Architectures and Algorithms for Internet-Scale (P2P) Data Management

> Joe Hellerstein Intel Research & UC Berkeley

Powerpoint Compatibility Note

This file was generated using MS PowerPoint 2004 for Mac. It may not display correctly in other versions of PowerPoint. In particular, animations are often a problem.

Overview

• Preliminaries

- What, Why
- The Platform

"Upleveling

 Network Data Independence

Early P2P architectures

- Client-Server
- Floodsast
- Hierarchies
- A Little Gossip
- Commercial Offerings
- Lessons and Limitations

Ongoing Research

- Structured Overlays: DHTs
- Query Processing on Overlays
- Storage Models & Systems
- Security and Trust

• Joining the fun

- Tools and Platforms
- Closing thoughts

Acknowledgments

- For specific content in these slides
 - Frans Kaashoek
 - Petros Maniatis
 - Sylvia Ratnasamy
 - Timothy Roscoe
 - Scott Shenker

Additional Collaborators

 Brent Chun, Tyson Condie, Ryan Huebsch, David Karger, Ankur Jain, Jinyang Li, Boon Thau Loo, Robert Morris, Sriram Ramabhadran, Sean Rhea, Ion Stoica, David Wetherall

Outline

- Scoping the tutorial
- Behind the "P2P" Moniker – Internet-Scale systems
- Why bother with them?
- Some guiding applications

Scoping the Tutorial

- Architectures and Algorithms for Data Management
- The perils of overviews
 - Can't cover everything. So much here!
- Some interesting things we'll skip
 - Semantic Mediation: data integration on steroidsE.g., Hyperion (Toronto), Piazza (UWash), etc.
 - High-Throughput Computing
 - I.e. The Grid
 - Complex data analysis/reduction/mining
 - E.g. p2p distributed inference, wavelets, regression, matrix computations, etc.

Moving Past the "P2P" Moniker: The Platform

The "P2P" name has lots of connotations

- Simple filestealing systems
- Very end-user-centric

Our focus here is on:

- Many participating machines, symmetric in function
- Very Large Scale (MegaNodes, not PetaBytes)
- Minimal (or non-existent) management
- Note: user model is flexible
 - Could be embedded (e.g. in OS, HW, firewall, etc.)
 - Large-scale hosted services a la Akamai or Google

Overlay Networks

P2P applications need to:

- Track identities & (IP) addresses of peers
 - May be many!
 - May have significant Churn
 - Best not to have n^2 ID references
- Route messages among peers
 - If you don't keep track of all peers, this is "multi-hop"
- This is an overlay network
 - Peers are doing both naming and routing
 - IP becomes "just" the low-level transportAll the IP routing is opaque
- Control over naming and routing is powerful
 - And as we'll see, brings networks into the database era

Many New Challenges

- Relative to other parallel/distributed systems
 - Partial failure
 - Churn
 - Few guarantees on transport, storage, etc.
 - Huge optimization space
 - Network bottlenecks & other resource constraints
 - No administrative organizations
 - Trust issues: security, privacy, incentives

Relative to IP networking

- Much higher function, more flexible
- Much less controllable/predictable

Why Bother? Not the Gold Standard

- Given an infinite budget, would you go p2p?
- Highest performance? No.
 - Hard to beat hosted/managed services
 - p2p Google appears to be infeasible [Li, et al. IPTPS 03]
- Most Resilient? Hmmmm.
 - In principle more resistant to DoS attacks, etc.
 - Today, still hard to beat hosted/managed services
 - Geographically replicated, hugely provisioned
 - People who "do it for dollars" today don't do it p2p

Why Bother II: Positive Lessons from Filestealing

- P2P enables organic scaling
 - Vs. the top few killer services -- no VCs required!
 - Can afford to "place more bets", try wacky ideas

Centralized services engender scrutiny

- Tracking users is trivial
- Provider is liable (for misuse, for downtime, for local laws, etc.)
- Centralized means business
 - Need to pay off startup & maintenance expenses
 - Need to protect against liability
 - Business requirements drive to particular short-term goals
 - Tragedy of the commons

Why Bother III? Intellectual motivation

• Heady mix of theory and systems

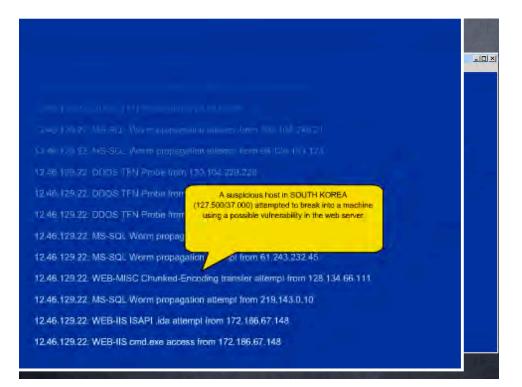
- Great community of researchers have gathered
- Algorithms, Networking, Distributed Systems, Databases
- Healthy set of publication venues
 - IPTPS workshop as a catalyst
- Surprising degree of collaboration across areas
 - In part supported by NSF Large ITR (project IRIS)
 - UC Berkeley, ICSI, MIT, NYU, and Rice

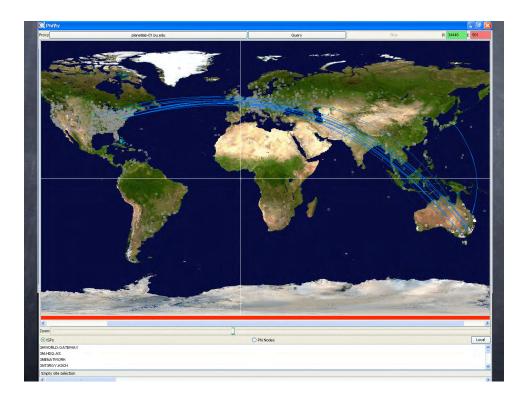
- The Internet is hard to change.
- But Overlay Nets are easy!
 - P2P is a wonderful "host" for infecting network designs
 - The "next" Internet is likely to be very different
 - "Naming" is a key design issue today
 - Querying and data independence key tomorrow?
- Don't forget:
 - The Internet was originally an overlay on the telephone network
 - There is no money to be made in the bit-shipping business

A modest goal for DB research:

- Don't query the Internet.

<section-header><text><text><list-item>

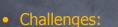

- φ
 - Intel Research & UC Berkeley
- LOCKSS
 - Stanford, HP Labs, Sun, Harvard, Intel Research
- LiberationWare


φ : Public Health for the Internet

- Security tools focused on "medicine"
 - Vaccines for Viruses
 - Improving the world one patient at a time
- Weakness/opportunity in the "Public Health" arena
 - Public Health: population-focused, community-oriented
 - Epidemiology: incidence, distribution, and control in a population

• φ : A New Approach

- Perform population-wide measurement
- Enable massive sharing of data and query results
 The "Internet Screensaver"
- Engage end users: education and prevention
- Understand risky behaviors, at-risk populations.
- Prototype running over PIER


<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

LOCKSS: Lots Of Copies Keep Stuff Safe

- Digital Preservation of Academic Materials
- Librarians are scared with good reason
 - Access depends on the fate of the publisher
 - Time is unkind to bits after decades
 - Plenty of enemies (ideologies, governments, corporations)
- Goal: Archival storage and access

LOCKSS Approach

- Very low-cost hardware, operation and administration
- No central control
- Respect for access controls
- A long-term horizon
- Must anticipate and degrade gracefully with
 - Undetected bit rot
 - Sustained attacks
 - Esp. Stealth modification
- Solution:
 - P2P auditing and repair system for replicated docs

LiberationWare

Take your favorite Internet application

- Web hosting, search, IM, filesharing, VoIP, email, etc.
- Consider using centralized versions in a country with a repressive government
 - Trackability and liability will prevent this being used for free speech
- Now consider p2p
 - Enhanced with appropriate security/privacy protections
 - Could be the medium of the next Tom Paines

Examples: FreeNet, Publius, FreeHaven

- p2p storage to avoid censorship & guarantee privacy
- PKI-encrypted storage
- Mix-net privacy-preserving routing

Recall Codd's Data Independence

- Decouple app-level API from data organization
 - Can make changes to data layout without modifying applications
 - Simple version: location-independent names
 - Fancier: declarative queries

"As clear a paradigm shift as we can hope to find in computer science" - C. Papadimitriou

The Pillars of Data Independence

Indexes

- Value-based lookups have to compete with direct access
- Must adapt to shifting data distributions
- Must guarantee performance

Query Optimization

- Support declarative queries beyond lookup/search
- Must adapt to shifting data distributions
- Must adapt to changes in environment

Generalizing Data Independence

- A classic "level of indirection" scheme
 - Indexes are exactly that
 - Complex queries are a richer indirection
- The key for data independence:
 - It's all about *rates of change*
- Hellerstein's Data Independence Inequality:
 Data independence matters when

d(environment)/dt >> d(app)/dt

Data Independence in Networks

d(environment)/dt >> d(app)/dt

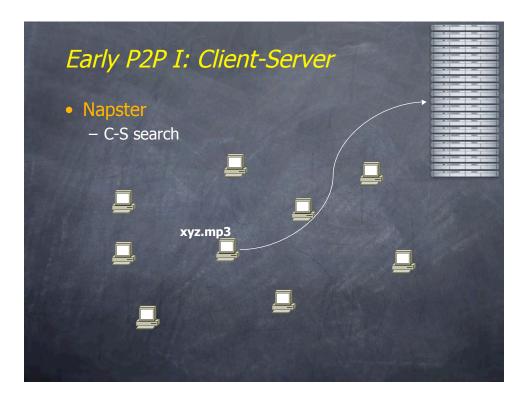
In databases, the RHS is unusually small

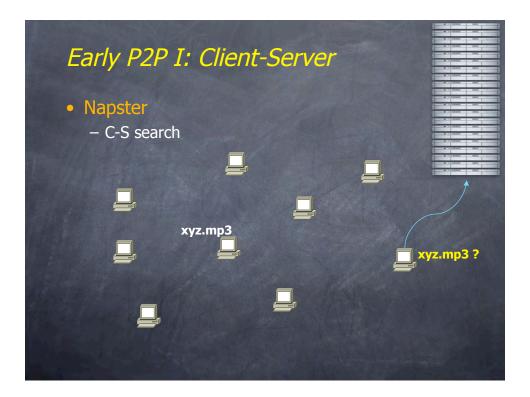
- This drove the relational database revolution
- In extreme networked systems, LHS is unusually high
 - And the applications increasingly complex and data-driven
 - Simple indirections (e.g. local lookaside tables) insufficient

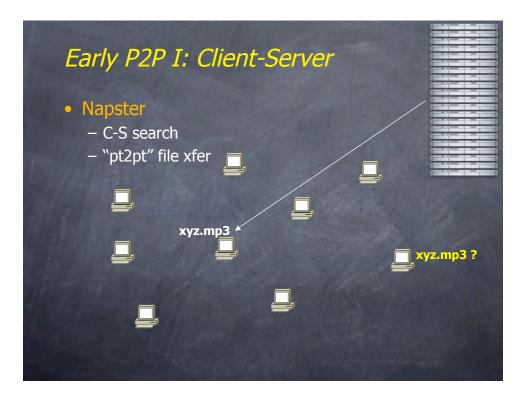
The Pillars of Data Independence

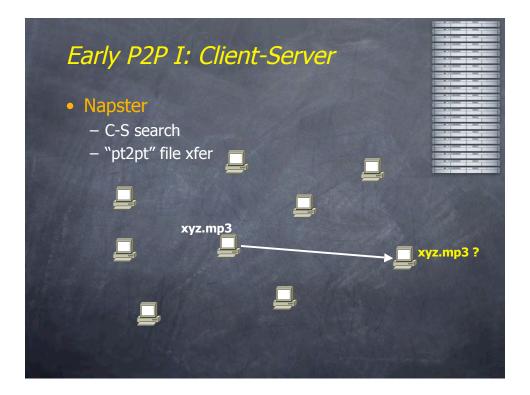
• Indexes

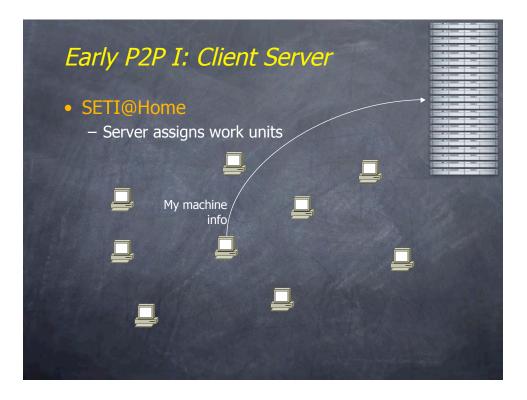
- Value-based lookups have to compete with direct access
- Must adapt to shifting data distributions
- Must guarantee performance

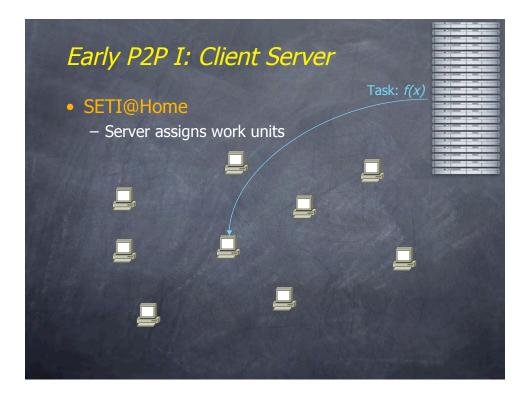

• Query Optimization

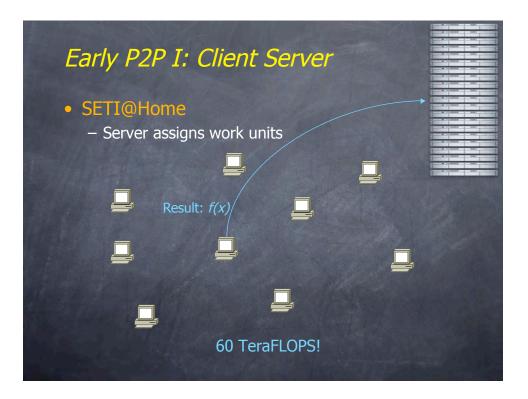

- Support declarative queries beyond lookup/search
- Must adapt to shifting data distributions
- Must adapt to changes in environment

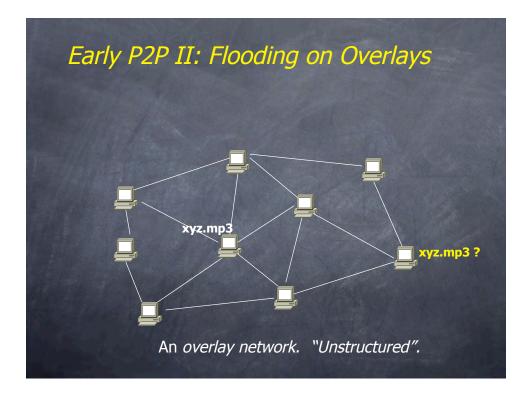

DBMS	P2P
B-Tree	Content- Addressable Overlay Networks (DHTs)
Join Ordering, AM Selection, etc.	Multiquery dataflow sharing?

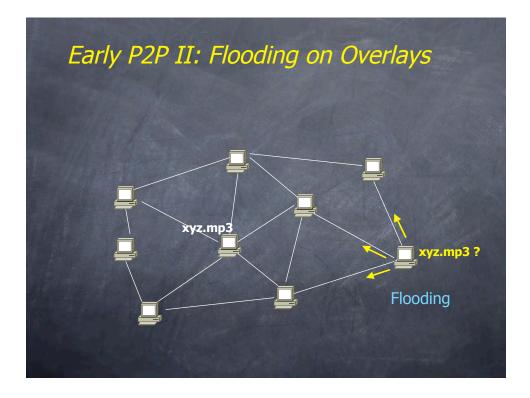


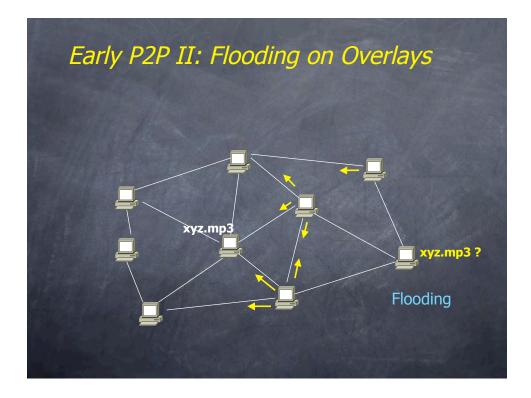


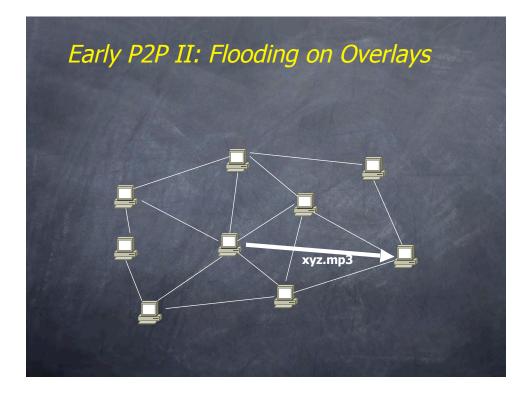


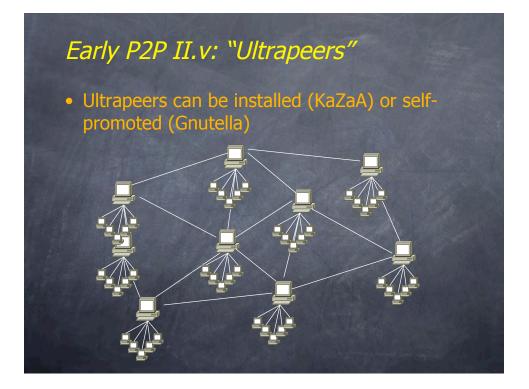


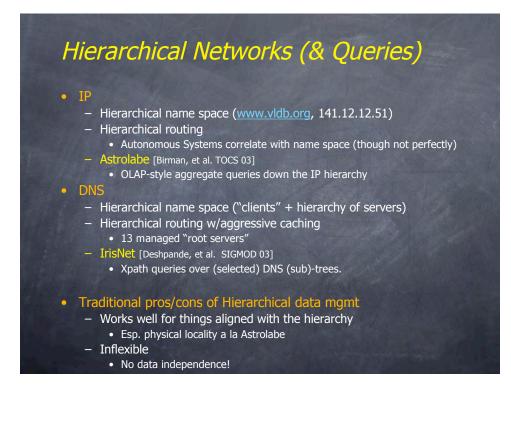












Commercial Offerings

• JXTA

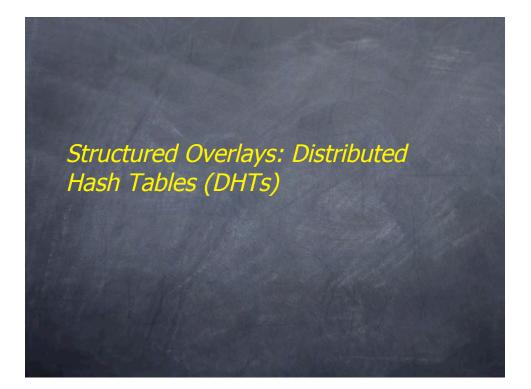
- Java/XML Framework for p2p applications
- Name resolution and routing is done with floods & superpeers
 - Can always add your own if you like

MS WinXP p2p networking

- An unstructured overlay, flooded publication and caching
- "does not yet support distributed searches"
- Both have some security support
 - Authentication via signatures (assumes a trusted authority)
 - Encryption of traffic

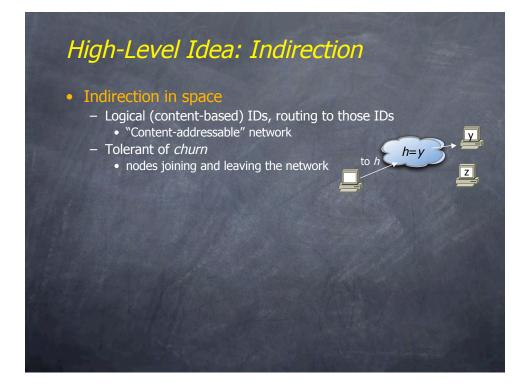
Groove

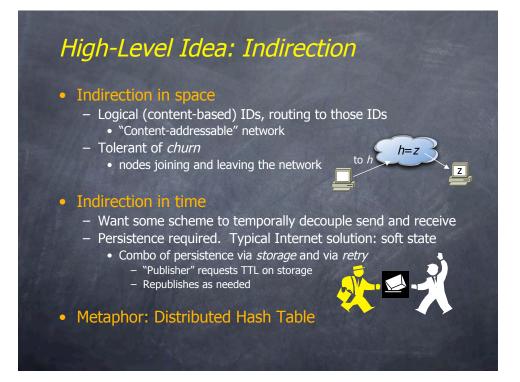
- Platform for p2p "experience". IM and asynch collab tools.
- Client-serverish name resolution, backup services, etc.


Lessons and Limitations

• Client-Server performs well

- But not always feasible
- Ideal performance is often not the key issue!
- Things that flood-based systems do well
 - Organic scaling
 - Decentralization of visibility and liability
 - Finding popular stuff
 - Fancy *local* queries
- Things that flood-based systems do poorly
 - Finding unpopular stuff [Loo, et al VLDB 04]
 - Fancy *distributed* queries
 - Vulnerabilities: data poisoning, tracking, etc.
 - Guarantees about anything (answer quality, privacy, etc.)



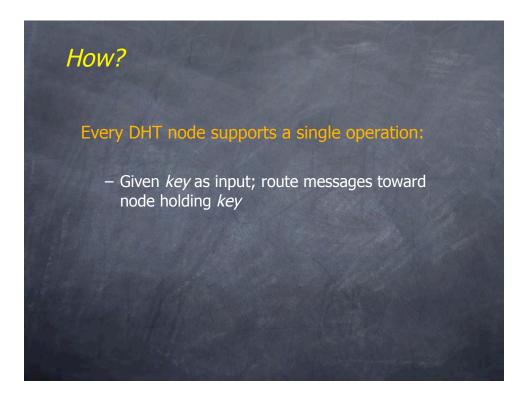

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

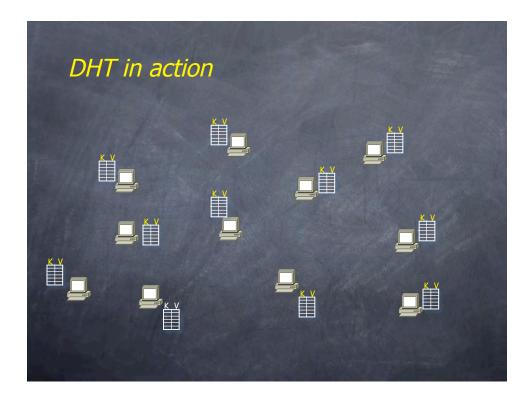
DHT Outline

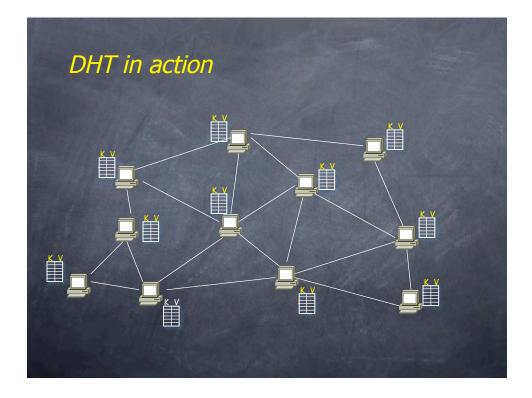
- High-level overview
- Fundamentals of structured network topologies
 - And examples
- One concrete DHT
 - Chord
- Some systems issues
 - Storage models & soft state
 - Locality
 - Churn management

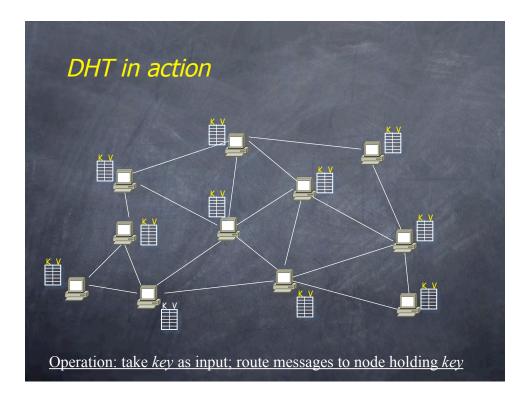
What is a DHT?

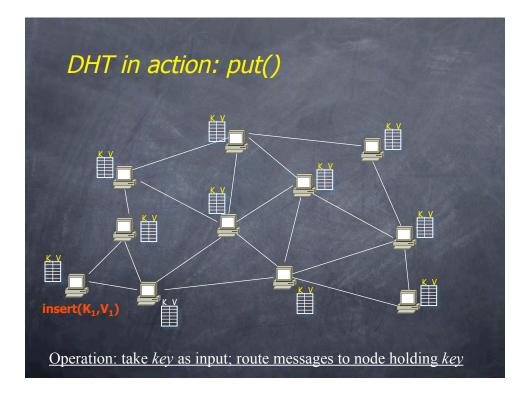
• Hash Table

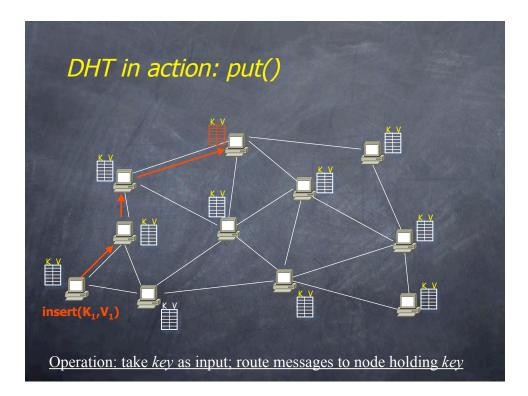

- data structure that maps "keys" to "values"
- essential building block in software systems

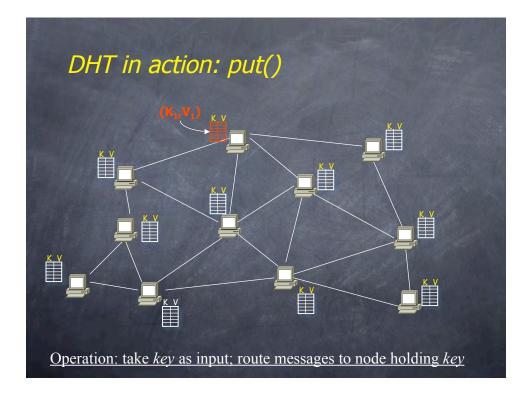

• Distributed Hash Table (DHT)

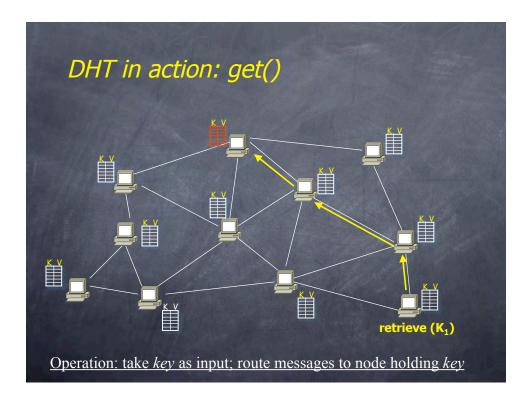

- similar, but spread across the Internet

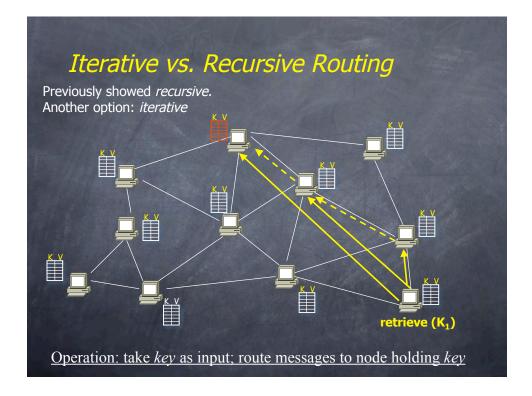

Interface


- insert(key, value)
- lookup(key)









DHT Design Goals

An "overlay" network with:

- Flexible mapping of keys to physical nodes
- Small network diameter
- Small degree (fanout)
- Local routing decisions
- Robustness to churn
- Routing flexibility
- Decent locality (low "stretch")
- A "storage" or "memory" mechanism with
 - No guarantees on persistence
 - Maintenance via soft state

Peers vs Infrastructure

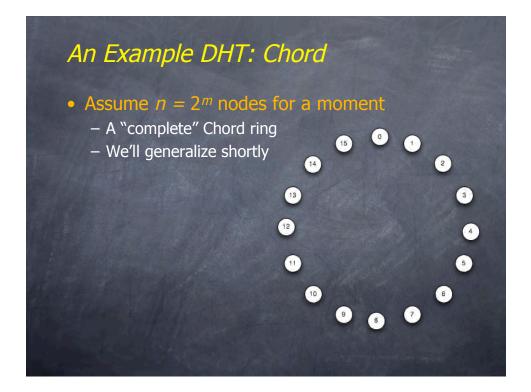
• Peer:

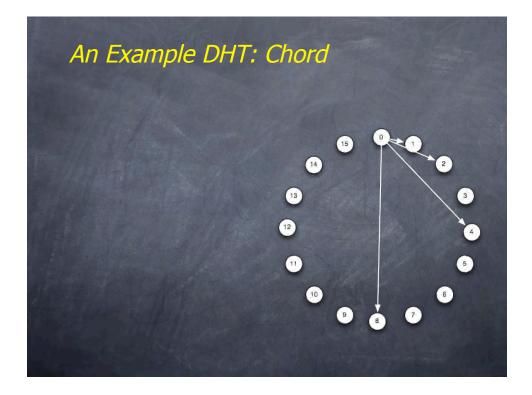
- Application users provide nodes for DHT
- Examples: filesharing, etc

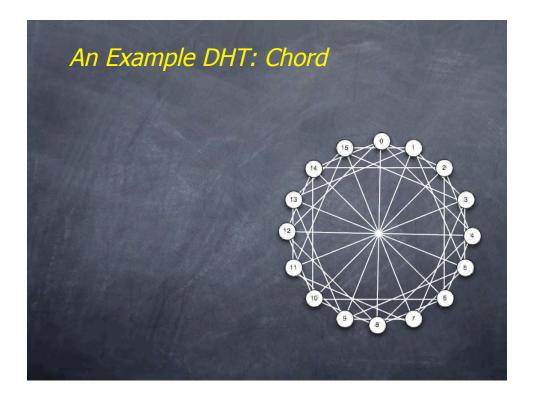
• Infrastructure:

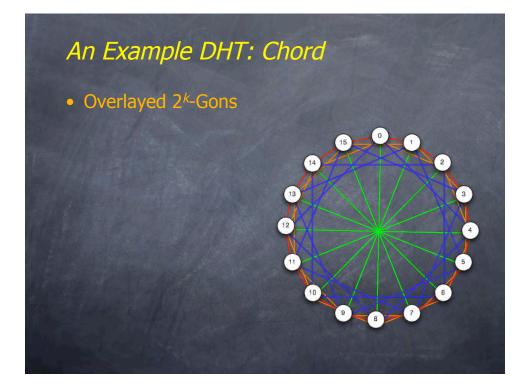
- Set of managed nodes provide DHT service
- Perhaps serve many applications
- A p2p "incubator"?
 - We'll discuss this at the end of the tutorial

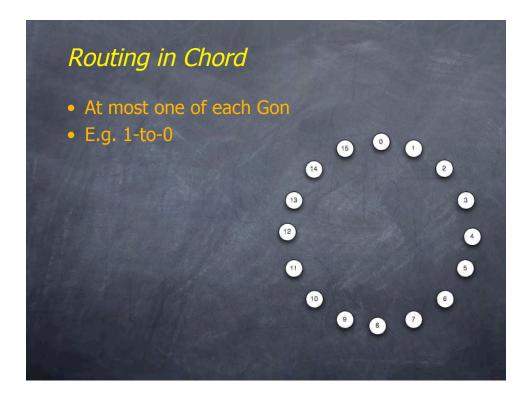
Library or Service

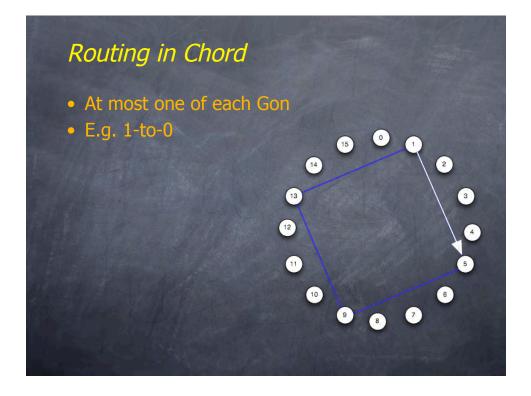

• Library: DHT code bundled into application

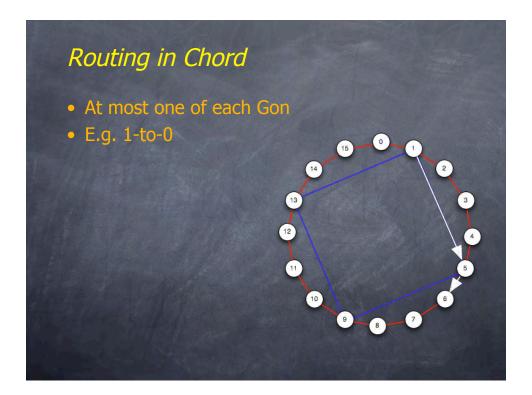

- Runs on each node running application
- Each application requires own routing infrastructure
- Service: single DHT shared by applications
 - Requires common infrastructure
 - But eliminates duplicate routing systems

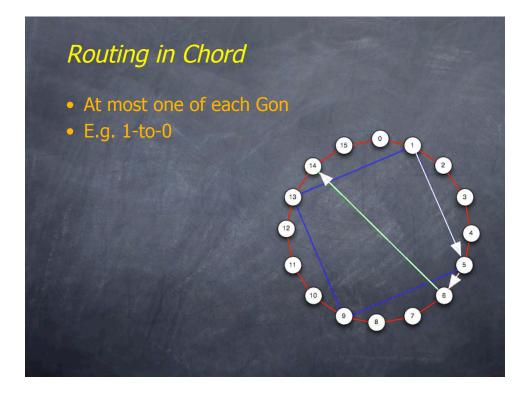

DHT Outline

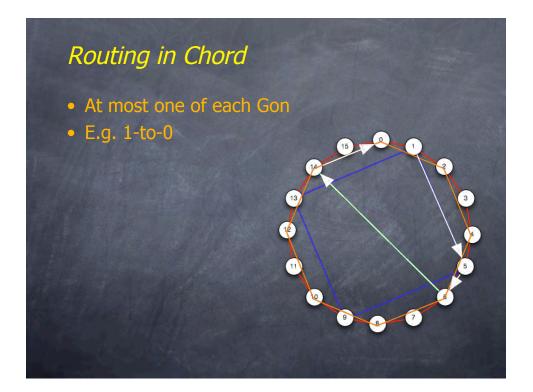

- High-level overview
- Fundamentals of structured network topologies

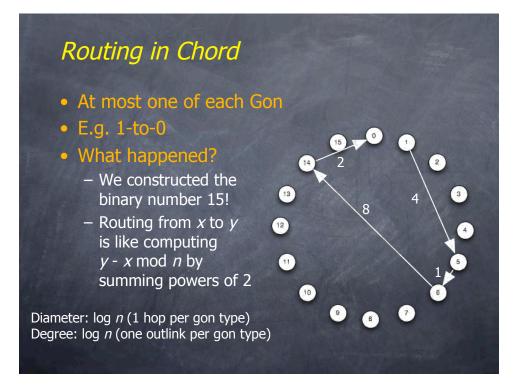

 And examples
- One concrete DHT
 - Chord
- Some systems issues
 - Storage models & soft state
 - Locality
 - Churn management

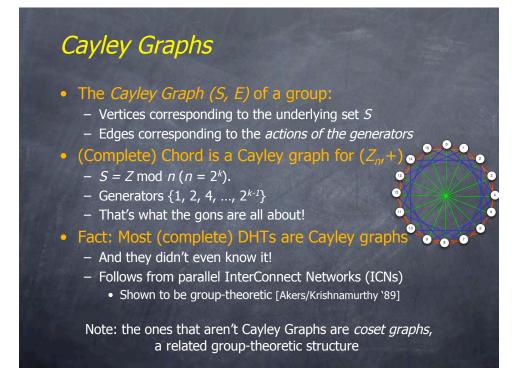


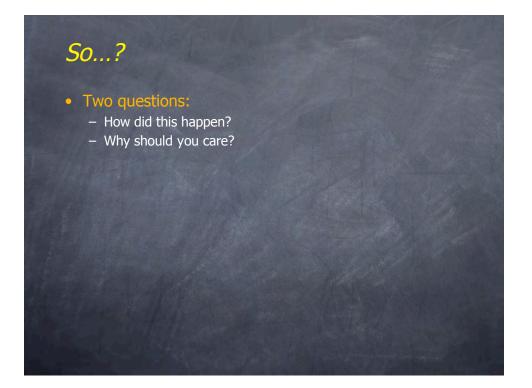


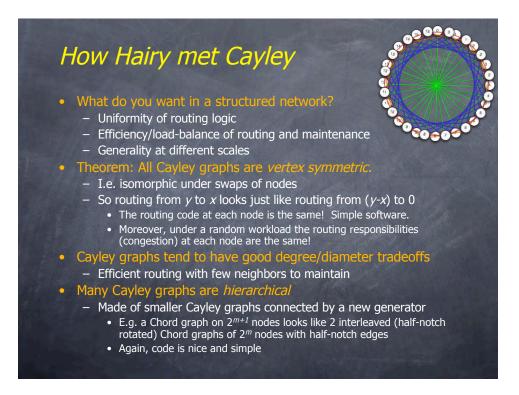






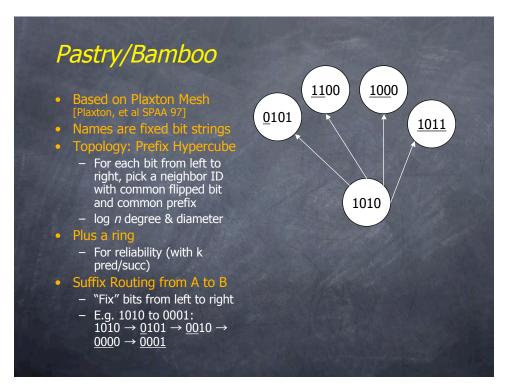

What is happening here? Algebra!

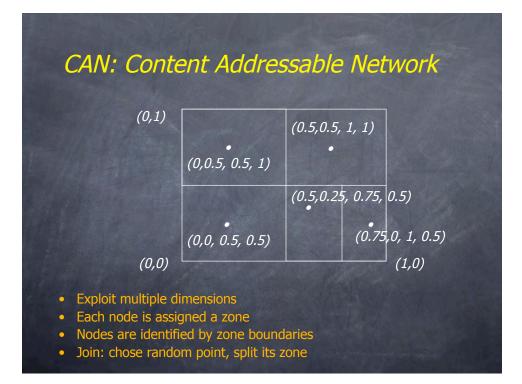

Underlying group-theoretic structure

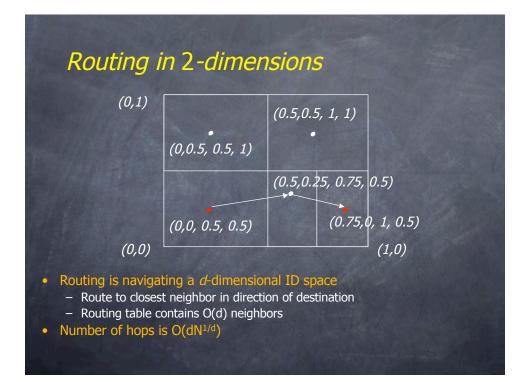

- Recall a *group* is a set *S* and an operator such that:
 - *S* is closed under •
 - Associativity: (AB)C = A(BC)
 - There is an *identity* element $I \in S$ s.t. IX = XI = X for all $X \in S$
 - There is an inverse X⁻¹ ∈ S for each element X∈S s.t. XX⁻¹ = X⁻¹X = I
- The generators of a group
 - Elements $\{g_1, ..., g_n\}$ s.t. application of the operator on the generators produces all the members of the group.

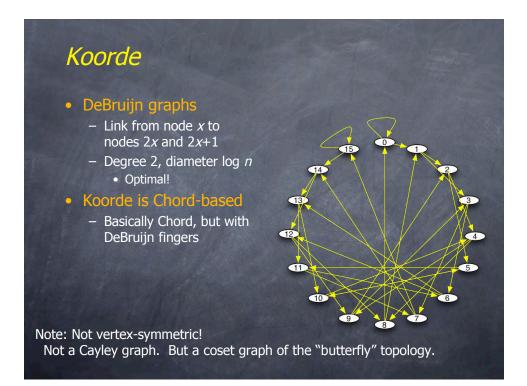
Canonical example: (Z_n, +)

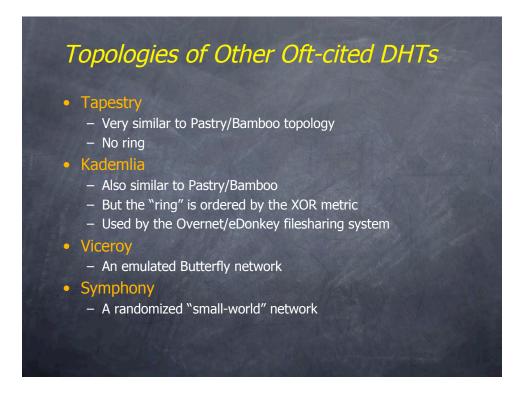
- Identity is 0
- A set of generators: {1}
- A different set of generators: {2, 3}

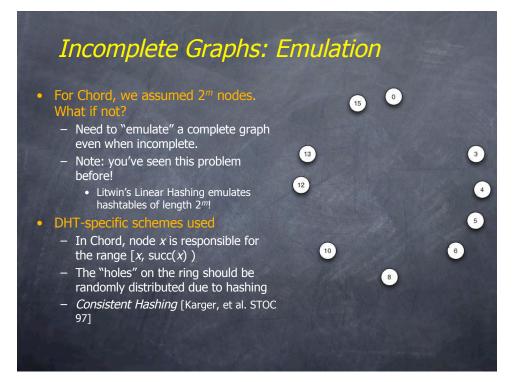


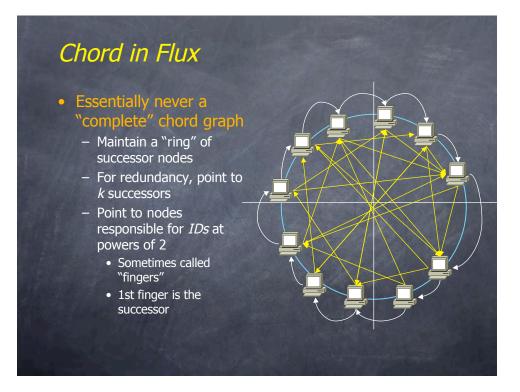


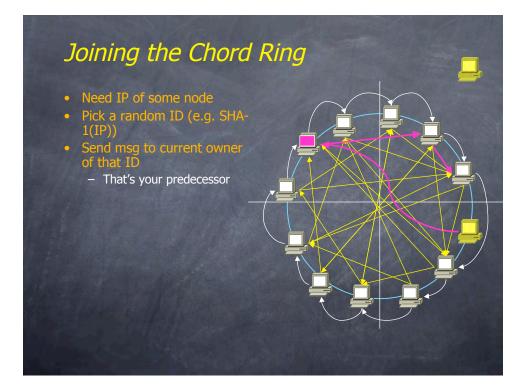


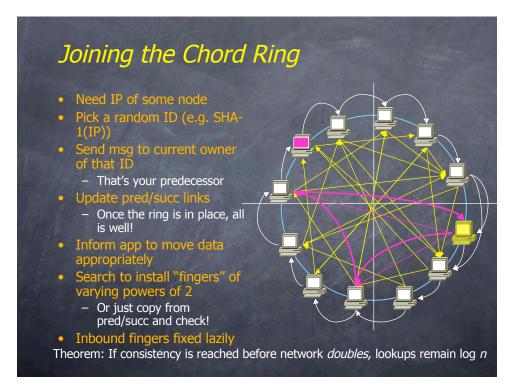

Upshot

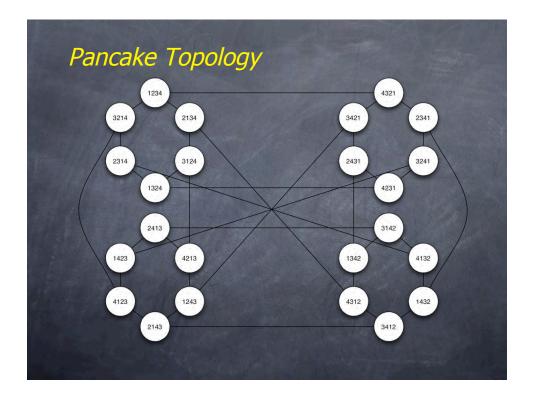

- Good DHT topologies will be Cayley/Coset graphs
 - A replay of ICN Design
 - But DHTs can use funky "wiring" that was infeasible in ICNs
 - All the group-theoretic analysis becomes suggestive
- Clean math describing the topology helps crisply analyze efficiency
 - E.g. degree/diameter tradeoffs
 - E.g. shapes of trees we'll see later for aggregation or join
- Really no excuse to be "sloppy"
 - ISAM vs. B-trees










ICN Emulation

- At least 3 "generic" emulation schemes have been proposed
 - [Naor/Wieder SPAA '03]
 - [Abraham, et al. IPDPS '03]
 - [Manku PODC '03]

 As an exercise, funky ICN + emulation scheme = new DHT

- IHOP: Internet Hashing on Pancake graphs [Ratajczak/Hellerstein `04]
 - Pancake graph⁺ ICN + Abraham, et al. emulation.

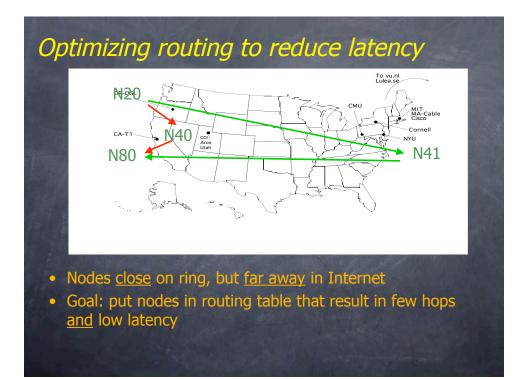
[†]Based on Bill Gates' only paper. Trivia question: who was his advisor/co-author?

A "Generalized DHT"

- Pick your favorite InterConnection Network
 - Hypercube, Butterfly, DeBruijn, Chord, Pancake, etc.
- Pick an "emulation" scheme
 - To handle the "incomplete" case

Pick a way to let new nodes choose IDs

– And maintain load balance


PhD Thesis, Gurmeet Singh Manku, 2004

- Up to now we focused on routing
 - DHTs as "content-addressable network"
- Implicit in the name "DHT" is some kind of storage
 - Or perhaps a better word is "memory
 - Enables indirection in time
 - But also can be viewed as a place to store things
- Soft state is the name of the game in Internet systems

- A hybrid persistence scheme – Persistence via *storage & retry*
- Joint responsibility of publisher and storage node
 - Item published with a Time-To-Live (TTL)
 - Storage node attempts to preserve it for that time
 - Best effort
 - Publisher wants it to last longer?
 - Must republish it (or renew it)
- Must balance reliability and republishing overhead
 - Longer TTL = longer potential outage but less republishing
- On failure of a storage node
 - Publisher eventually republishes elsehere
- On failure of a publisher
 - Storage node eventually "garbage collects"

Locality-Centric Neighbor Selection

- Much recent work [Gummadi, et al. SIGCOMM '03, Abraham, et al. SODA '04, Dabek, et al. NSDI 04, Rhea, et al. USENIX '04, etc.]
 - We saw flexibility in neighbor selection in Pastry/Bamboo
 - Can also introduce some randomization into Chord, CAN, etc.

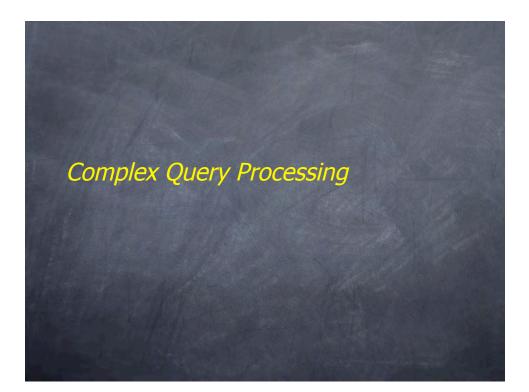
How to pick

- Analogous to ad-hoc networks
 - 1. Ping random nodes
 - 2. Swap neighbor sets with neighbors
 - Combine with random pings to explore
 - 3. Provably-good algorithm to find nearby neighbors based on sampling [Karger and Ruhl 02]

[Gummadi, et al. SIGCOMM '03]

Some topologies allow more choices

- Choice of neighbors in the neighbor tables (e.g. Pastry)
- Choice of routes to send a packet (e.g. Chord)
- Cast in terms of "geometry"
 - But really a group-theoretic type of analysis
- Having a ring is very helpful for resilience
 - Especially with a decent-sized "leaf set" (successors/predecessors)
 - Say ~ log *n*


Handling Churn

- Bamboo [Rhea, et al, USENIX 04]
 - Pastry that doesn't go bad (?)
- Churn
 - Session time? Life time?
 - For system resilience, session time is what matters.

• Three main issues

- Determining timeouts
 - Significant component of lookup latency under churn
- Recovering from a lost neighbor in "leaf set"
 - Periodic, not reactive!
 - Reactive causes feedback cycles
 - Esp. when a neighbor is stressed and timing in and out
- Neighbor selection again

7	<i>imeouts</i>
•	 Recall Iterative vs. Recursive Routing Iterative: Originator requests IP address of each hop Message transport is actually done via direct IP Recursive: Message transferred hop-by-hop
•	 Effect on timeout mechanism Need to track latency of communication channels Iterative results in direct <i>n×n</i> communication Can't keep timeout stats at that scale Solution: virtual coordinate schemes [Dabek et al. NSDI '04] With recursive can do TCP-like tracking of latency Exponentially weighted mean and variance
	 Upshot: Both work OK up to a point TCP-style does somewhat better than virtual coords at modest churn rates (23 min. or more mean session time) Virtual coords begins to fail at higher churn rates

DHTs Gave Us Equality Lookups

• What else might we want?

- Range Search
- Aggregation
- Group By
- Join
- Intelligent Query Dissemination

• Theme

- All can be built elegantly on DHTs!
 - This is the approach we take in PIER
- But in some instances other schemes are also reasonable
 - I will try to be sure to call this out
 - The flooding/gossip strawman is always available

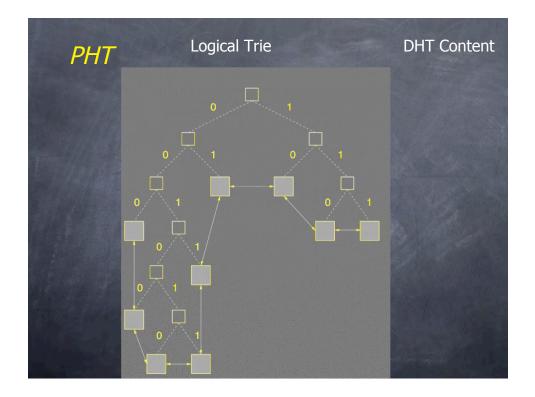
Range Search

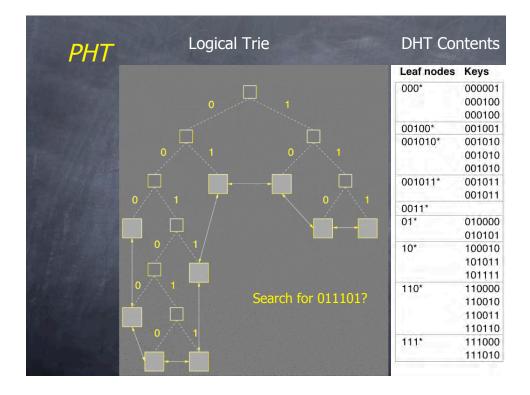
Numerous proposals in recent years

- Chord w/o hashing, + load-balancing [Karger/Ruhl SPAA `04, Ganesan/Bawa VLDB `04]
- Mercury [Bharambe, et al. SIGCOMM '04]. Specialized "smallworld" DHT.
- P-tree [Crainiceanu et al. WebDB '04]. A "wrapped" B-tree variant.
- P-Grid [Aberer, CoopIS '01]. A distributed trie with random links.
- (Apologies if I missed your favorite!)

We'll do a very simple, elegant scheme here

- Prefix Hash Tree (PHT). [Ratnasamy, et al '04]
- Works over any DHT
- Simple robustness to failure
- Hints at generic idea: direct-addressed distributed data structures




• Recall the *trie* (assume binary trie for now)

- Binary tree structure with edges labeled 0 and 1
- Path from root to leaf is a *prefix* bit-string
- A key is stored at the minimum-distinguishing prefix (depth)

PHT is a bucket-based trie addressed via a DHT

- Modify trie to allow *b* items per leaf "bucket" before a split
- Store contents of leaf bucket at DHT address corresponding to prefix
 - So far, not unlike Litwin's "Trie Hashing" scheme, but hashed on a DHT.
 - Punchline in a moment...

Observe: The DHT allows direct addressing of PHT nodes

- Can *jump* into the PHT at any node
 Internal, leaf, or *below a leaf*!
- So, can find leaf by binary search
 - *loglog |D|* search cost!
 - If you knew (roughly) the data distribution, even better
- Moreover, consider a failed machine in the system
 - Equals a failed node of the trie
 - Can "hop over" failed nodes directly!
- And... consider concurrency control
 - A link-free data structure: simple!

- Direct-addressing a lovely way to emulate robust, efficient "linked" data structures in the network
- Direct-addressing requires regularity in the data space partitioning
 - *E.g.* works for regular space-partitioning indexes (tries, quad trees)
 - Not so simple for data-partitioning (B-trees, R-trees) or irregular space partitioning (kd-trees)

Aggregation

• Two key observations for DHTs

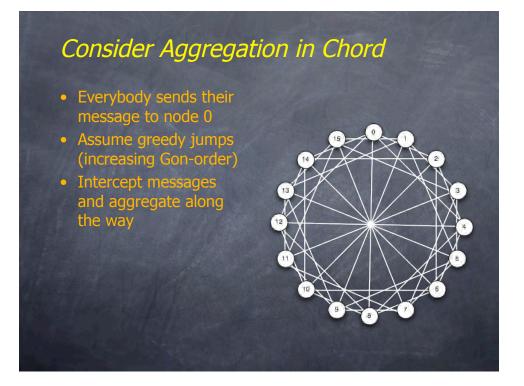
- DHTs are multi-hop, so hierarchical aggregation can reduce BW
 - E.g., the TAG work for sensornets [Madden, OSDI 2002]
- DHTs provide tree construction in a very natural way

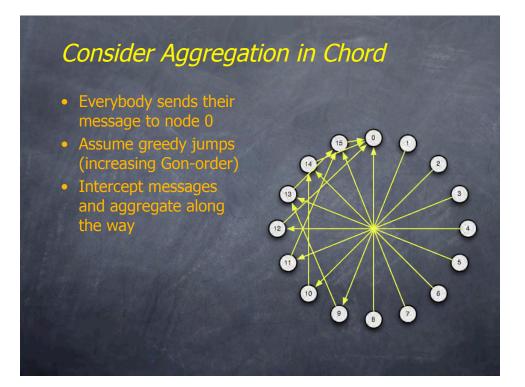
But what if I don't use DHTs?

- Hold that thought!

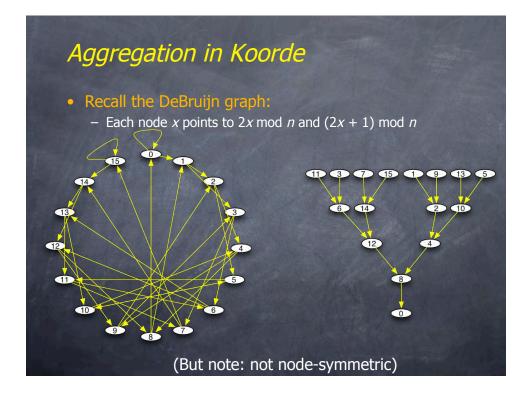
An API for Aggregation in DHTs

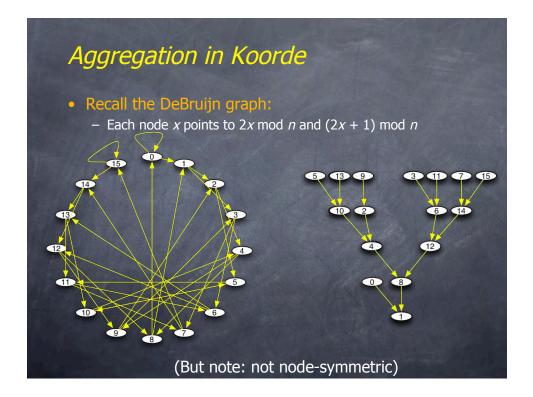
Uses a basic hook in DHT routing

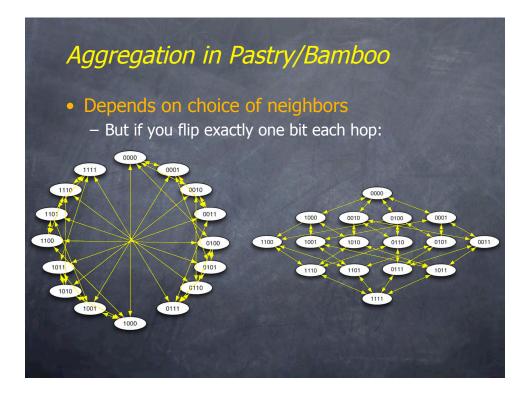

 When routing a multi-hop msg, intermediate nodes can intercept

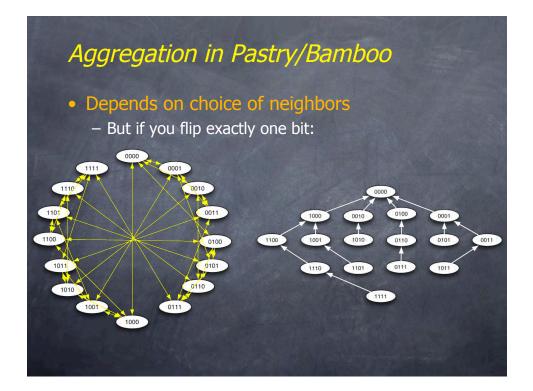

• Idea

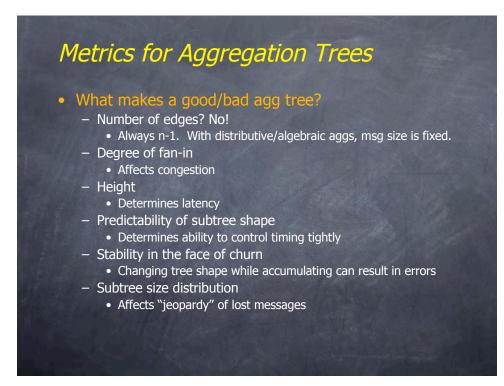
- To aggregate in a DHT, pick an aggregating ID at random
- All nodes send their tuples toward that ID
- Nodes along the way intercept and aggregate before forwarding


Questions


- What does the resulting agg tree look like?
- What shape of tree would be good?
- Note: tree-construction will be key to other tasks!







So what if I don't have a DHT?

Need another tree-construction mechanism

- There are many in the NW literature (e.g. for multicast)
- Require maintenance messages akin to DHTs
 - Do you maintain for the life of your query engine? Or setup/teardown as needed?

Can pick a tree shape of your own

- Not at the mercy of the DHT topologies
- E.g. could do high fan-in trees to minimize latency

As we noted before, we will reuse tree-construction for multiple purposes

- It's handy that they're trivial in DHTs
- But could reuse another scheme for multiple purposes as well

• Or, can do aggregation via gossip [Kempe, et al FOCS '03]

Group By

A piece of cake in a DHT

- Every node sends tuples toward the hash ID of the grouping columns
- An agg tree is naturally constructed per group

Note nice dual-purpose use of DHT

- Hash-based partitioning for parallel group by
 - Just like parallel DBMS (Gamma, the *Exchange* op in Volcano)
- Agg tree construction in multi-hop overlay network

Hash Join

- We just did hash-based group by.
- Hash-based join is roughly the same deal, twice:
 - Given R.a Join S.b
 - Each node:
 - sends each R tuple toward H(R.a)
 - sends each S tuple toward H(S.b)
- Again, DHT gives
 - Hash-based partitioning for parallel hash join
 - Tree construction (no reduction along the way here, though)
- Note the resulting communication pattern
 - A tree is constructed *per hash destination!*
 - That's a lot of trees!
 - No big deal for the DHT -- it already had that topology there.

Fetch Matches Join

- Essentially a distributed index join
 - Name comes from R* (Mackert & Lohman)
- Given R.a Join S.b
 - Assume <S.b, tuple> was already "published" (indexed)
- For each tuple of R, query DHT for S tuples matching R.a
 - Each S.b value will get some subset of the nodes visiting it
 So a lot of "partial" trees
 - Note: if S.b is *not* already indexed in the DHT via S.b, that has to happen on the fly
 - Half a hash join :-)

Symmetric Semi-Join and Bloom Join

- Query rewriting tricks from distributed DBs
- Semi-Joins a la SDD-1
 - But do it to both sides of the join
 - Rewrite R.a Join S.b as
 - (<S.ID,S.b> semi-join <R.id,R.a>) join R.a join S.b
 - Latter 2 joins can be Fetch Matches
- Bloom Joins a la R*
 - Requires a bit more finesse here
 - Aggregate R.a Bloom filters to a fixed hash ID. Same for S.b.
 - All the R.a Bloom filters are OR'ed, eventually multicasted to all nodes storing S tuples
 - Symmetric for S.b Bloom filter
 - Can in principle stream refining Bloom filters

Query Dissemination

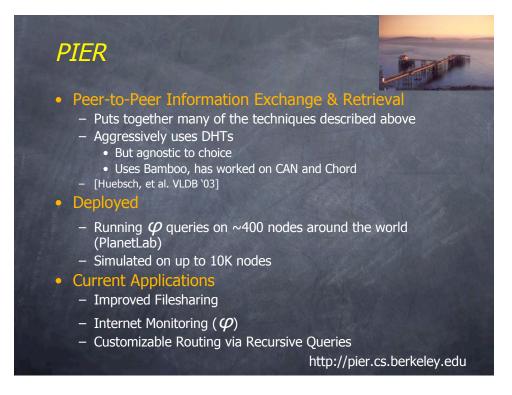
- How do nodes find out about a query?
 - Up to now we conveniently ignored this!
- Case 1: Broadcast
 - As far as we know, all nodes need to participate
 - Need to have a broadcast tree out of the query node
 - This is the opposite of an aggregation tree!
 - But how to instantiate it?

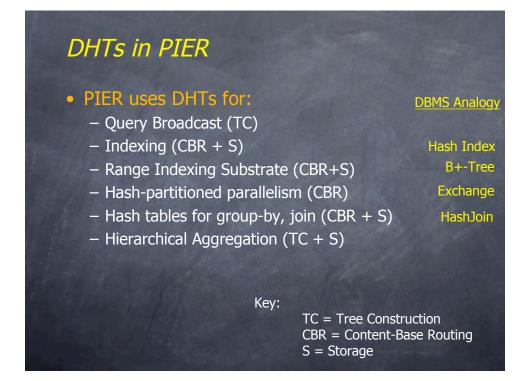
Naïve solution: Flood

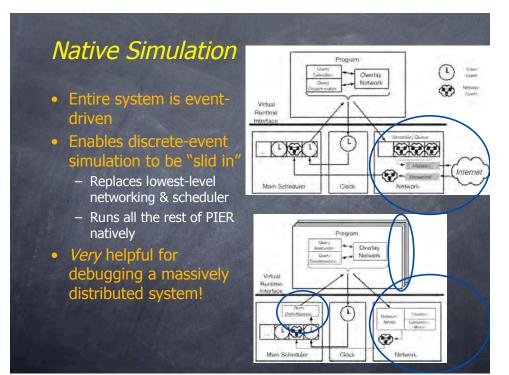
- Each nodes sends query to all its neighbors
- Problem: nodes will receive query multiple times
 - wasted bandwidth

SCRIBE

- Redundancy-free broadcast
- Upon joining the network, route a message to some canonical hash ID
 - Parent intercepts msg, makes a note of new child, discards message
 - At the end, each node knows its children, so you have a broadcast tree
 - Tree needs to deal with joins and leaves on its own; the DHT won't help.
 - MSR/Rice, NGC '01




• Suppose you have a simple equality query


- Select * From R Where R.c = 5
- If R.c is already indexed in the DHT, can route query via DHT

Query Dissemination is an "access method"

- Basically the same as an index
- Can take more complex queries and disseminate subparts
 - Select * From R, S, T
 Where R.a = S.b
 And S.c = T.d
 - And R.c = 5

Initial Tidbits from PIER Efforts

- "Multiresolution" simulation critical
 - Native simulator was hugely helpful
 - Emulab allows control over link-level performance
 - PlanetLab is a nice approximation of reality
- Debugging still very hard
 - Need to have a traced execution mode.Radiological dye? Intensive logging?
- DB workloads on NW technology: mismatches
 - E.g. Bamboo aggressively changes neighbors for singlemessage resilience/performance
 - Can wreak havoc with stateful aggregation trees
 - E.g. returning results: SELECT * from Firewalls
 1 MegaNode of machines want to send you a tuple!
- A relational query processor w/o storage
 - Where's the metadata?

Traditional FileSystems on p2p?

Lots of projects

- OceanStore, FarSite, CFS, Ivy, PAST, etc.
- Lots of challenges
 - Motivation & Viability
 - Short & long term
 - Resource mgmt
 - Load balancing w/heterogeneity, etc.
 - Economics come strongly into play
 - Billing and capacity planning?
 - Reliability & Availability
 - Replication, server selection
 - Wide-area replication (+ consistency of updates)
 - Security
 - Encryption & key mgmt, rather than access control

Non-traditional Storage Models

- Very long term archival storage
 LOCKSS
- Ephemeral storage

 Palimpsest, OpenDHT

<text><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Protocol Threats

- Assume conventional platform/social attacks
- Mitigate further damage through protocol
- Top adversary goal: Stealth Modification
 - Modify replicas to contain adversary's version
 - Hard to reinstate original content after large proportion of replicas are modified

• Other goals

- Denial of service
- System slowdown
- Content theft

The LOCKSS Solution

- Peer-to-peer auditing and repair system for replicated documents / no file sharing
- A peer periodically audits its own replica, by calling an opinion poll
- When a peer suspects an attack, it raises an alarm for a human operator
 - Correlated failures
 - IP address spoofing
 - System slowdown
- 2nd iteration of a deployed system

Sampled Opinion Poll

• Each peer holds

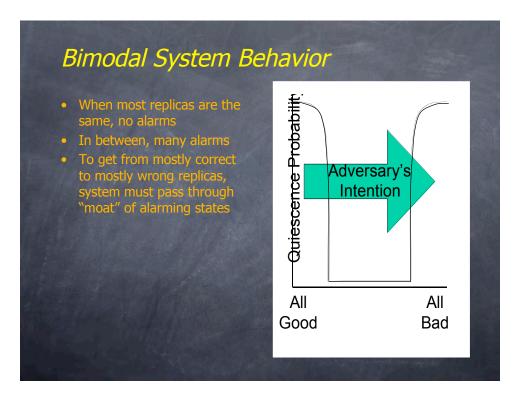
- reference list of peers it has discovered
- friends list of peers it knows externally
- Periodically (faster than rate of bit rot)
 - Take a sample of the reference list
 - Invite them to send a hash of their replica
- Compare votes with local copy
 - Overwhelming agreement (>70%)
- Sleep blissfully

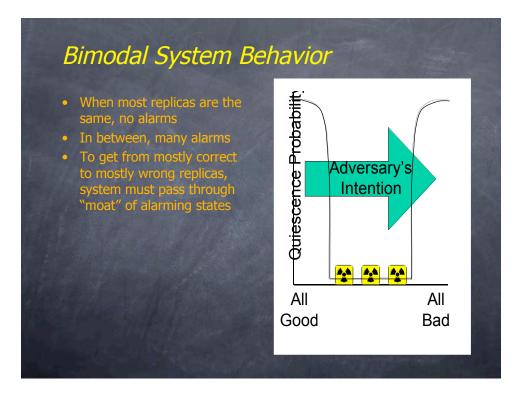
🖙 Repair

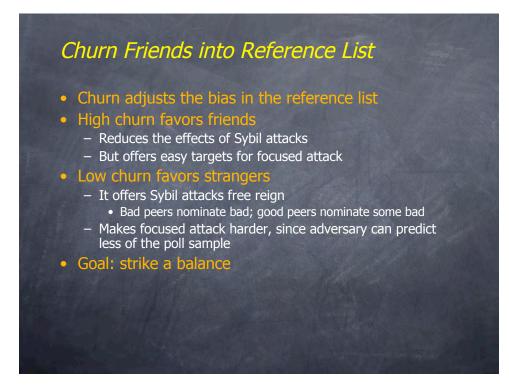
- Overwhelming disagreement (<30%)
 Too close to call *©* Raise an alarm
- To repair, the peer gets the copy of somebody who disagreed and then reevaluates the same votes

Reference List Update

- Take out voters in the poll
 - So that the next poll is based on different group
- Replenish with some "strangers" and some "friends"
 - Strangers: Accepted nominees proposed by voters
 - Friends: From the friends list
 - The measure of favoring friends is called churn factor


LOCKSS Defenses


- Limit the rate of operation
- Bimodal system behavior
- Churn friends into reference list


Limit the rate of operation

- Peers determine their rate of operation autonomously
 - Adversary must wait for the next poll to attack through the protocol
- No operational path is faster than others
 - Artificially inflate "cost" of cheap operations
 - No attack can occur faster than normal ops

Palimpsest [Roscoe & Hand, HotOS 03]

- Robust, available, secure ephemeral storage
- Small and very simple
- Soft-capacity for service providers
- Congestion-based pricing
- Automatic space reclamation
- Flexible client and server policies
- We'll ignore the economics

Service Model for Ephemeral Storage

• For clients:

- Data highly available for limited period of time
- Secure from unauthorized readers
- Resistant to DoS attacks
- Tradeoff cost/reliability/performance

• For service providers:

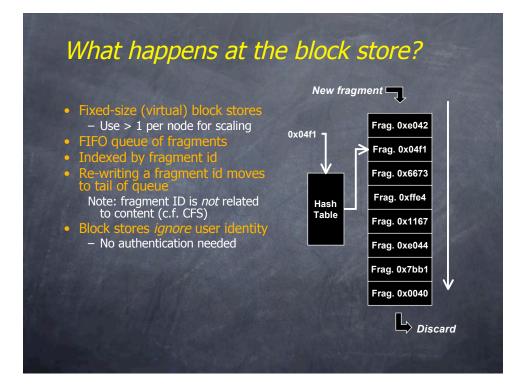
- Charging that makes economic sense
- Capacity planning
- Simplicity of operation and billing

How does it do this?

• To write a file:

- Erasure code it
- Route it through a network of simple block stores
- Pay to store it

Each block store is a fixed-length FIFO


- Block stores may be owned by multiple providers
- Block stores don't care who the users are
- No one store needs to be trusted
- Blocks are eventually lost off the end of the queue

Storing a file

- Each file has a *name* and a key.
- File Dispersal
 - Use a rateless code to spread blocks into fragments
 Rabin's IDA over GF(2¹⁶), 1024-byte blocks

Fragment Encryption

- Security, authenticity, identification
 - AES in Offset Codebook Mode
- Fragment Placement
- Encrypt: (SHA256(name) \oplus frag.id) \Rightarrow 256-bit ID
- Send (fragment, ID) to a block store using DHT
 - Any DHT will do

Retrieving a file

- Generate enough fragment IDs
- Request fragments from block stores
- Wait until *n* come back to you
- Decrypt and verify
- Invert the IDA
- Voila!

Unfortunately...

Files disappear

- This is a storage system which, in use, is guaranteed to forget everything
 - c.f. Elephant, Postgres, etc.
- Not a problem for us provided we know how long files stay around for
 - Can refresh files
 - Can abandon them
 - Note: there is no delete operation
- How do we do this?

- Each block store has a *time constant* τ
 - How long fragment takes to reach end of queue
- Clients query block stores for τ
 - Operation piggy-backed on reads/writes
- Maintain exponentially-weighted estimate of system τ, τ_s
 - Fragment lifetimes Normally distributed around τ_s
- Use this to predict file lifetimes
 - Allows extensive application-specific tradeoffs

Trustworthy P2P

- Many challenges here. Examples:
 - Authenticating peers
 - Authenticating/validating data
 - Stored (poisoning) and in flight
 - Ensuring communication
 - Validating distributed computations
 - Avoiding Denial of Service
 - Ensuring fair resource/work allocation
 - Ensuring privacy of messages
 - Content, quantity, source, destination
 - Abusing the power of the network

• We'll just do a sampler today

Free Riders

• Filesharing studies

- Lots of people download
- Few people serve files

• Is this bad?

- If there's no incentive to serve, why do people do so?
- What if there are strong disincentives to being a major server?

Simple Solution: Threshholds

- Many programs allow a threshhold to be set
 - Don't upload a file to a peer unless it shares > k files
- Problems:
 - What's k?
 - How to ensure the shared files are interesting?

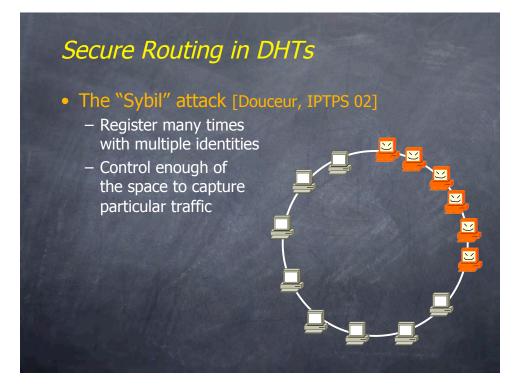
BitTorrent

Server-based search

- suprnova.org, chat rooms, etc. serve ".torrent" files
 metadata including "tracker" machine for a file
- Bartered "Tit for Tat" download bandwidth
 - Download one (random) chunk from a storage peer, slowly
 - Subsequent chunks *bartered* with concurrent downloadersAs tracked by the tracker for the file
 - The more chunks you can upload, the more you can download
 - Download speed starts slow, then goes fast
 - Great for large files
 - Mostly videos, warez

One Slide on Game Theory

Typical game theory setup


- Assume self-interested (selfish) parties, acting autonomously
- Define some benefit & cost functions
- Parties make "moves" in the game
 - With resulting costs and benefits for themselves and others
- A Nash equilibrium:
 - A state where no party increases its benefit by moving
 - Note:
 - Equilibria need not be unique nor equal
 - Time to equilibrium is an interesting computational twist

Mechanism Design

- Design the states/moves/costs/benefits of a game
- To achieve particular globally-acceptable equilibria
 - I.e. selfish play leads to global good

DAMD P2P!

- Distributed Algorithmic Mechanism Design (DAMD)
 A natural approach for P2P
- An Example: Fair-share storage [Ngan, et al., Fudico04]
 - Every node *n* maintains a *usage record:*Advertised capacity
 - Hosted list of objects n is hosting (nodeID, objID)
 - *Published list* of objects people host for *n* (nodeID, objID)
 - Can publish if capacity $p \cdot \sum$ (published list) > 0
 - Recipient of publish request should check *n*'s usage record
 - Need schemes to authenticate/validate usage records
 - Selfish Audits: *n* periodically checks that the elements of its hosted list appear in published lists of publishers
 - Random Audits: *n* periodically picks a peer and checks all its hosted list items

Squelching Sybil

• Certificate authority

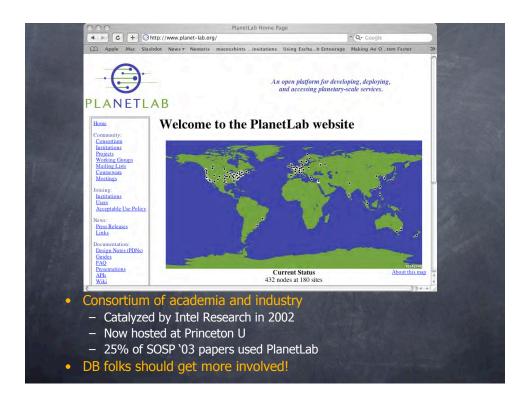
- Centralize one thing: the signing of ID certificates
 Central server is otherwise out of the loop
- Or have an "inner ring" of trusted nodes do this
 - Using practical Byzantine agreement protocols [Castro/Liskov OSDI `01]

• Weak secure IDs

- ID = SHA-1(IP address)
- Assume attacker controls a modest number of nodes
- Before routing through a node, challenge it to produce the right IP address
 - Requires iterative routing


Redundant Computation

Correctness via redundancy


- An old idea (e.g. process pairs)
- Applied in an adversarial environment
- Using topological properties of DHTs


Two Themes

- Change "support" contents per peer across copies
- Equalize "influence" of each peer

Much Fun to Be Had Here

• Potentially high-impact area

- New classes of applications enabled
 - A useful question: "What apps need/deserve this scale"
 - Intensity of the scale keeps the research scope focused
 - Zero-administration, sub-peak performance, semantic homogeneity, etc.
- A chance to reshape the Internet
 - More than just a packet delivery service
 - arphi is an effort in this direction

Much Fun to Be Had Here

Rich cross-disciplinary rallying point

- Networks, algorithms, distributed systems, databases, economics, security...
- Top-notch people at the table
- Many publication venues to choose from
 - Including new ones like NSDI, IPTPS, WORLDS

Much Fun to Be Had Here

• DHT and similar overlays are a real breakthough

- Building block for data independence
- Multiple metaphors
 - Hashtable storage/index
 - Content-addressable routing
 - Topologically interesting tree construction
- Each stimulates ideas for distributed computation
- Relatively solid DHT implementations available
 - Bamboo, OpenDHT (Intel & UC Berkeley)
 - Chord (MIT)

The DB Community Has Much to Offer

- Complex (multi-operator) gueries & optimization
 - NW folks have tended to build single-operator "systems" • E.g. aggregation only, or multi-d range-search only
 - Adaptivity required
 - But may not look like adaptive QP in databases...
- Declarative language semantics
 - Deal with streaming, clock jitter and soft state!
- Data reduction techniques
 - For visualization, approximate query processing
- Bulk-computation workloads
 - Quite different from the ones the NW and systems folks envision
- Recursive query processing
 - The network is a graph!

Metareferences

- Your favorite search engine should find the inline refsProject IRIS has a lot of participants' papers online - http://www.project-iris.org
- IEEE Distributed Systems Online http://dsonline.computer.org/os/related/p2p/
- O'Reilly OpenP2P
- Karl Aberer's ICDE 2002 tutorial http://lsirpeople.epfl.ch/aberer/Talks/ICDE2002-Tutorial.pdf
- <u>http://cis.poly.edu/~ross/tutorials/P2PtutorialInfocom.pdf</u>
- PlanetLab
 - http://www.planet-lab.org
- OpenDHT
 - http://www.opendht.org

Some of the p2p DB groups

• PIER

- http://pier.cs.berkeley.edu
- Stanford Peers
 - http://www-db.stanford.edu/peers/
- P-Grid
 - <u>http://www.p-grid.org/ (EPFL)</u>
- Pepper
 - <u>http://www.cs.cornell.edu/database/pepper/pepper.htm</u>
- BestPeer (PeerDB)
 - http://xena1.ddns.comp.nus.edu.sg/p2p/
- Hyperion
 - http://www.cs.toronto.edu/db/hyperion/
- Piazza
 - http://data.cs.washington.edu/p2p/piazza/