
1

Architectures and Algorithms for
Internet-Scale (P2P) Data
Management

Joe Hellerstein
Intel Research & UC Berkeley

Powerpoint Compatibility Note

This file was generated using MS PowerPoint
2004 for Mac. It may not display correctly in
other versions of PowerPoint. In particular,
animations are often a problem.

2

Overview

• Preliminaries
– What, Why
– The Platform

• “Upleveling”
– Network Data

Independence

• Early P2P architectures
– Client-Server
– Floodsast
– Hierarchies
– A Little Gossip
– Commercial Offerings
– Lessons and Limitations

• Ongoing Research
– Structured Overlays: DHTs
– Query Processing on Overlays
– Storage Models & Systems
– Security and Trust

• Joining the fun
– Tools and Platforms
– Closing thoughts

Acknowledgments

• For specific content in
these slides
– Frans Kaashoek
– Petros Maniatis
– Sylvia Ratnasamy
– Timothy Roscoe
– Scott Shenker

• Additional Collaborators
– Brent Chun, Tyson

Condie, Ryan Huebsch,
David Karger, Ankur
Jain, Jinyang Li, Boon
Thau Loo, Robert Morris,
Sriram Ramabhadran,
Sean Rhea, Ion Stoica,
David Wetherall

3

Preliminaries

Outline

• Scoping the tutorial

• Behind the “P2P” Moniker
– Internet-Scale systems

• Why bother with them?

• Some guiding applications

4

Scoping the Tutorial

• Architectures and Algorithms for Data Management
• The perils of overviews

– Can’t cover everything. So much here!

• Some interesting things we’ll skip
– Semantic Mediation: data integration on steroids

• E.g., Hyperion (Toronto), Piazza (UWash), etc.

– High-Throughput Computing
• I.e. The Grid

– Complex data analysis/reduction/mining
• E.g. p2p distributed inference, wavelets, regression, matrix

computations, etc.

Moving Past the “P2P” Moniker:
The Platform
• The “P2P” name has lots of connotations

– Simple filestealing systems
– Very end-user-centric

• Our focus here is on:
– Many participating machines, symmetric in

function
– Very Large Scale (MegaNodes, not PetaBytes)
– Minimal (or non-existent) management
– Note: user model is flexible

• Could be embedded (e.g. in OS, HW, firewall, etc.)
• Large-scale hosted services a la Akamai or Google

– A key to achieving “autonomic computing”?

5

Overlay Networks

• P2P applications need to:
– Track identities & (IP) addresses of peers

• May be many!
• May have significant Churn
• Best not to have n2 ID references

– Route messages among peers
• If you don’t keep track of all peers, this is “multi-hop”

• This is an overlay network
– Peers are doing both naming and routing
– IP becomes “just” the low-level transport

• All the IP routing is opaque

• Control over naming and routing is powerful
– And as we’ll see, brings networks into the database era

Many New Challenges

• Relative to other parallel/distributed systems
– Partial failure
– Churn
– Few guarantees on transport, storage, etc.
– Huge optimization space
– Network bottlenecks & other resource constraints
– No administrative organizations
– Trust issues: security, privacy, incentives

• Relative to IP networking
– Much higher function, more flexible
– Much less controllable/predictable

6

Why Bother? Not the Gold Standard

• Given an infinite budget, would you go p2p?
• Highest performance? No.

– Hard to beat hosted/managed services
– p2p Google appears to be infeasible

[Li, et al. IPTPS 03]

• Most Resilient? Hmmmm.
– In principle more resistant to DoS attacks, etc.
– Today, still hard to beat hosted/managed services

• Geographically replicated, hugely provisioned
• People who “do it for dollars” today don’t do it p2p

Why Bother II: Positive Lessons
from Filestealing
• P2P enables organic scaling

– Vs. the top few killer services -- no VCs required!
– Can afford to “place more bets”, try wacky ideas

• Centralized services engender scrutiny
– Tracking users is trivial
– Provider is liable (for misuse, for downtime, for local laws,

etc.)

• Centralized means business
– Need to pay off startup & maintenance expenses
– Need to protect against liability
– Business requirements drive to particular short-term goals

• Tragedy of the commons

7

Why Bother III? Intellectual
motivation
• Heady mix of theory and systems

– Great community of researchers have gathered
– Algorithms, Networking, Distributed Systems,

Databases
– Healthy set of publication venues

• IPTPS workshop as a catalyst

– Surprising degree of collaboration across areas
• In part supported by NSF Large ITR (project IRIS)

– UC Berkeley, ICSI, MIT, NYU, and Rice

Infecting the Network, Peer-to-Peer

• The Internet is hard to change.
• But Overlay Nets are easy!

– P2P is a wonderful “host” for infecting network designs
– The “next” Internet is likely to be very different

• “Naming” is a key design issue today
• Querying and data independence key tomorrow?

• Don’t forget:
– The Internet was originally an overlay on the telephone

network
– There is no money to be made in the bit-shipping business

• A modest goal for DB research:
– Don’t query the Internet.

8

Infecting the Network, Peer-to-Peer

• A modest goal for DB research:
– Don’t query the Internet.

Be the Internet.

Some Guiding Applications

• φ
– Intel Research & UC Berkeley

• LOCKSS
– Stanford, HP Labs, Sun, Harvard, Intel Research

• LiberationWare

9

φ: Public Health for the Internet

• Security tools focused on “medicine”
– Vaccines for Viruses
– Improving the world one patient at a time

• Weakness/opportunity in the “Public Health” arena
– Public Health: population-focused, community-oriented
– Epidemiology: incidence, distribution, and control in a

population

•φ: A New Approach
– Perform population-wide measurement
– Enable massive sharing of data and query results

• The “Internet Screensaver”
– Engage end users: education and prevention
– Understand risky behaviors, at-risk populations.

• Prototype running over PIER

•

10

φ Vision: Network Oracle

• Suppose there existed a Network Oracle
– Answering questions about current Internet state

• Routing tables, link loads, latencies, firewall events, etc.

– How would this change things
• Social change (Public Health, safe computing)
• Medium term change in distributed application design

– Currently distributed apps do some of this on their own

• Long term change in network protocols
– App-specific custom routing
– Fault diagnosis
– Etc.

11

LOCKSS: Lots Of Copies
Keep Stuff Safe
• Digital Preservation of Academic Materials
• Librarians are scared with good reason

– Access depends on the fate of the publisher
– Time is unkind to bits after decades
– Plenty of enemies (ideologies, governments, corporations)

• Goal: Archival storage and access

LOCKSS Approach

• Challenges:
– Very low-cost hardware, operation and administration
– No central control
– Respect for access controls
– A long-term horizon

• Must anticipate and degrade gracefully with
– Undetected bit rot
– Sustained attacks

• Esp. Stealth modification

• Solution:
– P2P auditing and repair system for replicated docs

12

LiberationWare

• Take your favorite Internet application
– Web hosting, search, IM, filesharing, VoIP, email, etc.
– Consider using centralized versions in a country with a

repressive government
• Trackability and liability will prevent this being used for free

speech

– Now consider p2p
• Enhanced with appropriate security/privacy protections
• Could be the medium of the next Tom Paines

• Examples: FreeNet, Publius, FreeHaven
– p2p storage to avoid censorship & guarantee privacy
– PKI-encrypted storage
– Mix-net privacy-preserving routing

“Upleveling”: Network Data
Independence

SIGMOD Record, Sep. 2003

13

Recall Codd’s Data Independence

• Decouple app-level API from data
organization
– Can make changes to data layout without

modifying applications

– Simple version: location-independent names

– Fancier: declarative queries

“As clear a paradigm shift as we can hope to find in computer science”
- C. Papadimitriou

The Pillars of Data Independence

• Indexes
– Value-based lookups have

to compete with direct
access

– Must adapt to shifting data
distributions

– Must guarantee
performance

• Query Optimization
– Support declarative queries

beyond lookup/search
– Must adapt to shifting data

distributions
– Must adapt to changes in

environment

B-Tree

Join Ordering,
AM Selection,
etc.

DBMS

14

Generalizing Data Independence

• A classic “level of indirection” scheme
– Indexes are exactly that
– Complex queries are a richer indirection

• The key for data independence:
– It’s all about rates of change

• Hellerstein’s Data Independence Inequality:
– Data independence matters when

d(environment)/dt >> d(app)/dt

Data Independence in Networks

d(environment)/dt >> d(app)/dt

• In databases, the RHS is unusually small
– This drove the relational database revolution

• In extreme networked systems, LHS is unusually high
– And the applications increasingly complex and data-driven
– Simple indirections (e.g. local lookaside tables) insufficient

15

The Pillars of Data Independence

• Indexes
– Value-based lookups have

to compete with direct
access

– Must adapt to shifting data
distributions

– Must guarantee
performance

• Query Optimization
– Support declarative queries

beyond lookup/search
– Must adapt to shifting data

distributions
– Must adapt to changes in

environment

Content-
Addressable
Overlay
Networks
(DHTs)

B-Tree

Multiquery
dataflow
sharing?

P2P

Join Ordering,
AM Selection,
etc.

DBMS

Early P2P

16

Early P2P I: Client-Server

• Napster

xyz.mp3 ?

xyz.mp3

Early P2P I: Client-Server

• Napster
– C-S search

xyz.mp3

17

Early P2P I: Client-Server

• Napster
– C-S search

xyz.mp3 ?

xyz.mp3

Early P2P I: Client-Server

• Napster
– C-S search
– “pt2pt” file xfer

xyz.mp3 ?

xyz.mp3

18

Early P2P I: Client-Server

• Napster
– C-S search
– “pt2pt” file xfer

xyz.mp3 ?

xyz.mp3

Early P2P I: Client Server

• SETI@Home
– Server assigns work units

My machine
info

19

Early P2P I: Client Server

• SETI@Home
– Server assigns work units

Task: f(x)

Early P2P I: Client Server

• SETI@Home
– Server assigns work units

Result: f(x)

60 TeraFLOPS!

20

Early P2P II: Flooding on Overlays

xyz.mp3 ?

xyz.mp3

An overlay network. “Unstructured”.

Early P2P II: Flooding on Overlays

xyz.mp3 ?

xyz.mp3

Flooding

21

Early P2P II: Flooding on Overlays

xyz.mp3 ?

xyz.mp3

Flooding

Early P2P II: Flooding on Overlays

xyz.mp3

22

Early P2P II.v: “Ultrapeers”

• Ultrapeers can be installed (KaZaA) or self-
promoted (Gnutella)

Hierarchical Networks (& Queries)

• IP
– Hierarchical name space (www.vldb.org, 141.12.12.51)
– Hierarchical routing

• Autonomous Systems correlate with name space (though not perfectly)
– Astrolabe [Birman, et al. TOCS 03]

• OLAP-style aggregate queries down the IP hierarchy

• DNS
– Hierarchical name space (“clients” + hierarchy of servers)
– Hierarchical routing w/aggressive caching

• 13 managed “root servers”
– IrisNet [Deshpande, et al. SIGMOD 03]

• Xpath queries over (selected) DNS (sub)-trees.

• Traditional pros/cons of Hierarchical data mgmt
– Works well for things aligned with the hierarchy

• Esp. physical locality a la Astrolabe
– Inflexible

• No data independence!

23

Commercial Offerings

• JXTA
– Java/XML Framework for p2p applications
– Name resolution and routing is done with floods &

superpeers
• Can always add your own if you like

• MS WinXP p2p networking
– An unstructured overlay, flooded publication and caching
– “does not yet support distributed searches”

• Both have some security support
– Authentication via signatures (assumes a trusted authority)
– Encryption of traffic

• Groove
– Platform for p2p “experience”. IM and asynch collab tools.
– Client-serverish name resolution, backup services, etc.

Lessons and Limitations

• Client-Server performs well
– But not always feasible

• Ideal performance is often not the key issue!

• Things that flood-based systems do well
– Organic scaling
– Decentralization of visibility and liability
– Finding popular stuff
– Fancy local queries

• Things that flood-based systems do poorly
– Finding unpopular stuff [Loo, et al VLDB 04]

– Fancy distributed queries
– Vulnerabilities: data poisoning, tracking, etc.
– Guarantees about anything (answer quality, privacy, etc.)

24

A Little Gossip

Gossip Protocols (Epidemic Algorithms)

• Originally targeted at database replication [Demers, et al. PODC ‘87]

– Especially nice for unstructured networks
– Rumor-mongering: propagate newly-received update to k random

neighbors
• Extended to routing

– Point-to-point routing [Vahdat/Becker TR, ‘00]

– Rumor-mongering of queries instead of flooding [Haas, et al Infocom ‘02]

• Extended to aggregate computation [Kempe, et al, FOCS 03]

• Mostly theoretical analyses
– Usually of two forms:

• What is the “tipping point” where an epidemic infects the whole
population? (Percolation theory)

• What is the expected # of messages for infection?

• A Cornell specialty
– Demers, Kleinberg, Gehrke, Halpern, …

25

Structured Overlays: Distributed
Hash Tables (DHTs)

DHT Outline

• High-level overview
• Fundamentals of structured network topologies

– And examples

• One concrete DHT
– Chord

• Some systems issues
– Storage models & soft state
– Locality
– Churn management

26

High-Level Idea: Indirection

• Indirection in space
– Logical (content-based) IDs, routing to those IDs

• “Content-addressable” network
– Tolerant of churn

• nodes joining and leaving the network to h

y

z

h=y

High-Level Idea: Indirection

• Indirection in space
– Logical (content-based) IDs, routing to those IDs

• “Content-addressable” network
– Tolerant of churn

• nodes joining and leaving the network

• Indirection in time
– Want some scheme to temporally decouple send and receive
– Persistence required. Typical Internet solution: soft state

• Combo of persistence via storage and via retry
– “Publisher” requests TTL on storage
– Republishes as needed

• Metaphor: Distributed Hash Table

to h
z

h=z

27

What is a DHT?

• Hash Table
– data structure that maps “keys” to “values”
– essential building block in software systems

• Distributed Hash Table (DHT)
– similar, but spread across the Internet

• Interface
– insert(key, value)
– lookup(key)

How?

Every DHT node supports a single operation:

– Given key as input; route messages toward
node holding key

28

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

DHT in action

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

DHT in action

29

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

DHT in action

Operation: take key as input; route messages to node holding key

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

DHT in action: put()

insert(K1,V1)

Operation: take key as input; route messages to node holding key

30

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

DHT in action: put()

Operation: take key as input; route messages to node holding key

insert(K1,V1)

(K1,V1)

K V

K V
K V

K V

K V

K V

K V

K V

K V

K V

K V

DHT in action: put()

Operation: take key as input; route messages to node holding key

31

retrieve (K1)

K V

K V
K V

K V

K V

K V

K V

K V

K V

K V

K V

DHT in action: get()

Operation: take key as input; route messages to node holding key

retrieve (K1)

K V

K V
K V

K V

K V

K V

K V

K V

K V

K V

K V

Iterative vs. Recursive Routing

Operation: take key as input; route messages to node holding key

Previously showed recursive.
Another option: iterative

32

DHT Design Goals

• An “overlay” network with:
– Flexible mapping of keys to physical nodes
– Small network diameter
– Small degree (fanout)
– Local routing decisions
– Robustness to churn
– Routing flexibility
– Decent locality (low “stretch”)

• A “storage” or “memory” mechanism with
– No guarantees on persistence
– Maintenance via soft state

Peers vs Infrastructure

• Peer:
– Application users provide nodes for DHT
– Examples: filesharing, etc

• Infrastructure:
– Set of managed nodes provide DHT service
– Perhaps serve many applications
– A p2p “incubator”?

• We’ll discuss this at the end of the tutorial

33

Library or Service

• Library: DHT code bundled into application
– Runs on each node running application
– Each application requires own routing

infrastructure

• Service: single DHT shared by applications
– Requires common infrastructure
– But eliminates duplicate routing systems

DHT Outline

• High-level overview
• Fundamentals of structured network topologies

– And examples

• One concrete DHT
– Chord

• Some systems issues
– Storage models & soft state
– Locality
– Churn management

34

An Example DHT: Chord

• Assume n = 2m nodes for a moment
– A “complete” Chord ring
– We’ll generalize shortly

An Example DHT: Chord

35

An Example DHT: Chord

An Example DHT: Chord

• Overlayed 2k-Gons

36

Routing in Chord

• At most one of each Gon
• E.g. 1-to-0

Routing in Chord

• At most one of each Gon
• E.g. 1-to-0

37

Routing in Chord

• At most one of each Gon
• E.g. 1-to-0

Routing in Chord

• At most one of each Gon
• E.g. 1-to-0

38

Routing in Chord

• At most one of each Gon
• E.g. 1-to-0

Routing in Chord

• At most one of each Gon
• E.g. 1-to-0
• What happened?

– We constructed the
binary number 15!

– Routing from x to y
is like computing
y - x mod n by
summing powers of 2

4

1

8

2

Diameter: log n (1 hop per gon type)
Degree: log n (one outlink per gon type)

39

What is happening here? Algebra!

• Underlying group-theoretic structure
– Recall a group is a set S and an operator • such that:

• S is closed under •
• Associativity: (AB)C = A(BC)
• There is an identity element I ∈ S s.t. IX = XI = X for all X 8

• There is an inverse X-1 8 for each element X 8
s.t. XX-1 = X-1X = I

• The generators of a group
– Elements {g1, …, gn} s.t. application of the operator on the

generators produces all the members of the group.

• Canonical example: (Zn, +)
– Identity is 0
– A set of generators: {1}
– A different set of generators: {2, 3}

Cayley Graphs

• The Cayley Graph (S, E) of a group:
– Vertices corresponding to the underlying set S
– Edges corresponding to the actions of the generators

• (Complete) Chord is a Cayley graph for (Zn,+)
– S = Z mod n (n = 2k).
– Generators {1, 2, 4, …, 2k-1}
– That’s what the gons are all about!

• Fact: Most (complete) DHTs are Cayley graphs
– And they didn’t even know it!
– Follows from parallel InterConnect Networks (ICNs)

• Shown to be group-theoretic [Akers/Krishnamurthy ‘89]

Note: the ones that aren’t Cayley Graphs are coset graphs,
a related group-theoretic structure

40

So…?

• Two questions:
– How did this happen?
– Why should you care?

How Hairy met Cayley

• What do you want in a structured network?
– Uniformity of routing logic
– Efficiency/load-balance of routing and maintenance
– Generality at different scales

• Theorem: All Cayley graphs are vertex symmetric.
– I.e. isomorphic under swaps of nodes
– So routing from y to x looks just like routing from (y-x) to 0

• The routing code at each node is the same! Simple software.
• Moreover, under a random workload the routing responsibilities

(congestion) at each node are the same!

• Cayley graphs tend to have good degree/diameter tradeoffs
– Efficient routing with few neighbors to maintain

• Many Cayley graphs are hierarchical
– Made of smaller Cayley graphs connected by a new generator

• E.g. a Chord graph on 2m+1 nodes looks like 2 interleaved (half-notch
rotated) Chord graphs of 2m nodes with half-notch edges

• Again, code is nice and simple

41

Upshot

• Good DHT topologies will be Cayley/Coset graphs
– A replay of ICN Design
– But DHTs can use funky “wiring” that was infeasible in ICNs
– All the group-theoretic analysis becomes suggestive

• Clean math describing the topology helps crisply
analyze efficiency
– E.g. degree/diameter tradeoffs
– E.g. shapes of trees we’ll see later for aggregation or join

• Really no excuse to be “sloppy”
– ISAM vs. B-trees

Pastry/Bamboo

• Based on Plaxton Mesh
[Plaxton, et al SPAA 97]

• Names are fixed bit strings
• Topology: Prefix Hypercube

– For each bit from left to
right, pick a neighbor ID
with common flipped bit
and common prefix

– log n degree & diameter
• Plus a ring

– For reliability (with k
pred/succ)

• Suffix Routing from A to B
– “Fix” bits from left to right
– E.g. 1010 to 0001:

1010 → 0101 → 0010 →
0000 → 0001

1010

0101

1100 1000

1011

42

CAN: Content Addressable Network

• Exploit multiple dimensions
• Each node is assigned a zone
• Nodes are identified by zone boundaries
• Join: chose random point, split its zone

(0,0) (1,0)

(0,1)

(0,0.5, 0.5, 1)

(0.5,0.5, 1, 1)

(0,0, 0.5, 0.5)

• •

•
•

(0.5,0.25, 0.75, 0.5)

(0.75,0, 1, 0.5)
•

Routing in 2-dimensions

• Routing is navigating a d-dimensional ID space
– Route to closest neighbor in direction of destination
– Routing table contains O(d) neighbors

• Number of hops is O(dN1/d)

(0,0) (1,0)

(0,1)

(0,0.5, 0.5, 1)

(0.5,0.5, 1, 1)

(0,0, 0.5, 0.5) (0.75,0, 1, 0.5)

•

•

•

•
•

(0.5,0.25, 0.75, 0.5)

43

Koorde

• DeBruijn graphs
– Link from node x to

nodes 2x and 2x+1
– Degree 2, diameter log n

• Optimal!

• Koorde is Chord-based
– Basically Chord, but with

DeBruijn fingers

Note: Not vertex-symmetric!
 Not a Cayley graph. But a coset graph of the “butterfly” topology.

Topologies of Other Oft-cited DHTs

• Tapestry
– Very similar to Pastry/Bamboo topology
– No ring

• Kademlia
– Also similar to Pastry/Bamboo
– But the “ring” is ordered by the XOR metric
– Used by the Overnet/eDonkey filesharing system

• Viceroy
– An emulated Butterfly network

• Symphony
– A randomized “small-world” network

44

Incomplete Graphs: Emulation

• For Chord, we assumed 2m nodes.
What if not?
– Need to “emulate” a complete graph

even when incomplete.
– Note: you’ve seen this problem

before!
• Litwin’s Linear Hashing emulates

hashtables of length 2m!

• DHT-specific schemes used
– In Chord, node x is responsible for

the range [x, succ(x))
– The “holes” on the ring should be

randomly distributed due to hashing
– Consistent Hashing [Karger, et al. STOC

97]

Chord in Flux

• Essentially never a
“complete” chord graph
– Maintain a “ring” of

successor nodes
– For redundancy, point to

k successors
– Point to nodes

responsible for IDs at
powers of 2

• Sometimes called
“fingers”

• 1st finger is the
successor

45

Joining the Chord Ring

• Need IP of some node
• Pick a random ID (e.g. SHA-

1(IP))
• Send msg to current owner

of that ID
– That’s your predecessor

Joining the Chord Ring

• Need IP of some node
• Pick a random ID (e.g. SHA-

1(IP))
• Send msg to current owner

of that ID
– That’s your predecessor

• Update pred/succ links
– Once the ring is in place, all

is well!
• Inform app to move data

appropriately
• Search to install “fingers” of

varying powers of 2
– Or just copy from

pred/succ and check!
• Inbound fingers fixed lazily

Theorem: If consistency is reached before network doubles, lookups remain log n

46

ICN Emulation

• At least 3 “generic” emulation schemes have been
proposed
– [Naor/Wieder SPAA ‘03]
– [Abraham, et al. IPDPS ‘03]
– [Manku PODC ‘03]

• As an exercise, funky ICN + emulation scheme =
new DHT
– IHOP: Internet Hashing on Pancake graphs

[Ratajczak/Hellerstein ‘04]

• Pancake graph† ICN + Abraham, et al. emulation.

†Based on Bill Gates’ only paper.
Trivia question: who was his advisor/co-author?

Pancake Topology

47

A “Generalized DHT”

• Pick your favorite InterConnection Network
– Hypercube, Butterfly, DeBruijn, Chord, Pancake,

etc.

• Pick an “emulation” scheme
– To handle the “incomplete” case

• Pick a way to let new nodes choose IDs
– And maintain load balance

PhD Thesis, Gurmeet Singh Manku, 2004

Storage Models for DHTs

• Up to now we focused on routing
– DHTs as “content-addressable network”

• Implicit in the name “DHT” is some kind of
storage
– Or perhaps a better word is “memory”
– Enables indirection in time
– But also can be viewed as a place to store things

• Soft state is the name of the game in
Internet systems

48

A Note on Soft State

• A hybrid persistence scheme
– Persistence via storage & retry

• Joint responsibility of publisher and storage node
– Item published with a Time-To-Live (TTL)
– Storage node attempts to preserve it for that time

• Best effort
– Publisher wants it to last longer?

• Must republish it (or renew it)

• Must balance reliability and republishing overhead
– Longer TTL = longer potential outage but less republishing

• On failure of a storage node
– Publisher eventually republishes elsehere

• On failure of a publisher
– Storage node eventually “garbage collects”

Optimizing routing to reduce latency

• Nodes close on ring, but far away in Internet
• Goal: put nodes in routing table that result in few hops

and low latency

CA-T1
CCI

Aros

Utah

CMU

To vu.nl
Lulea.se

MIT
MA-Cable
Cisco

Cornell

NYU

OR-DSLN20

N41N80
N40

49

Locality-Centric Neighbor Selection

• Much recent work [Gummadi, et al. SIGCOMM ‘03,
Abraham, et al. SODA ‘04, Dabek, et al. NSDI 04, Rhea, et al.
USENIX ‘04, etc.]

– We saw flexibility in neighbor selection in
Pastry/Bamboo

– Can also introduce some randomization into
Chord, CAN, etc.

• How to pick
– Analogous to ad-hoc networks

1. Ping random nodes
2. Swap neighbor sets with neighbors

– Combine with random pings to explore
3. Provably-good algorithm to find nearby neighbors

based on sampling [Karger and Ruhl 02]

Geometry and its effects

• Some topologies allow more choices
– Choice of neighbors in the neighbor tables (e.g.

Pastry)
– Choice of routes to send a packet (e.g. Chord)
– Cast in terms of “geometry”

• But really a group-theoretic type of analysis

• Having a ring is very helpful for resilience
– Especially with a decent-sized “leaf set”

(successors/predecessors)
• Say ~ log n

[Gummadi, et al. SIGCOMM ‘03]

50

Handling Churn

• Bamboo [Rhea, et al, USENIX 04]

– Pastry that doesn’t go bad (?)

• Churn
– Session time? Life time?

• For system resilience, session time is what matters.

• Three main issues
– Determining timeouts

• Significant component of lookup latency under churn

– Recovering from a lost neighbor in “leaf set”
• Periodic, not reactive!
• Reactive causes feedback cycles

– Esp. when a neighbor is stressed and timing in and out

– Neighbor selection again

Timeouts

• Recall Iterative vs. Recursive Routing
– Iterative: Originator requests IP address of each hop

• Message transport is actually done via direct IP
– Recursive: Message transferred hop-by-hop

• Effect on timeout mechanism
– Need to track latency of communication channels
– Iterative results in direct n×n communication

• Can’t keep timeout stats at that scale
• Solution: virtual coordinate schemes [Dabek et al. NSDI ‘04]

– With recursive can do TCP-like tracking of latency
• Exponentially weighted mean and variance

• Upshot: Both work OK up to a point
– TCP-style does somewhat better than virtual coords at

modest churn rates (23 min. or more mean session time)
– Virtual coords begins to fail at higher churn rates

51

Complex Query Processing

DHTs Gave Us Equality Lookups

• What else might we want?
– Range Search
– Aggregation
– Group By
– Join
– Intelligent Query Dissemination

• Theme
– All can be built elegantly on DHTs!

• This is the approach we take in PIER
– But in some instances other schemes are also reasonable

• I will try to be sure to call this out
• The flooding/gossip strawman is always available

52

Range Search

• Numerous proposals in recent years
– Chord w/o hashing, + load-balancing [Karger/Ruhl SPAA ‘04,

Ganesan/Bawa VLDB ‘04]

– Mercury [Bharambe, et al. SIGCOMM ‘04]. Specialized “small-
world” DHT.

– P-tree [Crainiceanu et al. WebDB ‘04]. A “wrapped” B-tree
variant.

– P-Grid [Aberer, CoopIS ‘01]. A distributed trie with random
links.

– (Apologies if I missed your favorite!)

• We’ll do a very simple, elegant scheme here
– Prefix Hash Tree (PHT). [Ratnasamy, et al ‘04]

– Works over any DHT
– Simple robustness to failure
– Hints at generic idea: direct-addressed distributed data

structures

Prefix Hash Tree (PHT)

• Recall the trie (assume binary trie for now)
– Binary tree structure with edges labeled 0 and 1
– Path from root to leaf is a prefix bit-string
– A key is stored at the minimum-distinguishing prefix (depth)

• PHT is a bucket-based trie addressed via a DHT
– Modify trie to allow b items per leaf “bucket” before a split
– Store contents of leaf bucket at DHT address corresponding

to prefix
• So far, not unlike Litwin’s “Trie Hashing” scheme, but hashed

on a DHT.
• Punchline in a moment…

53

PHT DHT ContentLogical Trie

PHT DHT ContentsLogical Trie

Search for 011101?

54

PHT Search

• Observe: The DHT allows
direct addressing of PHT nodes
– Can jump into the PHT at any node

• Internal, leaf, or below a leaf!
– So, can find leaf by binary search

• loglog |D| search cost!
• If you knew (roughly) the data distribution, even better

– Moreover, consider a failed machine in the system
• Equals a failed node of the trie
• Can “hop over” failed nodes directly!

– And… consider concurrency control
• A link-free data structure: simple!

Reusable Lessons from PHTs

• Direct-addressing a lovely way to emulate robust,
efficient “linked” data structures in the network

• Direct-addressing requires regularity in the data
space partitioning
– E.g. works for regular space-partitioning indexes (tries,

quad trees)
– Not so simple for data-partitioning (B-trees, R-trees) or

irregular space partitioning (kd-trees)

55

Aggregation

• Two key observations for DHTs
– DHTs are multi-hop, so hierarchical aggregation

can reduce BW
• E.g., the TAG work for sensornets [Madden, OSDI 2002]

– DHTs provide tree construction in a very natural
way

• But what if I don’t use DHTs?
– Hold that thought!

An API for Aggregation in DHTs

• Uses a basic hook in DHT routing
– When routing a multi-hop msg, intermediate nodes can

intercept

• Idea
– To aggregate in a DHT, pick an aggregating ID at random
– All nodes send their tuples toward that ID
– Nodes along the way intercept and aggregate before

forwarding

• Questions
– What does the resulting agg tree look like?
– What shape of tree would be good?

• Note: tree-construction will be key to other tasks!

56

Consider Aggregation in Chord

• Everybody sends their
message to node 0

• Assume greedy jumps
(increasing Gon-order)

• Intercept messages
and aggregate along
the way

Consider Aggregation in Chord

• Everybody sends their
message to node 0

• Assume greedy jumps
(increasing Gon-order)

• Intercept messages
and aggregate along
the way

57

Binomial Tree!!

Consider Aggregation in Chord

• Everybody sends their
message to node 0

• Assume greedy jumps
(increasing Gon-order)

• Intercept messages
and aggregate along
the way

Aggregation in Koorde

• Recall the DeBruijn graph:
– Each node x points to 2x mod n and (2x + 1) mod n

(But note: not node-symmetric)

58

Aggregation in Koorde

• Recall the DeBruijn graph:
– Each node x points to 2x mod n and (2x + 1) mod n

(But note: not node-symmetric)

Aggregation in Pastry/Bamboo

• Depends on choice of neighbors
– But if you flip exactly one bit each hop:

59

Aggregation in Pastry/Bamboo

• Depends on choice of neighbors
– But if you flip exactly one bit:

Metrics for Aggregation Trees

• What makes a good/bad agg tree?
– Number of edges? No!

• Always n-1. With distributive/algebraic aggs, msg size is fixed.
– Degree of fan-in

• Affects congestion
– Height

• Determines latency
– Predictability of subtree shape

• Determines ability to control timing tightly
– Stability in the face of churn

• Changing tree shape while accumulating can result in errors
– Subtree size distribution

• Affects “jeopardy” of lost messages

60

So what if I don’t have a DHT?

• Need another tree-construction mechanism
– There are many in the NW literature (e.g. for multicast)
– Require maintenance messages akin to DHTs

• Do you maintain for the life of your query engine? Or
setup/teardown as needed?

• Can pick a tree shape of your own
– Not at the mercy of the DHT topologies
– E.g. could do high fan-in trees to minimize latency

• As we noted before, we will reuse tree-construction
for multiple purposes
– It’s handy that they’re trivial in DHTs
– But could reuse another scheme for multiple purposes as

well

• Or, can do aggregation via gossip [Kempe, et al FOCS ‘03]

Group By

• A piece of cake in a DHT
– Every node sends tuples toward the hash ID of

the grouping columns
– An agg tree is naturally constructed per group

• Note nice dual-purpose use of DHT
– Hash-based partitioning for parallel group by

• Just like parallel DBMS (Gamma, the Exchange op in
Volcano)

– Agg tree construction in multi-hop overlay network

61

Hash Join

• We just did hash-based group by.
• Hash-based join is roughly the same deal, twice:

– Given R.a Join S.b
– Each node:

• sends each R tuple toward H(R.a)
• sends each S tuple toward H(S.b)

• Again, DHT gives
– Hash-based partitioning for parallel hash join
– Tree construction (no reduction along the way here, though)

• Note the resulting communication pattern
– A tree is constructed per hash destination!

• That’s a lot of trees!
• No big deal for the DHT -- it already had that topology there.

Fetch Matches Join

• Essentially a distributed index join
– Name comes from R* (Mackert & Lohman)

• Given R.a Join S.b
– Assume <S.b, tuple> was already “published” (indexed)

• For each tuple of R, query DHT for S tuples
matching R.a
– Each S.b value will get some subset of the nodes visiting it

• So a lot of “partial” trees

– Note: if S.b is not already indexed in the DHT via S.b, that
has to happen on the fly

• Half a hash join :-)

62

Symmetric Semi-Join and Bloom Join

• Query rewriting tricks from distributed DBs
• Semi-Joins a la SDD-1

– But do it to both sides of the join
– Rewrite R.a Join S.b as

• (<S.ID,S.b> semi-join <R.id,R.a>) join R.a join S.b
• Latter 2 joins can be Fetch Matches

• Bloom Joins a la R*
– Requires a bit more finesse here
– Aggregate R.a Bloom filters to a fixed hash ID. Same for

S.b.
– All the R.a Bloom filters are OR’ed, eventually multicasted

to all nodes storing S tuples
– Symmetric for S.b Bloom filter
– Can in principle stream refining Bloom filters

Query Dissemination

• How do nodes find out about a query?
– Up to now we conveniently ignored this!

• Case 1: Broadcast
– As far as we know, all nodes need to participate
– Need to have a broadcast tree out of the query node
– This is the opposite of an aggregation tree!

• But how to instantiate it?

• Naïve solution: Flood
– Each nodes sends query to all its neighbors
– Problem: nodes will receive query multiple times

• wasted bandwidth

63

SCRIBE

• Redundancy-free broadcast
• Upon joining the network, route a message to some

canonical hash ID
– Parent intercepts msg, makes a note of new child, discards

message
– At the end, each node knows its children, so you have a

broadcast tree
• Tree needs to deal with joins and leaves on its own; the DHT

won’t help.

– MSR/Rice, NGC ‘01

Query Dissemination II

• Suppose you have a simple equality query
– Select * From R Where R.c = 5
– If R.c is already indexed in the DHT, can route query via

DHT

• Query Dissemination is an “access method”
– Basically the same as an index

• Can take more complex queries and disseminate sub-
parts
– Select * From R, S, T

Where R.a = S.b
 And S.c = T.d
 And R.c = 5

64

PIER

• Peer-to-Peer Information Exchange & Retrieval
– Puts together many of the techniques described above
– Aggressively uses DHTs

• But agnostic to choice
• Uses Bamboo, has worked on CAN and Chord

– [Huebsch, et al. VLDB ‘03]

• Deployed

– Running φ queries on ~400 nodes around the world
(PlanetLab)

– Simulated on up to 10K nodes

• Current Applications
– Improved Filesharing

– Internet Monitoring (φ)
– Customizable Routing via Recursive Queries

http://pier.cs.berkeley.edu

DHTs in PIER

• PIER uses DHTs for:
– Query Broadcast (TC)
– Indexing (CBR + S)
– Range Indexing Substrate (CBR+S)
– Hash-partitioned parallelism (CBR)
– Hash tables for group-by, join (CBR + S)
– Hierarchical Aggregation (TC + S)

Key:
TC = Tree Construction
CBR = Content-Base Routing
S = Storage

Hash Index

B+-Tree

Exchange

HashJoin

DBMS Analogy

65

Native Simulation

• Entire system is event-
driven

• Enables discrete-event
simulation to be “slid in”
– Replaces lowest-level

networking & scheduler
– Runs all the rest of PIER

natively

• Very helpful for
debugging a massively
distributed system!

Initial Tidbits from PIER Efforts

• “Multiresolution” simulation critical
– Native simulator was hugely helpful
– Emulab allows control over link-level performance
– PlanetLab is a nice approximation of reality

• Debugging still very hard
– Need to have a traced execution mode.

• Radiological dye? Intensive logging?

• DB workloads on NW technology: mismatches
– E.g. Bamboo aggressively changes neighbors for single-

message resilience/performance
• Can wreak havoc with stateful aggregation trees

– E.g. returning results: SELECT * from Firewalls
• 1 MegaNode of machines want to send you a tuple!

• A relational query processor w/o storage
– Where’s the metadata?

66

Storage Models & Systems

Traditional FileSystems on p2p?

• Lots of projects
– OceanStore, FarSite, CFS, Ivy, PAST, etc.

• Lots of challenges
– Motivation & Viability

• Short & long term
– Resource mgmt

• Load balancing w/heterogeneity, etc.
• Economics come strongly into play

– Billing and capacity planning?

– Reliability & Availability
• Replication, server selection
• Wide-area replication (+ consistency of updates)

– Security
• Encryption & key mgmt, rather than access control

67

Non-traditional Storage Models

• Very long term archival storage
– LOCKSS

• Ephemeral storage
– Palimpsest, OpenDHT

LOCKSS

• Digital Preservation of Academic Materials
– Academic publishing is moving from paper to

digital leasing

• Librarians are scared with good reason
– Access depends on the fate of the publisher
– Time is unkind to bits after decades
– Plenty of enemies (ideologies, governments,

corporations)

• Goal: Preserve access for local patrons, for a
very long time

[Maniatis, et al. SOSP ‘04]

68

Protocol Threats

• Assume conventional platform/social attacks
• Mitigate further damage through protocol
• Top adversary goal: Stealth Modification

– Modify replicas to contain adversary’s version
– Hard to reinstate original content after large

proportion of replicas are modified

• Other goals
– Denial of service
– System slowdown
– Content theft

The LOCKSS Solution

• Peer-to-peer auditing and repair system for
replicated documents / no file sharing

• A peer periodically audits its own replica, by
calling an opinion poll

• When a peer suspects an attack, it raises an
alarm for a human operator
– Correlated failures
– IP address spoofing
– System slowdown

• 2nd iteration of a deployed system

69

Sampled Opinion Poll

• Each peer holds
– reference list of peers it has discovered
– friends list of peers it knows externally

• Periodically (faster than rate of bit rot)
– Take a sample of the reference list
– Invite them to send a hash of their replica

• Compare votes with local copy
– Overwhelming agreement (>70%)  Sleep blissfully
– Overwhelming disagreement (<30%)  Repair
– Too close to call  Raise an alarm

• To repair, the peer gets the copy of somebody who
disagreed and then reevaluates the same votes

Reference List Update

• Take out voters in the poll
– So that the next poll is based on different group

• Replenish with some “strangers” and some
“friends”
– Strangers: Accepted nominees proposed by voters
– Friends: From the friends list
– The measure of favoring friends is called churn

factor

70

LOCKSS Defenses

• Limit the rate of operation
• Bimodal system behavior
• Churn friends into reference list

Limit the rate of operation

• Peers determine their rate of operation
autonomously
– Adversary must wait for the next poll to attack

through the protocol

• No operational path is faster than others
– Artificially inflate “cost” of cheap operations
– No attack can occur faster than normal ops

71

Bimodal System Behavior

• When most replicas are the
same, no alarms

• In between, many alarms
• To get from mostly correct

to mostly wrong replicas,
system must pass through
“moat” of alarming states

All

Good

All

Bad
Q

u
ie

s
c
e

n
c
e

 P
ro

b
a

b
il
it
y

Bimodal System Behavior

• When most replicas are the
same, no alarms

• In between, many alarms
• To get from mostly correct

to mostly wrong replicas,
system must pass through
“moat” of alarming states

All

Good

All

Bad

Q
u

ie
s
c
e

n
c
e

 P
ro

b
a

b
il
it
y

Adversary’s

Intention

72

Bimodal System Behavior

• When most replicas are the
same, no alarms

• In between, many alarms
• To get from mostly correct

to mostly wrong replicas,
system must pass through
“moat” of alarming states

All

Good

All

Bad
Q

u
ie

s
c
e

n
c
e

 P
ro

b
a

b
il
it
y

Adversary’s

Intention

Churn Friends into Reference List

• Churn adjusts the bias in the reference list
• High churn favors friends

– Reduces the effects of Sybil attacks
– But offers easy targets for focused attack

• Low churn favors strangers
– It offers Sybil attacks free reign

• Bad peers nominate bad; good peers nominate some bad
– Makes focused attack harder, since adversary can predict

less of the poll sample

• Goal: strike a balance

73

Palimpsest [Roscoe & Hand, HotOS 03]

• Robust, available, secure ephemeral storage
• Small and very simple
• Soft-capacity – for service providers
• Congestion-based pricing
• Automatic space reclamation
• Flexible client and server policies

• We’ll ignore the economics

Service Model for Ephemeral Storage

• For clients:
– Data highly available for limited period of time
– Secure from unauthorized readers
– Resistant to DoS attacks
– Tradeoff cost/reliability/performance

• For service providers:
– Charging that makes economic sense
– Capacity planning
– Simplicity of operation and billing

74

How does it do this?

• To write a file:
– Erasure code it
– Route it through a network of simple block stores
– Pay to store it

• Each block store is a fixed-length FIFO
– Block stores may be owned by multiple providers
– Block stores don't care who the users are
– No one store needs to be trusted
– Blocks are eventually lost off the end of the queue

Storing a file

• Each file has a name and a key.
• File Dispersal

– Use a rateless code to spread blocks into fragments
• Rabin's IDA over GF(216), 1024-byte blocks

• Fragment Encryption
– Security, authenticity, identification

• AES in Offset Codebook Mode

• Fragment Placement
– Encrypt: (SHA256(name) ⊕ frag.id) ⇒ 256-bit ID

– Send (fragment, ID) to a block store using DHT
• Any DHT will do

75

What happens at the block store?

• Fixed-size (virtual) block stores
– Use > 1 per node for scaling

• FIFO queue of fragments
• Indexed by fragment id
• Re-writing a fragment id moves

to tail of queue
Note: fragment ID is not related

to content (c.f. CFS)
• Block stores ignore user identity

– No authentication needed

New fragment

Frag. 0xe042

Frag. 0x04f1

Frag. 0x6673

Frag. 0xffe4

Frag. 0x1167

Frag. 0xe044

Frag. 0x7bb1

Frag. 0x0040

Discard

Hash
Table

0x04f1

Retrieving a file

• Generate enough fragment IDs
• Request fragments from block stores
• Wait until n come back to you
• Decrypt and verify
• Invert the IDA
• Voila!

Unfortunately…

76

Files disappear

• This is a storage system which, in use, is
guaranteed to forget everything
– c.f. Elephant, Postgres, etc.

• Not a problem for us provided we know how
long files stay around for
– Can refresh files
– Can abandon them
– Note: there is no delete operation

• How do we do this?

Sampling the time constant

• Each block store has a time constant τ
– How long fragment takes to reach end of queue

• Clients query block stores for τ
– Operation piggy-backed on reads/writes

• Maintain exponentially-weighted estimate of
system τ, τs
– Fragment lifetimes Normally distributed around τs

• Use this to predict file lifetimes
– Allows extensive application-specific tradeoffs

77

Security and Trust

Trustworthy P2P

• Many challenges here. Examples:
– Authenticating peers
– Authenticating/validating data

• Stored (poisoning) and in flight
– Ensuring communication
– Validating distributed computations
– Avoiding Denial of Service

• Ensuring fair resource/work allocation
– Ensuring privacy of messages

• Content, quantity, source, destination
– Abusing the power of the network

• We’ll just do a sampler today

78

Free Riders

• Filesharing studies
– Lots of people download
– Few people serve files

• Is this bad?
– If there’s no incentive to serve, why do people do

so?
– What if there are strong disincentives to being a

major server?

Simple Solution: Threshholds

• Many programs allow a threshhold to be set
– Don’t upload a file to a peer unless it shares > k

files

• Problems:
– What’s k?
– How to ensure the shared files are interesting?

79

BitTorrent

• Server-based search
– suprnova.org, chat rooms, etc. serve “.torrent” files

• metadata including “tracker” machine for a file

• Bartered “Tit for Tat” download bandwidth
– Download one (random) chunk from a storage peer, slowly
– Subsequent chunks bartered with concurrent downloaders

• As tracked by the tracker for the file

– The more chunks you can upload, the more you can
download

• Download speed starts slow, then goes fast

– Great for large files
• Mostly videos, warez

One Slide on Game Theory

• Typical game theory setup
– Assume self-interested (selfish) parties, acting autonomously
– Define some benefit & cost functions
– Parties make “moves” in the game

• With resulting costs and benefits for themselves and others
– A Nash equilibrium:

• A state where no party increases its benefit by moving
• Note:

– Equilibria need not be unique nor equal
– Time to equilibrium is an interesting computational twist

• Mechanism Design
– Design the states/moves/costs/benefits of a game
– To achieve particular globally-acceptable equilibria

• I.e. selfish play leads to global good

80

DAMD P2P!

• Distributed Algorithmic Mechanism Design (DAMD)
– A natural approach for P2P

• An Example: Fair-share storage [Ngan, et al., Fudico04]
– Every node n maintains a usage record:

• Advertised capacity
• Hosted list of objects n is hosting (nodeID, objID)
• Published list of objects people host for n (nodeID, objID)

– Can publish if capacity - p ∑(published list) > 0
• Recipient of publish request should check n’s usage record

– Need schemes to authenticate/validate usage records
• Selfish Audits: n periodically checks that the elements of its

hosted list appear in published lists of publishers
• Random Audits: n periodically picks a peer and checks all its

hosted list items

Secure Routing in DHTs

• The “Sybil” attack [Douceur, IPTPS 02]
– Register many times

with multiple identities
– Control enough of

the space to capture
particular traffic

81

Squelching Sybil

• Certificate authority
– Centralize one thing: the signing of ID certificates

• Central server is otherwise out of the loop

– Or have an “inner ring” of trusted nodes do this
• Using practical Byzantine agreement protocols [Castro/Liskov OSDI

‘01]

• Weak secure IDs
– ID = SHA-1(IP address)
– Assume attacker controls a modest number of nodes
– Before routing through a node, challenge it to produce the

right IP address
• Requires iterative routing

Redundant Computation

• Correctness via redundancy
– An old idea (e.g. process pairs)
– Applied in an adversarial environment
– Using topological properties of DHTs

• Two Themes
– Change “support” contents per peer across copies
– Equalize “influence” of each peer

82

Example: Redundant Agg in Chord

• |support(0)| = 16
• |support(1-8)| = 1
• |support(9-12)| = 2
• |support(13-14)| = 4
• |support(15)| = 8

• |support(8)| = 16
• |support(9-0)| = 1
• |support(1-4)| = 2
• |support(5-6)| = 4
• |support(7)| = 8

log(n) roles w/binomial size distribution (avg = 3)

Joining the Fun

83

 PlanetLab

• Consortium of academia and industry
– Catalyzed by Intel Research in 2002
– Now hosted at Princeton U
– 25% of SOSP ‘03 papers used PlanetLab

• DB folks should get more involved!

OpenDHT

• A shared DHT service
– The Bamboo DHT
– Hosted on PlanetLab
– Simple RPC API
– You don’t need to deploy or

host to play with a real DHT!
• A playground for killer apps?

– Needn’t be as big as PIER!
– Example: FreeDB replacement

• Research in sharing DHT svc!
– ReDiR [Karp, et al. IPTPS ‘04]

• Recursive Distributed
Rendezvous

• Enables multiple apps on
subsets of nodes

– New resource mgmt scheme
to do fair-share storage

84

Closing Thoughts

Much Fun to Be Had Here

• Potentially high-impact area
– New classes of applications enabled

• A useful question: “What apps need/deserve this scale”
• Intensity of the scale keeps the research scope focused

– Zero-administration, sub-peak performance, semantic
homogeneity, etc.

– A chance to reshape the Internet
• More than just a packet delivery service

•φ is an effort in this direction

85

Much Fun to Be Had Here

• Rich cross-disciplinary rallying point
– Networks, algorithms, distributed systems,

databases, economics, security…
– Top-notch people at the table
– Many publication venues to choose from

• Including new ones like NSDI, IPTPS, WORLDS

Much Fun to Be Had Here

• DHT and similar overlays are a real breakthough
– Building block for data independence
– Multiple metaphors

• Hashtable storage/index
• Content-addressable routing
• Topologically interesting tree construction

– Each stimulates ideas for distributed computation

• Relatively solid DHT implementations available
– Bamboo, OpenDHT (Intel & UC Berkeley)
– Chord (MIT)

86

The DB Community Has Much to
Offer
• Complex (multi-operator) queries & optimization

– NW folks have tended to build single-operator “systems”
• E.g. aggregation only, or multi-d range-search only

– Adaptivity required
• But may not look like adaptive QP in databases…

• Declarative language semantics
– Deal with streaming, clock jitter and soft state!

• Data reduction techniques
– For visualization, approximate query processing

• Bulk-computation workloads
– Quite different from the ones the NW and systems folks

envision

• Recursive query processing
– The network is a graph!

Metareferences

• Your favorite search engine should find the inline refs
• Project IRIS has a lot of participants’ papers online

– http://www.project-iris.org
• IEEE Distributed Systems Online

– http://dsonline.computer.org/os/related/p2p/
• O’Reilly OpenP2P

– http://www.openp2p.com
• Karl Aberer’s ICDE 2002 tutorial

– http://lsirpeople.epfl.ch/aberer/Talks/ICDE2002-Tutorial.pdf
• Ross/Rubenstein InfoCom 2003 tutorial

– http://cis.poly.edu/~ross/tutorials/P2PtutorialInfocom.pdf
• PlanetLab

– http://www.planet-lab.org
• OpenDHT

– http://www.opendht.org

87

Some of the p2p DB groups

• PIER
– http://pier.cs.berkeley.edu

• Stanford Peers
– http://www-db.stanford.edu/peers/

• P-Grid
– http://www.p-grid.org/ (EPFL)

• Pepper
– http://www.cs.cornell.edu/database/pepper/pepper.htm

• BestPeer (PeerDB)
– http://xena1.ddns.comp.nus.edu.sg/p2p/

• Hyperion
– http://www.cs.toronto.edu/db/hyperion/

• Piazza
– http://data.cs.washington.edu/p2p/piazza/

