
1

Page ‹#›

Oracle Database 10g
The Self-Managing Database

Benoit Dageville
Oracle Corporation

benoit.dageville@oracle.com

Agenda

 Oracle10g: Oracle’s first generation of
self-managing database

 Oracle’s Approach to Self-managing
 Oracle10g Manageability Foundation
 Automatic Database Diagnostic Monitor (ADDM)
 Self-managing Components
 Conclusion and Future Directions

2

Page ‹#›

Oracle10g

Oracle10g

 Oracle10g is the latest version of the Oracle
DBMS, released early 2004

 One of the main focus of that release was self-
management

– Effort initiated in Oracle9i
 Our vision when we started this venture four

years ago: make Oracle fully self-manageable
 We believe Oracle10g is a giant step toward

this goal

Oracle’s
Approach

3

Page ‹#›

Oracle’s Approach: Server Resident

 Technology built inside the database server
– Eliminate management problems rather than “hiding” them

behind a tool
– Minimize Performance Impact
– Act “Just in Time” (e.g. push versus pull)
– Leverage existing technology
– Effective solutions require complete integration with various

server components
 server becoming so sophisticated that a tool based

solution can no longer be truly effective
– Mandatory if the end-goal is to build a truly self-managing

database server

Oracle’s Approach: Seamless GUI
Integration

Oracle’s Approach: Holistic
 Avoid a collection of point solutions
 Instead, build a comprehensive solution

– Core manageability infrastructure
 Comprehensive statistics component
 Workload Repository
 Server based alerts
 Advisory framework

– Central self-diagnostic engine built into core database (Automatic
Database Diagnostic Monitor or ADDM)

– Self-managing Components
 Auto Memory Management, Automatic SQL Tuning, Automatic

Storage Management, Access Advisor, Auto Undo Retention, Space
Alerts, Flashback….

 Follow the self-managing loop: Observe, Diagnose,
Resolve

4

Page ‹#›

Oracle’s Approach: Out-of-box
 Manageability features are enabled by default

– Features must be very robust
– Minimal performance impact
– Outperform manual solution
– Self-managing solution has to be self-manageable!

 Zero administrative burden on DBAs
 Examples

– Statistics for manageability enabled by default
– Automatic performance analysis every hour
– Auto Memory Management of SQL memory is default
– Optimizer statistics refreshed automatically
– Predefined set of server alerts (e.g. space, …)
– And much more…..

 Low End Customers
– No dedicated administrative staff
– Automated day to day operations
 Optimal performance out of the box, no need to set configuration

parameters
 High End Customers

– Flexibility to adapt product to their needs
– Self-management features should outperform manual tuning and

ensure predictable behavior
– Need to understand and monitor functioning of self-management

operations
 Help DBAs in making administrative decisions (no need for DBA

to be rocket scientist!)
 Any workload: OLTP, DSS, mixed

Oracle’s Approach:
Manageability for All

Application & SQL
Management

System Resource
Management

Space
Management

Backup & Recovery
Management

Storage
Management

Database
Control

(EM)

ADDM

Oracle’s Approach:
Manageability Architecture

Manageability Infrastructure

5

Page ‹#›

Manageability Infrastructure

Application & SQL
Management

System Resource
Management

Space
Management

Backup & Recovery
Management

Storage
Management

ADDM

Manageability Infrastructure

Manageability Infrastructure:
Overview

Workload Statistics
Subsystem

Automatic Maintenance Task
Infrastructure

Server-generated Alert
Infrastructure

Advisory
Infrastructure

Foundation for Self-managing
 Workload Statistics Subsystem

– Intelligent Statistics
– AWR: “Data Warehouse” of

the Database
 Automatic Maintenance Tasks

– Pre-packaged, resource
controlled

 Server-generated Alerts
– Push vs. Pull, Just-in-time,

Out-of-the-box
 Advisory Infrastructure

– Integrated, uniformity,
enable inter-advisor
communication

Statistics: Overview

ADDM

Alerts

In memory
statistics

Workload Repository

Shared-Memory

V$ Views

Historical
Statistics

Statistic Snapshot

6

Page ‹#›

Statistics: Classes
 Database Time Model

– Understand where database time is spent
 Sampled Database Activity

– Root cause analysis
 What-if

– Self managing resource (e.g. memory)
 Metrics and Metric History

– Trend analysis, Capacity planning
– Server alerts (threshold based), Monitoring (EM)

 Base Statistics
– Resource (IO, Memory, CPU), OS, SQL, Database Objects,

…

Statistics: Database Time Model

 Operation Centric
– Connection Management
– Compilation
– SQL, PLSQL and Java execution

times

User I/O

Application

ClusterConcurrency

SQL Exec

PLSQL Exec

 Connection Mgmt
Compilation

Java Exec

 Resource Centric
– Hardware: CPU, IO, Memory
– Software: Protected by locks

(e.g. db buffers, redo-logs)

Database Time

Drill-down: Session, System,
SQL,
Service/Module/Action, Client ID

Statistics: Sampled Database
Activity
• In-memory log of key attributes of database

sessions activity
• Use high-frequency time-based sampling (1s)
• Done internally, direct access to kernel structures
• Data captured includes:

– Session ID (SID)
– SQL (SQL ID)
– Transaction ID
– Program, Module, Action
– Wait Information (if any)

 Operation Type (IO, database lock, …)
 Target (e.g. Object, File, Block)
 Time

 Fine Grained History of Database Activity

7

Page ‹#›

Statistics: Sampled Database
Activity

DB Time
SID=213

WAITING

State

Block readqa324jffritcf2137:38:26

WaitSQL IDModuleSIDTime

CPUaferv5desfzs5Get review id2137:38:31

WAITING Log Syncabngldf95f4deOne click2137:38:37

WAITING Busy Buffer Waithk32pekfcbdfrAdd to cart2137:38:35

Book by author

V$ACTIVE_SESSION_HISTORY

Query for
Melanie

Craft Novels

Browse and
Read

Reviews

Add
item to

cart

Checkout
using

‘one-click’

Statistics: What-if (Overview)
 Predict performance impact of changes in amount of memory allotted

to a component, both decrease and increase.
 Highly accurate, maintained automatically by each memory

component based on workload.
 Use to diagnose under memory configuration (ADDM).
 Use to decide when to transfer memory between shared-memory

pools (Auto Memory Management).
 Not limited to memory (e.g. use to compute auto value of MTTR)
 Produced by

– Buffer cache
– Shared pool - integrated cache for both database object metadata and

SQL statements
– Java cache for class metadata
– SQL memory management - private memory use for sort, hash-joins,

bitmap operators

Statistics: What-if (Example)

 Reducing buffer cache size to 10MB increases IOs by a 2.5 factor
 Increase buffer cache size to 50MB will reduce IOs by 20%

V$DB_CACHE_ADVICE

8

Page ‹#›

Base Statistics – e.g. SQL

 Maintained by the Oracle cursor cache
 SQL id – unique text signature
 Time model break-down
 Sampled bind values
 Query Execution Plan
 Fine-grain Execution Statistics (iterator level)
 Efficient top SQL identification using Δs

AWR: Automatic Workload
Repository
 Self-Managing Repository of Database Workload

Statistics
– Periodic snapshots of in-memory statistics stored in database
– Coordinated data collection across cluster nodes
– Automatically purge old data using time-based partitioned

tables
– Out-Of-The-Box: 7 days of data, 1-hour snapshots

 Content and Services
– Time model, Sampled DB Activity, Top SQL, Top objects, …
– SQL Tuning Sets to manage SQL Workloads

 Consumers
– ADDM, Database Advisors (SQL Tuning, Space, …), ...
– Historical performance analysis

Automatic Database
Diagnostic Monitor (ADDM)

Application & SQL
Management

System Resource
Management

Space
Management

Backup & Recovery
Management

Storage
Management

ADDM

Manageability Infrastructure

9

Page ‹#›

ADDM: Motivation
 Problem: Performance tuning requires high-expertise

and is most time consuming task
 Performance and Workload Data Capture

– System Statistics, Wait Information, SQL Statistics, etc.
 Analysis

– What types of operations database is spending most time on?
– Which resources is the database bottlenecked on?
– What is causing these bottlenecks?
– What can be done to resolve the problem?

 Problem Resolution
– If multiple problems identified, which is most critical?
– How much performance gain I expect if I implement this

solution?

ADDM: Overview
 Diagnose component of the system wide self-managing loop
 … and the entry point of the resolve phase
 Central Management Engine

– Integrate all components together
– Holistic time based analysis
– Throughput centric top-down approach
– Distinguish symptoms from causes (i.e root cause analysis)

 Runs proactively out of the box (once every hour)
– Result of each analysis is kept in the workload repository

 Can be used reactively when required

 ADDM is the system-wide optimizer of the database

SQL
Advisor

High-load
SQL

IO / CPU
issues RAC issues

Automatic Diagnostic Engine

Snapshots in
Automatic Workload

Repository

Self-Diagnostic Engine

System
Resource

Advice

Network +
DB config

Advice

 Top Down Analysis Using AWR
Snapshots

 Classification Tree - based on
decades of Oracle tuning expertise

 Identifies main performance
bottlenecks using time based
analysis

 Pinpoints root cause
 Recommend solutions or next step
 Reports non-problem areas

– E.g. I/O is not a problem

How Does ADDM Work?

10

Page ‹#›

ADDM: Methodology
Problem classification system

 Decision tree based on the Wait Model and Time Model
……

Wait Model

Cluster

User I/O

Concurrency

……

Buffer Busy

Parse Latches

Buf Cache latches

……

Root CausesSymptoms

ADDM: Taxonomy of Findings
 Hardware Resource Issues

– CPU (capacity, top-sql, …)
– IOs (capacity, top-sql, top-objects, undersized memory cache)
– Cluster Interconnect
– Memory (OS paging)

 Software Resource Issues
– Application locks
– Internal contention (e.g. access to db buffers)
– Database Configuration

 Application Issues
– Connection management
– Cursor management (parsing, fetching, …)

ADDM: Real-world Example
 Reported by Qualcomm when upgrading to Oracle10g
 After upgrading, Qualcomm noticed severe performance degradation
 Looked at last ADDM report
 ADDM was reporting high-cpu consumption

– and identified the root cause: a SQL statement
 ADDM recommendation was to tune this statement using Automatic

SQL tuning
 Automatic SQL tuning identified missing index. The index was created

and performance issue was solved
 In this particular case, index was dropped by accident during the

upgrade process!

11

Page ‹#›

Self-managing Components

Application & SQL
Management

System Resource
Management

Space
Management

Backup & Recovery
Management

Storage
Management

ADDM

Manageability Infrastructure

Self-managing
Components

Performance
(ADDM)

Auto SQL Tuning

Access Advisor

Memory

Space

Auto Managed
(Private - SQL)

Auto Managed
(Shared - Pools)

Segment Advisor

Undo Advisor

Auto Storage
Management

Administration

SQL

Backup/
Recovery

Resource
Manager

RMAN

Flashback

Auto MTTR

Auto Stat Collect

Server Alerts

 Shared Memory Management
– Automatically size various shared memory pools (e.g.

buffer pool, shared pool, java pool)
– Use “what-if” statistics maintain by each component to

trade off memory
 Memory is transferred where most needed

 Private Memory (VLDB 2002)
– Determine how much memory each running SQL

operator should get such that system throughput is
maximized

– Global memory broker: compute ideal value based on
memory requirement published by active operators

– Adaptive SQL Operators: can dynamically adapt their
memory consumption in response to broker instructions

 No need to configure any parameter except for the
overall memory size (remove many parameters)

Automatic Memory Management

12

Page ‹#›

Automatic Shared-Memory
Management: Tuning Pool Sizes

Java Pool

Shared Pool

Buffer Cache

Java Pool

Shared Pool

Buffer Cache

Automatic
Memory Manager

Reconfigure
Process

Automatic SQL Tuning: Concept

DBA

High-Load
SQL

ADDM

SQL
Workload

…
Add Missing
Indexes

Modify SQL
Constructs

Create a SQL
Profile

Gather
Missing or
Stale Stats

Automatic SQL
Tuning

SQL
Profiling
Access Path
Analysis

SQL
Structure
Analysis

SQL Tune
Advisor

Automatic SQL Tuning: Overview
 Performed by the Oracle query optimizer running in tuning

mode
– Uses same plan generation process but performs additional

steps that require lot more time

 Optimizer uses this extra time to
– Profile the SQL statement

 Validate data statistics and its own estimate using dynamic
sampling and partial executions

 Look at past executions to determine best optimizer settings
 Optimizer corrections and settings are stored in a new

database object, named a “SQL Profile”
– Explore plans which are outside its regular search space

Ÿ To investigate the use of new access structures (i.e. indexes)
Ÿ To investigate how SQL restructuring would improve the plan

13

Page ‹#›

Automatic SQL Tuning: SQL Profiling

Optimizer
(Tuning
Mode)

createsubmit

SQL Profiling

Optimizer
(Normal Mode)

outputsubmit

SQL
Profile

SQL Tuning
Advisor

Database
Users

Well-Tuned
Plan

After … use

 Persistent: works across shutdowns and upgrades
 SQL profiling ideal for packaged applications (no change to SQL text)

SQL Profiling: Performance
Evaluation

Time (s)

1

1 0

1 0 0

1 0 0 0

1 0 0 0 0

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

Queries

Using 73 high-load queries from GFK, a
market analysis company located in Germany

Time (s)

1

1 0

1 0 0

1 0 0 0

1 5 9 1 3 1 7 2 1 2 5 2 9 3 3 3 7 4 1 4 5 4 9 5 3 5 7 6 1 6 5 6 9

Queries

Before… …After

Automatic SQL Tuning: What-if
Analysis
 Schema changes: invokes access advisor

– Comprehensive index solutions (b-tree, bitmap, functional)
– Materialized views recommendations maximizing query rewrite while

minimizing maintenance cost
– Any combination of the above two (e.g. new MV with an index on it)
– Consider the entire SQL workload

 SQL Structure Analysis
– Help apps developers to identify badly written statements
– Suggest restructuring for efficiency by analyzing execution plan
– Solution requires changes in SQL semantic different from optimizer

automatic rewrite and transformation
– Problem category

 Semantic changes of SQL operators (NOT IN versus NOT EXISTS)
 Syntactic change to predicates on index column (e.g. remove type

mismatch to enable index usage)
 SQL design (add missing join predicates)

14

Page ‹#›

Conclusion & Future Directions

 Oracle10g major milestone in the Oracle’s
manageability quest

– Manageability foundation
– Holistic Management Control (ADDM)
– Self-manageable components

 Future
– Oracle11g: find an EVE for ADDM?
– Even more self-manageable by fully automating

the resolve phase

More Information?

Industrial Session 4 11:00- 12:30

http://www.oracle.com/technology/products/manageability
/database/index.html

