
-
ral
es

in
on
g
er.
t-

n-
et

is
ion
y-
,

ac-

-

n
:

a-
a

a
in

all

Computing Frequent Itemsets Inside Oracle 10G

Wei Li Ari Mozes

Oracle Corporation Oracle Corporation
500 Oracle Parkway 10 Van de Graaff

Redwood Shores, CA 94065 Burlington, MA 01803
U.S.A U.S.A

weili@oracle.com ari.mozes@oracle.com
Abstract1

Frequent itemset counting is the first step for
most association rule algorithms and some classi-
fication algorithms. It is the process of counting
the number of occurrences of a set of items that
happen across many transactions. The goal is to
find those items which occur together most often.
Expressing this functionality in RDBMS engines
is difficult for two reasons. First, it leads to
extremely inefficient execution when using exist-
ing RDBMS operations since they are not
designed to handle this type of workload. Sec-
ond, it is difficult to express the special output
type of itemsets.

In Oracle 10G, we introduce a new SQL table
function which encapsulates the work of frequent
itemset counting. It accepts the input dataset
along with some user-configurable information,
and it directly produces the frequent itemset
results. We present examples of typical computa-
tions with frequent itemset counting inside Ora-
cle 10G. We also describe how Oracle
dynamically adapts during frequent itemset exe-
cution as a result of changes in the nature of the
data as well as changes in the available system
resources.

1. Introduction

Frequent itemset counting operation is a com
mon data mining operations and it is used for seve
important mining algorithms, such as association rul
and large bayes classification.

Frequent itemset counting has been directly used
business-intelligence for many years. The most comm
application has been in the retail industry in determinin
which products are most commonly purchased togeth
For instance, people who buy beer are likely to buy pre
zels. This is known as Market Basket Analysis.

In the Market Basket Analysis model, a transaction co
tains a limited number of items that occur together. L
A be a set ofm items:A = {A1, A2, ... , Am}and T be a
set of n transactions:T = {T1, T2, ... , Tn}. Frequent
itemsets are subset of items inA which occur together in
T above a predefined support threshold. If the data
stored organized by transaction, where each transact
has a number of items, we define this as a horizontal la
out. Otherwise, if the data is stored organized by item
where each item has a number of supporting trans
tions, we define this as a vertical layout.

R. Agrawal, T. Imielinski, A. Swamy introduced associ
ation rules and the Apriori Algorithm in [1]. The Apriori
Algorithm, which is based on the horizontal layout, is a
iterative algorithm that has two steps in each iteration

• generating candidate itemsets using Apriori-rule

• reading all the transactions, and for each combin
tion of items within a transaction, incrementing
counter for that combination of items

A. Savasere, E. Omiecinski, S. Navathe introduced
different algorithm that is based on the vertical layout
[6]:

• a list of transactions for each item is created

• an itemset can be counted by simply intersecting
the involved items’ transaction lists

(1) Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy other-
wise, or to republish, requires a fee and/or special permission from the
Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004.
1253

ite

st
n.
le

s.
ets.

h
e
e

ec-
e.
Most of the research literature is based on these two cate-
gories of algorithms.

Given the nature of the operation, producing frequent
itemsets using existing SQL functionality is not trivial. In
[4], S. Sarawagi, S. Thomas, R. Agrawal discussed various
approaches to integrate the operation into RDBMS sys-
tems. We decided to push the functionality into the
RDBMS engine for the following reasons:

• We want to provide end-users a simple and flexible
interface yielding optimal performance.

• The SQL implementation stays closer to the dataset
and avoids huge raw data transfers to and from the
RDBMS system.

• We can closely interact with other built-in database
functionality such as dynamic memory management
and parallel execution.

Because we support frequent itemset counting as an inter-
nal database operation, we face several problems that are
not considered in the research literature, including:

• output format: an itemset is a set of items, which does
not have a corresponding native datatype in a pure
RDBMS system

• resource usage: we can not use an arbitrary amount of
resources (e.g., memory); we must consider the situa-
tion that the operation is running inside complex que-
ries and, at the same time, there may be many other
queries running inside the RDBMS system vying for
system resources

The rest of this paper is organized as follows. In section 2,
we describe our SQL interface. In section 3, we present
our general execution ideas, including algorithms and
adaptive execution. We give the demo content in section 4.

2. SQL interface - Table Functions

We support the frequent itemset counting operation in the
form of a table function in Oracle 10g. We will describe
the interface, using a simple example from [7].

Suppose that you are a product manager in Oracle. One of
your job responsibilities is to write technical white papers.
You have access to simple web reports that show you how
many people have downloaded each piece of collateral, so
you know which papers are popular.

Assume that you have aweb_logtable with three columns:

• session_id: downloading session ID

• command: downloaded white papers

• time_stamp: session start time

You can use the following simple query to find the six

most popular white papers downloaded from the webs
during a fixed time period:

select command,
rank() over (order by support desc) rnk

from (select command, count(session_id) support
from web_log
where time_stamp between ’01-APR-2002’

and ’01-JUN-2002’
group by command)

where rnk <= 6;

And you get the following results:
White paper title #

Table Compression in Oracle9i 1
Field Experiences with Large Data Warehouse 2
Key Data Warehouse Features 3
Materialized Views in Oracle9i 4
Parallel Execution in Oracle9i 5
Query Optimization in Oracle9i 6

But now you want to go one step further and find the mo
common pairs of collateral downloaded in a single sessio
You can use the frequent itemset table function in Orac
10g to answer the question:

select itemset,
rank() over (order by support desc) rnk

from
(select cast(itemset as fi_char) itemset,

support
from
table(dbms_frequent_itemset.fi_transactional (

cursor(select session_id, command
from web_log
where time_stamp between

’01-APR-2002’ and ’01-JUN-2002’),
(60/2600), 2, 2))

where rnk <= 3;

The above query uses thedbms_frequent_itemsetpackage2

to find the most frequently downloaded pairs of paper
We use a nested table type to represent the output items
Here, the nested table type isfi_char, which is defined as:

create type fi_char as table of varchar2(50);

The following results yields interesting findings. Althoug
the white paper “Table Compression in Oracle9i” is th
most popular individual paper, only one of the top thre
pairs includes this paper. Neither of the papers in the s
ond most popular pair show up as individual items abov

White paper titles #

Table Compression in Oracle9i and 1
Field Experiences with Large Data Warehouse
Data Warehouse Performance Enhancements and2
Oracle9i Performance and Scalability in DSS
Materialized Views in Oracle9i and 3
Query Optimization in Oracle9i

(2) You can reference [8] for the detailed syntax and
examples aboutdbms_frequent_itemset package.
1254

-
o

ion
the
e.
n-
in

ite-
he
lly
ases
o-
o-
e

ina-
th

st
run
ng
fol-

is-

of
o-
l,

r a
3. General Execution

In section 1, we mentioned that there are two categories of
frequent itemset counting algorithms: horizontal-layout and
vertical-layout based. We implemented versions of both
algorithms for the internal operation in Oracle 10g. We were
surprised to find that there is no research describing how to
execute those algorithms with a limited amount of memory
and how changes in available memory can greatly influence
the performance of the algorithms.

Horizontal layout algorithms: There are three reasons that
this category remains promising:

• In almost all situations, users store their information in
this layout. Therefore, horizontal based algorithm can
avoid the costly transformation from horizontal layout
to vertical layout.

• The algorithm is very efficient for sparse datasets, which
is reinforced by the fact that the average number of
items per transaction is less than 20.

• The memory requirement is based on the candidate
itemsets, not the transaction database. This behavior is
desirable in some situations. For example, if we have a
huge transaction database and a small set of candidate
itemsets, the algorithm can work efficiently with a lim-
ited amount of memory.

Vertical layout algorithms: It has been found that vertical
layout algorithms([3] [5] [6]) work better than horizontal
layout algorithms in many situations.

The general idea of the vertical layout algorithm is to com-
pute lists of transactions for each item and then intersect
these lists to compute the number of transactions that have
those items in common. There are two possible representa-
tions for each item’s list of transactions:

• linked list of all the transaction IDs

• bitmaps: each bit represents whether the corresponding
transaction contains the item

We chose a bitmap representation for the following reasons:

• In our analysis, an intersection-based algorithm is most
efficient when working on dense datasets. Bitmaps are a
better representation for dense datasets.

• We can leverage proven Oracle bitmap index technol-
ogy.

For frequent itemset computation, only the final count for a
given itemset is of interest; there is no need to preserve infor-
mation regarding which transactions contributed to a given
itemset. Thus, to enable bitmap index representation, a sim-
ple mapping function is designed to map each transaction ID
to a unique rowid, which results in each bit position being
mapped to an actual transaction. After the mapping, we can
utilize existing bitmap index counting and intersection tech-

niques. Figure 1 shows the mapping process.

Figure 1transaction IDs -> bitmap Mapping

The major drawback of the vertical layout approach for item
set counting comes from its large memory requirement. N
matter whether the algorithm uses bitmaps or transact
lists, both of which can be compressed representations,
data is proportional to the original transaction table in siz
Considering that the original transaction table may be giga
tic, there is no guarantee that we can fit all of this data
memory.

Adaptive Execution: In our study, neither algorithm is
clearly better than the other; the actual data, selection cr
ria, and available system resources will favor one over t
other. A complication is that frequent itemsets are usua
computed in phases where each successive phase incre
the length of the itemset being processed; while one alg
rithm may be most efficient for one phase, the same alg
rithm may be quite inefficient for another phase. Due to th
varying nature of the system resources and itemset comb
tions, our implementation adapts during execution, bo
within an algorithm and across algorithms.

To facilitate choosing the correct algorithm, during the fir
phase of execution we collect statistics that estimate the
time costs of both approaches. Then, for all of the remaini
phases, we execute frequent itemset counting using the
lowing steps to make it a self-tuning operator:

• Generate candidate itemsets using Apriori-rule. Stat
tics on candidates will also be collected.

• Using the Oracle query optimizer in conjunction with
the collected statistics, estimate the IO and CPU costs
both algorithms. Comparing the two final costs, we pr
ceed with the cheaper algorithm. At a very high leve
the costs are as follows:
- Horizontal Cost = transactions scan cost +

counting tree setup cost +
recursive counting cost

- Vertical Cost = bitmap scan cost +
bitmap intersection cost +
bit counting cost +
final aggregation cost

Adaptation does not cease once an algorithm is chosen fo

Transaction-1 Transaction-3Transaction-2

Rowid-1 Rowid-2 Rowid-3

bitmap:
1255

],
le
d,
ve
ne
r-

to

d
of

n
nvi-
t
er

s,
.

n

ce
particular phase. A phase may take a long time to complete,
and available memory in an RDBMS system will always be
changing as users connect and disconnect from the database,
firing off queries of varying complexity. There is a definite
need to adapt within a phase as the utilization of the overall
system changes.

To enable this type of intra-algorithm adaptive execution,
two things were done in the Oracle implementation. First,
the operator was written to take advantage of the ability to
grow memory dynamically and to graciously handle the situ-
ation where memory usage needs to be reduced. Second, the
operator cooperates fully with the Oracle memory manager
regarding its memory usage.

As an example of adapting to memory constraints within the
vertical layout approach, let us take the following scenario.
We have 26 frequent items, item-A to item-Z, and a transac-
tion database of 8 million transactions. Let us further assume
that we have 10MB memory and can only fit 10 full items in
memory. In general, we can not assume item-A and item-Z
are in memory at the same time. One solution is to create a
lightweight index on all of the items’ bitmaps. Given the
candidate itemset (A, B, Z), if only item-A and item-B are in
memory, we can search in the index, find the position of
item-Z, read the corresponding bitmap into memory (replac-
ing another bitmap), and intersect all of the bitmaps to get
the final counts. The cost of random I/O as used in this
approach can be prohibitive, so this approach has clear per-
formance issues.

We propose partitioning the bitmaps to address this memory
constraint. First, bitmaps are partitioned according to avail-
able memory in such a way that the portion of each bitmap
corresponding to a single set of transaction IDs fits in mem-
ory. Then, we intersect these partitions to produce partial
itemset counts for each of the candidate itemsets. To produce
complete aggregates, we will add another aggregation opera-
tor on top to sum across the partition subtotals. We must take
care not to produce very small partitions since such an
approach will degrade the good CPU performance of bitmap
intersections and will be costly from an I/O perspective due
to many small reads and writes.

When working with the Oracle memory manager, we define
three types of executions for this partitioned bitmap intersec-
tion:

• cache execution: all bitmaps fit in memory

• one-pass execution: at least one partition of all bitmaps
fits in memory

• multi-pass execution: even a single partition of bitmaps
cannot completely fit in memory, in which case we pro-
pose to avoid partitioning and simple perform random
access to retrieve a given bitmap from the index

Throughout execution, the frequent itemset counting opera-

tor will communicate with the Oracle memory manager [9
providing the memory requirements for its three possib
mechanisms for execution, retrieving the memory boun
and deciding which execution method to use. The abo
example detailing the use of partitioned bitmaps is just o
area in which the frequent itemset counting operator inte
acts with the memory manager to dynamically adjust
available resources.

4. Demo content

The demo will contain experiments for both a real worl
dataset and a synthetic dataset. We will show the benefit
integrating this functionality within the RDBMS: users ca
access and post-process results in the relational query e
ronment. In addition, we will show how frequent itemse
execution communicates with the Oracle memory manag
so as to adapt to the current environment.

References
[1] [RTA93] “Mining association rules between sets of items

in large databases”, R. Agrawal, T. Imielinski, A. Swamy,
ACM SIGMOD Conf. 1993

[2] [RJ96] “Parallel mining of association rules”, R. Agrawal,
J. Shafer, IEEE Trans. on Knowledge And Data
Engineering, 1996

[3] [MJZ97] “New algorithms for fast discovery of association
rules”, M. J. Zaki, Int’l Conf. on Knowledge Discovery and
Data Mining, 1997

[4] [SSR98] “Integrating association rule mining with
relational database systems”, Alternatives and Implication
S. Sarawagi, S. Thomas, R. Agrawal, ACM SIGMOD Conf
1998

[5] [PJH00] “Turbo-charging vertical mining of large
database”, by P. Shenoy, J. Haritsa, S. Sudarshan, ACM
SIGMOD Conf. 2000

[6] [AES95] “An efficient algorithm for mining association
rules in large databases”, A. Savasere, E. Omiecinski, S.
Navathe, Proc. 21st Int’l Conf. Very Large Databases, Sa
Francisco, 1995

[7] [FIO03] “Frequent itemsets in Oracle 10g”, 2003,
www.otn.oracle.com/products/bi/pdf/
10gr1_twp_bi_dw_freqitemsets.pdf

[8] [O10G] Oracle 10G PL/SQL Packages and Types Referen

[9] [BM02] SQL Memory Management in Oracle9i, Proc. 28th
Int’l Conf. Very Large Databases, Hong Kong, 2002
1256

	Abstract
	1. Introduction
	2. SQL interface - Table Functions
	3. General Execution
	Horizontal layout algorithms:
	Vertical layout algorithms:
	Figure 1 transaction IDs -> bitmap Mapping

	Adaptive Execution:
	4. Demo content
	[1] [RTA93] “Mining association rules between sets of items in large databases”, R. Agrawal, T. I...
	[2] [RJ96] “Parallel mining of association rules”, R. Agrawal, J. Shafer, IEEE Trans. on Knowledg...
	[3] [MJZ97] “New algorithms for fast discovery of association rules”, M. J. Zaki, Int’l Conf. on ...
	[4] [SSR98] “Integrating association rule mining with relational database systems”, Alternatives ...
	[5] [PJH00] “Turbo-charging vertical mining of large database”, by P. Shenoy, J. Haritsa, S. Suda...
	[6] [AES95] “An efficient algorithm for mining association rules in large databases”, A. Savasere...
	[7] [FIO03] “Frequent itemsets in Oracle 10g”, 2003, www.otn.oracle.com/products/bi/pdf/ 10gr1_tw...
	[8] [O10G] Oracle 10G PL/SQL Packages and Types Reference
	[9] [BM02] SQL Memory Management in Oracle9i, Proc. 28th Int’l Conf. Very Large Databases, Hong K...

	Computing Frequent Itemsets Inside Oracle 10G
	Wei Li Ari Mozes
	Oracle Corporation Oracle Corporation
	500 Oracle Parkway 10 Van de Graaff
	Redwood Shores, CA 94065 Burlington, MA 01803
	U.S.A U.S.A
	weili@oracle.com ari.mozes@oracle.com

