started to
discover relevant websites early and kept his good
accuracy until the end of the crawl.
Our first crawling experiment compares the three different
weightings introduced in section 4.2 for ranking the
external frontier. Therefore, we started each crawler using
the parameters achieving maximum accuracy for the
internal crawler and stopped the crawler after
approximately 2500 relevant websites were found. To
compare the effect of each of the weightings, we
compared the website harvest rate, i.e. the ratio of
relevant websites to all websites that were screened.
Figure 6 displays the average website harvest rate
aggregated over the last 1000 pages. For the topics horses
and astronomy all three weightings performed very
similar, although the global edge weights achieved a small
advantage, especially at the beginning of the crawl.
However, for the topic sailing the combined edge weights
were able to compensate some of the weaknesses of both
underlying methods. The experiments for the topic
mountain biking displayed a strong advantage for the
local edge weights. However, the combined edge weights
were still able to compensate some of the weaknesses of
global edge weights. Though our experiments did not
reveal that one of the mentioned weightings showed
superior results, we advise to employ the combined edge

Table 3: Example websites returned for the topic horses.

website
visited
pages

confi-
dence

www.tbart.net 4 0.65
www.socalequine.com 6 0.59
www.thehalterhorse.com 4 0.65
www.thejudgeschoice.com 4 0.75
www.thehorsesource.com 3 0.68
…
www.laceysarabians.com 5 0.71
www.baroquehorses.com 5 0.60
www.knightmagicfarms.com 4 0.67
www.pccha.com 7 0.64
www.danddhorsetransport.com 4 0.70

405

weights function, since it was always at least the second
best and sometimes outperformed the other methods.
The next series of experiments was conducted to back up
our claim that common focused (webpage) crawlers are
unsuitable for retrieving websites and that the proposed
focused website crawler overcomes the problems of page
crawlers providing a more efficient and accurate retrieval
of relevant websites.
In our first experiment, we have already demonstrated that
the accuracy of the internal crawler is superior to the
accuracy achieved by the homepage classifier. Thus, the
post-processing counting relevant homepages is unlikely
to produce the same quality of results either. To show that
applying a website classifier like [15] is not sufficient for
providing comparable accuracy, we determined the
percentage of websites that were classified by one single
webpage. For all four examples approximately 50 % of
the resulting websites where classified by using one page
only. Thus, in half of the cases applying a more
sophisticated website classifier to the websites being
aggregated from the results of a page crawl cannot
perform any better than the homepage classifier.
This behaviour of the page crawler can be explained as
follows. Most transversal links referencing a new site are
directed at one special entry page (usually the homepage)
and most other webpages found within this website are
linked via internal links only. A page crawler examining a
website visits this entry page first and classifies it. The
ranking score of the other webpages within the website
now strongly depend on the confidence value of the entry
page. If the confidence w.r.t. the target class is rather
high, then additional pages are examined also. If the
classification result is rather uncertain, however, the
ranking scores tends to be rather low and it is likely that
the additional pages won’t be visited during the crawl. For
the task of website retrieval this behaviour is unsuitable.
If the relevance of the entry page is hard to decide, it
would make sense to examine additional pages from the
site in order to achieve more reliable classification. On the

other hand, if the relevance of the entry page is very
certain, it is wasteful to proceed crawling to discover the
obvious. Our proposed website crawler handles candidate
sites that cannot reliably be classified based on the entry
page more carefully than those where a certain
classification can immediately be obtained.
To demonstrate this difference, we ran the focused
webpage crawler for each of the first 4 topics listed in
table 1 and applied a website classifier to the results.
Additionally, we performed two different website crawls
to demonstrate the capability of the website crawler to
find a suitable trade-off between accuracy and efficiency
by adjusting the confidence threshold. The first one uses
again the parameter setting providing maximum accuracy
(pthreshold ≈ 90%). Thus, we can judge the overhead for the
additional accuracy. The second crawl used a confidence
value of 70%. Due to this rather soft breaking condition,
the second crawl usually visited very few pages per
website, but provided less reliable results.
Figure 7 displays the average pprs-rate over the last 5000
webpages for the first four topics displayed in table 1.
Recall that the pprs-rate measures the average number of
additional webpages that are downloaded until a new
relevant website is discovered. Let us note that the crawls
vary in length, since we terminated crawling after
reaching at least 2500 relevant websites regardless of how
many webpages where downloaded.
For three out of four topics, even the website crawler
aiming at more accurate results (pthreshold ≈ 90%) achieved
a lower pprs-rate than the page crawler. For the topic
mountain biking, e.g., it needed approximately 7 pages
less than the page crawler to find an additional relevant
domain at the end of the crawl. Thus, even when returning
more reliable results, the website crawler in most cases
gained an efficiency advantage compared to the page
crawler.
For all topics, the website crawler with a 70 % confidence
threshold clearly outperformed the two comparison

pprs-rate (mountain biking)

0

5

10

15

20

25

1000 6000 11000 16000 21000 26000 31000 36000 41000 46000

downloaded webpagespp
rs

-r
at

e

pprs-rate (sailing)

0

5

10

15

20

1000 3000 5000 7000 9000 11000 13000 15000 17000

downloaded webpagespp
rs

-r
at

e

pprs-rate (astronomy)

0

5

10

15

20

1000 3000 5000 7000 9000 11000 13000 15000 17000

downloaded webpagespp
rs

-r
at

e

pprs-rate(horses)

0

2

4

6

8

10

12

1000 6000 11000 16000 21000

downl. wps.

pp
rs

-r
at

e

page crawler (website cl.)
website crawler (90%)
website crawler (70%)

pprs-rate (mountain biking)

0

5

10

15

20

25

1000 6000 11000 16000 21000 26000 31000 36000 41000 46000

downloaded webpagespp
rs

-r
at

e

pprs-rate (sailing)

0

5

10

15

20

1000 3000 5000 7000 9000 11000 13000 15000 17000

downloaded webpagespp
rs

-r
at

e

pprs-rate (astronomy)

0

5

10

15

20

1000 3000 5000 7000 9000 11000 13000 15000 17000

downloaded webpagespp
rs

-r
at

e

pprs-rate(horses)

0

2

4

6

8

10

12

1000 6000 11000 16000 21000

downl. wps.

pp
rs

-r
at

e

page crawler (website cl.)
website crawler (90%)
website crawler (70%)

Figure 7: pprs-rates (average of last 5000 pages) for each
topic and each crawler.

website harvest rate (mountain biking)

0

0,1

0,2

0,3

0,4

0,5

0,6

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

downloaded webpagesha
rv

es
t r

at
e

website harvest rate (horses)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 5000 10000 15000 20000 25000

downloaded webpages

ha
rv

es
t r

at
e local edge weights

combined edge weights

global edge weights

website harvest rate (sailing)

0

0,1

0,2

0,3

0,4

0,5

0,6

0 5000 10000 15000 20000 25000 30000 35000 40000

downloaded webpagesha
rv

es
t r

at
e

website harvest rate (astronomy)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

500 5500 10500 15500 20500 25500

downloaded webpagesha
rv

es
t r

at
e

website harvest rate (mountain biking)

0

0,1

0,2

0,3

0,4

0,5

0,6

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

downloaded webpagesha
rv

es
t r

at
e

website harvest rate (horses)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 5000 10000 15000 20000 25000

downloaded webpages

ha
rv

es
t r

at
e local edge weights

combined edge weights

global edge weights

website harvest rate (sailing)

0

0,1

0,2

0,3

0,4

0,5

0,6

0 5000 10000 15000 20000 25000 30000 35000 40000

downloaded webpagesha
rv

es
t r

at
e

website harvest rate (astronomy)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

500 5500 10500 15500 20500 25500

downloaded webpagesha
rv

es
t r

at
e

Figure 6: Website harvest rates (average of last 1000
pages) for each topic and each weighting.

406

partners with respect to efficiency. For the topic
astronomy, e.g., it visited only about five additional
webpages until it retrieved another relevant site. Due to
the large number of results, we could not verify the entire
result set, but a manual analysis of a sample supported our
claim of more reliable results even for the 70% website
crawler. To conclude, our experimental evaluation
demonstrates that a focused website crawler is, for similar
accuracy requirements, clearly more efficient for
retrieving relevant websites than a focused webpage
crawler with website post-processing. In an alternative
scenario, when achieving a comparable pprs-rate, the
focused website crawler returns more accurate results.

6. CONCLUSIONS
When searching the web, there are many applications
targeting whole websites rather than single webpages. For
that purpose, we introduced a focused crawler directly
searching for relevant websites instead of webpages. The
proposed two-level architecture allows us to control the
number of pages to be downloaded from each website and
to find a good trade-off between accurate classification
and efficient crawling. The external crawler views the
web as a graph of linked websites, selects the websites to
be examined next and invokes internal crawlers. An
internal crawler views the webpages of a single given
website and performs focused page crawling within that
website. In our experimental evaluation we demonstrated
that reliable website classification requires to visit more
than one but less than all pages of a given site.
Furthermore, we compared our proposed crawler to a
focused webpage crawler that handles the concept of
websites in a corresponding step of post-processing. For
the same efficiency (measured by the number of pages
downloaded per relevant site), the website crawler
achieved significantly higher classification accuracy than
its comparison partner. For comparable accuracy, the
website crawler needed a considerably smaller rate of
pages visited per relevant site. These results support our
claim that in order to achieve high classification accuracy
and efficiency of crawling, a focused website crawler
requires a two-level architecture and corresponding crawl
strategies with an explicit concept of websites.
For future work, we plan to develop more specific internal
and external crawling strategies. Furthermore, we will
investigate the crawling of commercial websites that are
not strongly linked to each other due to their competitive
nature. In these cases, spotting hub pages seems to be
more important than for crawling broad topics on the web.
Another highly interesting direction is the use of website
crawling to provide a filter for crawling highly specific
content from the web. The idea is to first spot websites
that are likely to contain the specific information.
Afterwards these websites can be scanned for a webpage
containing the specific information.

REFERENCES
[1] Bharat K.,Henziger M.R.: ”Improved Algorithms for

Topic Distillation in a Hyperlinked Environment”,
Proceedings of SIGIR-98, 1998.

[2] Chakrabarti S., van den Berg M., Dom B.: “Distributed
Hypertext Resource Discovery Through Examples”,
Proceedings VLDB 99.

[3] Chakrabarti S., van den Berg M., Dom B.: “Focused
Crawling: a new Approach to Topic-Specific Web
Resource Discovery”, Proceedings WWW 1999.

[4] Chakrabarti S., Dom B. and Indyk P.: ”Enhanced
hypertext categorization using hyperlinks”, Proceedings
ACM SIGMOD, 1998.

[5] Chakrabarti S., Punera K., Subramanyam M.:
“Accelerated Focused Crawling through Online
Relevance Feedback”, Proceedings WWW 2002.

[6] Chakrabarti S. :” Mining the Web”, (pp. 17-43), Morgan
Kaufmann Publishers, 2003.

[7] Craven M., DiPasquo D., Freitag D., McCallum A.,
Mitchell T., Nigam K., and Slattery S.: ”Learning to
Construct Knowledge Bases from the World Wide
Web”, Artificial Intelligence, Elsevier, 1999.

[8] Cho J., Garcia-Molina H., Page L.: “Efficient Crawling
Through URL Ordering”, Proceedings WWW 1998.

[9] Diligenti M., Coetzee F., Lawrence S., Giles C.L., Gori
M.: “Focused Crawling Using Context Graphs”,
Proceedings VLDB 2000.

[10] DMOZ open directory project, http://dmoz.org
[11] Ester M., Kriegel H.-P., Schubert M.: “Website Mining :

A new way to spot Competitors, Customers and
Suppliers in the World Wide Web”, Proceedings ACM
SIGKDD 02.

[12] Google Search Engine, http://www.google.com
[13] E.-H. Han and G. Karypis. ”Centroid-Based Document

Classification: Analysis and Experimental Results”. In
Proc. PKDD’00, 2000.

[14] Joachims T.: “Text Categorization with Support Vector
Machines: Learning with Many Relevant Features”,
Proceedings European Conference on Machine
Learning, 1998.

[15] Kriegel H.-P., Schubert M.: „Classification of websites
as sets of feature vectors“, Proc. IASTED DBA 2004.

[16] Kleinberg J.: “Authoritative sources in a hyperlinked en-
vironment“, Proc. ACM-SIAM, 1998.

[17] Rennie J., McCallum A.: “Using Reinforcement
Learning to Spider the Web Efficiently”, Proceedings
ICML 99.

[18] Yahoo! Directory Service, http://www.yahoo.com
[19] Yang Y., Liu X.: “A Re-Examination of Text

Categorization Methods”, Proceedings ACM SIGIR
1999.

407

