Architectures and Algorithms for
Internet-Scale (P2P) Data
Management

Joe Hellerstein
Intel Research & UC Berkeley

Powerpoint Compatibility Note

Overview

e Preliminaries e Ongoing Research

e “Upleveling”

e Joining the fun

e Early P2P architectures

Acknowledgments

¢ For specific content in ¢ Additional Collaborators
these slides

Preliminaries

Outline

e Scoping the tutorial

e Behind the “"P2P” Moniker

e Why bother with them?

e Some guiding applications

Scoping the Tutorial

e Architectures and Algorithms for Data Management
e The perils of overviews

e Some interesting things we'll skip

Moving Past the "P2P” Moniker:
The Platform

e The “"P2P” name has lots of connotations

e QOur focus here is on:

Overlay Networks

e P2P applications need to:

e This is an overlay network

e Control over naming and routing is powerful

Many New Challenges

¢ Relative to other parallel/distributed systems

e Relative to IP networking

Why Bother? Not the Gold Standard

¢ Given an infinite budget, would you go p2p?
¢ Highest performance? No.

e Most Resilient? Hmmmm.

Why Bother II: Positive Lessons
from Filestealing

e P2P enables organic scaling

e Centralized services engender scrutiny

¢ Centralized means business

Why Bother III? Intellectual
motivation

e Heady mix of theory and systems

Infecting the Network, Peer-to-Peer

The Internet is hard to change.
But Overlay Nets are easy!

Don't forget:

A modest goal for DB research:

Infecting the Network, Peer-to-Peer

¢ A modest goal for DB research:

Some Guiding Applications

Y
e LOCKSS

¢ LiberationWare

(p: Public Health for the Internet

e Security tools focused on “medicine”

e Weakness/opportunity in the “Public Health” arena
— Public Health:
— Epidemiology:

® (D: A New Approach

» Prototype running over PIER

@ Vision: Network Oracle

e Suppose there existed a Network Oracle

10

LOCKSS: Lots Of Copies
Keep Stuff Safe

 Digital Preservation of Academic Materials
e Librarians are scared with good reason

e Goal: Archival storage and access

LOCKSS Approach

e Challenges:

e Must anticipate and degrade gracefully with

e Solution:

11

LiberationWare

e Take your favorite Internet application

e Examples: FreeNet, Publius, FreeHaven

"Upleveling”: Network Data
Independence

12

DBMS

13

Generalizing Data Independence

¢ A classic “level of indirection” scheme

e The key for data independence:

e Hellerstein’s Data Independence Inequality:

Data Independence in Networks

¢ In databases, the RHS is unusually small

e In extreme networked systems, LHS is unusually high

14

DBMS

P2P

15

e Napster

b B

e Napster

b B

16

e Napster

e Napster

b B

17

e Napster

b B

e SETI@Home

b B

18

e SETI@Home

e SETI@Home

Task: f(x)

60 TeraFLOPS!

19

20

21

¢ Ultrapeers can be installed (KaZaA) or self-
promoted (Gnutella)

= ul

= %;@ggs%gg

H o % g

B OW g g
g

% P B

o IP
www.vldb.org

e DNS

e Traditional pros/cons of Hierarchical data mgmt

22

Commercial Offerings

o JXTA

e MS WinXP p2p networking

e Both have some security support

e Groove

Lessons and Limitations

¢ Client-Server performs well

e Things that flood-based systems do well

e Things that flood-based systems do poorly

23

A Little Gossip

Gossip Protocols (Epidemic Algorithms)

Originally targeted at database replication [pemers, et al. popc 87

e Extended to routing

e Extended to aggregate computation [Kempe, et al, FOCS 03]
e Mostly theoretical analyses

e A Cornell specialty

24

Structured Overlays: Distributed
Hash Tables (DHTSs)

DHT Outline

High-level overview
Fundamentals of structured network topologies

One concrete DHT

Some systems issues

25

=y

=
[
=Z
'Z

26

What is a DHT?

e Hash Table

e Distributed Hash Table (DHT)

o Interface

How?

Every DHT node supports a single operation:

27

]
a| s
g o
g g N
_ g
. g
0 3

28

O

O

(n
O

O

O

insert(K,,V,)

29

insert(K,,V,)

(KyV,)

n

o

30

o

o

o

o

31

DHT Design Goals

e An “overlay” network with:

e A “storage” or "memory” mechanism with

Peers vs Infrastructure

e Peer:

e Infrastructure:

32

Library or Service

e Library: DHT code bundled into application

e Service: single DHT shared by applications

DHT Outline

¢ High-level overview

¢ Fundamentals of structured network topologies
— And examples

e One concrete DHT

e Some systems issues

33

An Example DHT: Chord

e Assume n = 2™ nodes for a moment

An Example DHT: Chord

34

An Example DHT: Chord

An Example DHT: Chord

e Overlayed 2%-Gons

35

Routing in Chord

e At most one of each Gon
e E.g. 1-to-0

Routing in Chord

e At most one of each Gon
e E.g. 1-to-0

36

Routing in Chord

e At most one of each Gon
e E.g. 1-to-0

Routing in Chord

e At most one of each Gon
e E.g. 1-to-0

37

Routing in Chord

e At most one of each Gon
e E.g. 1-to-0

Routing in Chord

e At most one of each Gon
e E.g. 1-to-0
e What happened?

38

What is happening here? Algebra!

e Underlying group-theoretic structure
group S °

e The generators of a group

e Canonical example: (Z,, +)

Cayley Graphs

e The Cayley Graph (S, E) of a group:

e (Complete) Chord is a Cayley graph for (Z,,+)

e Fact: Most (complete) DHTs are Cayley graphs

39

So...?

e Two questions:

How Hairy met Cayley

What do you want in a structured network?

Theorem: All Cayley graphs are vertex symmetric.

Cayley graphs tend to have good degree/diameter tradeoffs

Many Cayley graphs are hierarchical

40

Good DHT topologies will be Cayley/Coset graphs

Clean math describing the topology helps crisply
analyze efficiency

Really no excuse to be “sloppy”

Based on Plaxton Mesh
[Plaxton, et al SPAA 97]
Topology: Prefix Hypercube

Names are fixed bit strings

Plus a ring

Suffix Routing from A to B

41

CAN: Content Addressable Network

Exploit multiple dimensions

Each node is assigned a zone

Nodes are identified by zone boundaries
Join: chose random point, split its zone

Routing in 2-dimensions

e Routing is navigating a d-dimensional ID space

o Number of hops is O(dN/d)

42

Koorde

e DeBruijn graphs

e Koorde is Chord-based

Topologies of Other Oft-cited DHTs

o Tapestry

e Kademlia

e Viceroy

e Symphony

43

For Chord, we assumed 2™ nodes.

What if not?

DHT-specific schemes used

e Essentially never a
“complete” chord graph

44

Need IP of some node

Pick a random ID (e.g. SHA-
1(IP))

Send msg to current owner
of that ID

Need IP of some node

Pick a random ID (e.g. SHA-
1(IP))

Send msg to current owner
of that ID

Update pred/succ links

Inform app to move data
appropriately

Search to install “fingers” of
varying powers of 2

Inbound fingers fixed lazily

45

46

¢ Pick your favorite InterConnection Network

¢ Pick an “emulation” scheme

¢ Pick a way to let new nodes choose IDs

 Up to now we focused on routing

e Implicit in the name “"DHT"” is some kind of
storage

)

e Soft state is the name of the game in
Internet systems

47

A hybrid persistence scheme

Joint responsibility of publisher and storage node

Must balance reliability and republishing overhead

On failure of a storage node

On failure of a publisher

¢ Nodes close on ring, but far away in Internet

e Goal: put nodes in routing table that result in few hops
and low latency

48

Locality-Centric Neighbor Selection

e Much recent work [Gummadi, et al. SIGCOMM ‘03,
Abraham, et al. SODA ‘04, Dabek, et al. NSDI 04, Rhea, et al.
USENIX ‘04, etc.]

e How to pick

Geometry and its effects

e Some topologies allow more choices

e Having a ring is very helpful for resilience

49

Handling Churn

e BamboO [Rhea, et al, USENIX 04]

e Churn

e Three main issues

Timeouts

e Recall Iterative vs. Recursive Routing

e Effect on timeout mechanism

virtual coordinate

e Upshot: Both work OK up to a point

50

Complex Query Processing

DHTs Gave Us Equality Lookups

e What else might we want?

e Theme

51

Range Search

e Numerous proposals in recent years

e We'll do a very simple, elegant scheme here

Prefix Hash Tree (PHT)

e Recall the trie (assume binary trie for now)

e PHT is a bucket-based trie addressed via a DHT

52

53

PHT Search

e Observe: The DHT allows
direct addressing of PHT nodes

Reusable Lessons from PHTs

e Direct-addressing a lovely way to emulate robust,
efficient “linked” data structures in the network

e Direct-addressing requires regularity in the data
space partitioning

54

Aggregation

e Two key observations for DHTSs

e But what if I don’t use DHTs?

An API for Aggregation in DHTs

Uses a basic hook in DHT routing

Idea

Questions

Note: tree-construction will be key to other tasks!

55

Consider Aggregation in Chord

e Everybody sends their
message to node 0

e Assume greedy jumps
(increasing Gon-order)
e Intercept messages

and aggregate along
the way

Consider Aggregation in Chord

e Everybody sends their
message to node 0

e Assume greedy jumps
(increasing Gon-order)

e Intercept messages

and aggregate along
the way

56

Consider Aggregation in Chord

e Everybody sends their
message to node 0

e Assume greedy jumps
(increasing Gon-order)

e Intercept messages
and aggregate along
the way

Aggregation in Koorde

e Recall the DeBruijn graph:

57

Aggregation in Koorde

e Recall the DeBruijn graph:

Aggregation in Pastry/Bamboo

e Depends on choice of neighbors

58

Aggregation in Pastry/Bamboo

e Depends on choice of neighbors

Metrics for Aggregation Trees

e What makes a good/bad agg tree?

59

So what if I don’t have a DHT?

¢ Need another tree-construction mechanism

e Can pick a tree shape of your own

¢ As we noted before, we will reuse tree-construction
for multiple purposes

e Or, can do aggregation via gossip ikempe, et al FOcs 03]

Group By

e A piece of cake in a DHT

¢ Note nice dual-purpose use of DHT

60

Hash Join

e We just did hash-based group by.

e Hash-based join is roughly the same deal, twice:

e Again, DHT gives

¢ Note the resulting communication pattern

Fetch Matches Join

e Essentially a distributed index join
e Given R.a Join S.b

e For each tuple of R, query DHT for S tuples
matching R.a

61

Symmetric Semi-Join and Bloom Join

e Query rewriting tricks from distributed DBs
e Semi-Joins a la SDD-1

¢ Bloom Joins a la R*

Query Dissemination

e How do nodes find out about a query?

e Case 1: Broadcast

¢ Naive solution: Flood

62

SCRIBE

e Redundancy-free broadcast

e Upon joining the network, route a message to some
canonical hash ID

Query Dissemination I

e Suppose you have a simple equality query

e Query Dissemination is an “access method”

e Can take more complex queries and disseminate sub-
parts

63

PIER

e Peer-to-Peer Information Exchange & Retrieval

e Deployed

e Current Applications

DHTs in PIER

e PIER uses DHTSs for:

DBMS Analogy

Hash Index
B+-Tree

Exchange

HashJoin

64

¢ Entire system is event-
driven

¢ Enables discrete-event
simulation to be “slid in”

e Very helpful for
debugging a massively

distributed system! O

e “Multiresolution” simulation critical

Debugging still very hard

DB workloads on NW technology: mismatches

A relational query processor w/o storage

65

Storage Models & Systems

Traditional FileSystems on p2p?

¢ Lots of projects

¢ Lots of challenges

66

Non-traditional Storage Models

e Very long term archival storage

e Ephemeral storage

LOCKSS

e Digital Preservation of Academic Materials

e Librarians are scared with good reason

e Goal: Preserve access for local patrons, for a
very long time

67

Protocol Threats

Assume conventional platform/social attacks
Mitigate further damage through protocol
Top adversary goal: Stealth Modification

Other goals

The LOCKSS Solution

e Peer-to-peer auditing and repair system for
replicated documents / no file sharing

e A peer periodically audits its own replica, by
calling an opinion poll

e When a peer suspects an attack, it raises an
alarm for a human operator

e 2nd iteration of a deployed system

68

Sampled Opinion Poll

e Each peer holds
¢ Periodically (faster than rate of bit rot)

e Compare votes with local copy

e To repair, the peer gets the copy of somebody who
disagreed and then reevaluates the same votes

Reference List Update
e Take out voters in the poll

¢ Replenish with some “strangers” and some
“friends”

69

LOCKSS Defenses

¢ Limit the rate of operation
e Bimodal system behavior
e Churn friends into reference list

Limit the rate of operation

¢ Peers determine their rate of operation
autonomously

¢ No operational path is faster than others

70

All
Good

All
Bad

All
Good

All
Bad

71

When most replicas are the
same, no alarms

In between, many alarms
To get from mostly correct
to mostly wrong replicas,
system must pass through
“moat” of alarming states

All
Good

Churn adjusts the bias in the reference list
High churn favors friends

Low churn favors strangers

Goal: strike a balance

72

P. a/impse.St [Roscoe & Hand, HotOS 03]

Robust, available, secure ephemeral storage
Small and very simple

Soft-capacity — for service providers
Congestion-based pricing

Automatic space reclamation

Flexible client and server policies

Service Model for Ephemeral Storage

e For clients:

e For service providers:

73

How does it do this?

e To write a file:

e Each block store is a fixed-length FIFO

Storing a file

Each file has a name and a key.
File Dispersal

Fragment Encryption

Fragment Placement

74

1

L

75

Files disappear

e This is a storage system which, in use, is
guaranteed to forget everything

e Not a problem for us provided we know how
long files stay around for

e How do we do this?

Sampling the time constant
e Each block store has a time constant t
¢ Clients query block stores for

¢ Maintain exponentially-weighted estimate of
system t, T,

e Use this to predict file lifetimes

76

Security and Trust

Trustworthy P2P

e Many challenges here. Examples:

o We'll just do a sampler today

77

Free Riders

¢ Filesharing studies

e Is this bad?

Simple Solution: Threshholds

e Many programs allow a threshhold to be set

e Problems:

78

BitTorrent

e Server-based search

e Bartered “Tit for Tat” download bandwidth

One Slide on Game Theory

 Typical game theory setup

e Mechanism Design

79

¢ Distributed Algorithmic Mechanism Design (DAMD)

e An Example: Fair-share storage [Ngan, et al., Fudico04]

e The “Sybil” attack [Douceur, IPTPS 02]

80

Squelching Sybil

e Certificate authority

e Weak secure IDs

Redundant Computation

e Correctness via redundancy

e Two Themes

81

Example: Redundant Agg in Chord

|support(0)| = 16
|support(1-8)| =1
|support(9-12)| = 2
|support(13-14)| = 4
|support(15)| = 8

|support(8)| = 16
|support(9-0)] =1
|support(1-4)| = 2
|support(5-6)| = 4
|support(7)| = 8

Joining the Fun

82

PlanetLab

e Consortium of academia and industry

e DB folks should get more involved!

OpenDHT

A shared DHT service

A playground for killer apps?

Research in sharing DHT svc!

83

Closing Thoughts

Much Fun to Be Had Here

¢ Potentially high-impact area

84

Much Fun to Be Had Here

¢ Rich cross-disciplinary rallying point

Much Fun to Be Had Here

e DHT and similar overlays are a real breakthough

e Relatively solid DHT implementations available

85

The DB Community Has Much to
Offer

e Complex (multi-operator) queries & optimization

Declarative language semantics

Data reduction techniques

Bulk-computation workloads

Recursive query processing

Metareferences

¢ Your favorite search engine should find the inline refs

e Project IRIS has a lot of participants’ papers online
http://www.project-iris.or

e IEEE Distributed Systems Online
http://dsonline.computer.org/os/related/p2p/

e QO'Reilly OpenP2P
http://www.openp2p.com

e Karl Aberer’s ICDE 2002 tutorial
http://Isirpeople.epfl.ch/aberer/Talks/ICDE2002-Tutorial.pdf

e Ross/Rubenstein InfoCom 2003 tutorial
http://cis.poly.edu/~ross/tutorials/P2Ptutorialinfocom.pdf

e PlanetLab
http://www.planet-lab.or

e OpenDHT
http://www.opendht.or

86

Some of the p2p DB groups

e PIER
http://pier.cs.berkeley.edu
e Stanford Peers
http://www-db.stanford.edu/peers/
e P-Grid
http://www.p-grid.org/
e Pepper
http://www.cs.cornell.edu/database/pepper/pepper.htm

e BestPeer (PeerDB)
http://xenal.ddns.comp.nus.edu.sg/p2p/

e Hyperion
http://www.cs.toronto.edu/db/hyperion/

e Piazza
http://data.cs.washington.edu/p2p/piazza/

87

