
1

The Continued Saga of
DB-IR Integration

Ricardo Baeza-Yates
rbaeza@dcc.uchile.cl

www.baeza.cl
Center for Web Research

Dept. of Computer Science

University of Chile

Mariano P. Consens
consens@mie.utoronto.ca
www.cs.toronto.edu/~consens
Information Engineering, MIE
& Dept. of Computer Science

University of Toronto

Agenda

1. Motivation
2. An Introduction to IR
3. Requirements for DB-IR
4. Semi-structured Data
5. Industrial DB-IR Examples: Oracle, Verity
6. DB Approaches
7. IR & Hybrid Approaches
8. Open Problems
9. Bibliography

Disclaimer

• This tutorial reflects the personal biases,
preferences and limitations of the
presenters ☺

• It does not cover everything done in DB+IR
• It does not cover related areas such as

other XML problems, multimedia, spatial
databases, etc.

2

1. Motivation

• Types of data
• DB & IR Views
• Possible Solutions
• Applications
• Search Problems

Different Views on Data

Data and Databases
Complexity

Flexibility

RDBs
IR

OODBs

Nested
Relations

XML DBs

?

3

RDB vs. IR

• DBs allow structured
querying

• Queries and results
(tuples) are different
objects

• Soundness &
completeness expected

• All results are equally
good

• User is expected to know
the structure

• IR only supports
unstructured querying

• Queries and results are
both documents

• Results are usually
imprecise & incomplete

• Some results are more
relevant than others

• User is expected to be
dumb

The Notion of Relevance

• Data retrieval: semantics tied to syntax
• Information retrieval: ambiguous semantics
• Relevance:

– Depends on the user
– Depends on the context (task, time, etc)
– Corollary: The Perfect IR System does not exist

Evaluation: First Quality, next Efficiency

4

Evaluation: Comparing Systems

TREC:

Collection
+

Queries
+

Answers

p-r normalized graph

Possible Architectures

• IR on top of RDBs
• IR supported via functions in an RDB
• IR on top of a relational storage engine

• Middleware layer on top of RDB & IR
systems

• RDB functionality on top of an IR system
• Integration via an XML database & query

language

Problems of the IR view

• Very simple query language
– It is natural language the solution?

• No query optimization
• Does not handle the complete answer

5

Problems of the DB view

• The syndrome of the formal model
– Model is possible because of structure

• The syndrome of “search then rank”
– Large answers
– Optimization is useless
– Quality vs. Speed
– E.g. XQuery

• What is a Data Base?
• Are RDBs really a special case of IR

systems?

Applications for Integrated Systems

• E-commerce search
• Intranets & enterprise data
• Customer support (e.g. CRM)
• News archives, bulletin boards, etc.
• Personal information (e.g. My Life Bits)
• P2P Web Search

Challenges posed by the Web

• Integration of autonomous data sources
– Data/information integration

• Supporting heterogeneous data
– How to do effective querying in the presence of

structured and text data
– How to support IR-style querying on DBs

• Because now users seem to know IR/keyword style
querying more, even though structure is good because
it supports structured querying!

– How to support imprecise queries

6

Enterprise Search is Different

• Sophisticated systems run by librarians are
morphing into simple self-service web-based search
– Must be scalable, reliable, highly available

• Data is different
– Heterogeneous in format & structure (documents, DBs, etc)
– Less volume & better quality

• Searching is also different
– Less & better queries, different tasks
– Focus in recall rather than precision

• Other issues: security, able to search but not to see

What is a Bad Interface/Result?
• No search box
• Inability to judge user intent

– No spell checking
– No context disambiguation (cricket: game or bug?)
– No recommendation system, no user feedback

• Too many hits: answer overload
– Return 10,000 hits when the average user looks only at the

top-20
• The most relevant item is not at the top of the list
• Too many similar documents

– Poor duplicate detection, poor clustering/categorization
• Inability to understand why a document has been

returned
– No KWIC

• Lack of Meta information
– Size, format, date, etc.

Cost of a Bad Search

• Information is useless if no one can find it
– ROI for employee productivity
– ROI for customer satisfaction
– Cost of people using out-of-date information
– Cost of people using wrong information
– Cost of recreating information which cannot be

found
– Cost of opportunity for not finding the information

7

Some Examples - I

Where is the search box?

Some Examples – II
“ultra seek” or “ultraseek”?

Some Examples - III

Looking for “k-means” in lotus.com

8

Agenda

1. Motivation
2. An Introduction to IR
3. Requirements for DB-IR
4. Semi-structured Data
5. Industrial DB-IR Examples: Oracle, Verity
6. DB Approaches
7. IR & Hybrid Approaches
8. Open Problems
9. Bibliography

2. Introduction to IR
through Web Retrieval

• IR challenges posed by the Web
• Logical view of text
• Similarity models
• IR system architecture
• IR query languages & interfaces

Bag-of-Words Representation

Full-text continuum:
ambiguity vs. completeness trade-off

9

Challenges in Current IR Systems

Document Base: Web

• Largest public repository of data
(more than 6 billion static pages?)

• Today, there are more than 60 million Web servers
• Well connected graph with out-link and in-link power

law distributions

Log

Log

x –β Self-similar &
Self-organizing

Web Retrieval

• Problems:
– volume
– fast rate of change and growth
– dynamic content
– redundancy
– organization and data quality
– diversity
– …..

• Deal with data overload

10

Challenges in Current IR Systems

Web Users

• Cultural and educational diversity
• Short queries

– Inherent to users or due to the query language?

• Different goals:
– Information need
– Navigational need
– Transactional need

• Short patience
– few queries posed & few answers seen

• Other problems: concurrency, scale, ...

Challenges in Current IR Systems

Dynamic
InteractionContext

11

Interaction

• Inexperienced users
• Dynamic information needs
• Varying task: querying, browsing,…

• No content overview
• Poor query language, no help

• Poor preview, no visualization
• Missing answers: partial Web coverage, invisible

Web, different words or media, ...
• Useless answers

Challenges in Current IR Systems

Web Retrieval Architecture

• Centralized parallel architecture

Crawlers

Web

12

Algorithmic Challenges

• Crawling:
– Quantity
– Freshness
– Quality
– Politeness vs. Usage of Resources

• Ranking
– Words, links, usage logs, … , metadata
– Spamming of all kinds of data
– Good precision, unknown recallAdversarial IR

Text Similarity Models

• Set Models:
– Boolean, Fuzzy sets, ...

• Algebraic Models:
– Vector, LSI, etc.

• Probabilistic Models:
– Probabilistic, Inference & belief networks

Vector model:
• words are dimensions
• tf-idf is used for weights

Queries

Documents

Index

• Inverted index
• Lists sorted by

weight
– global (e.g.

Pagerank)
– local (e.g. word

weights)

• Hashing + set
operations

• Compressed
• Incremental

updates

13

Parallel Case

• Collection is divided per server
• Local indexes are used

– Document partitioning
• Brokers distribute queries and merge results
• Simpler to build and update
• Good load balance, low concurrency

• In theory a global partitioned index achieves
higher concurrency but has lower load balance
and more difficult to build & maintain

Non-word based Applications

• Suffix trees
• Linear building time
• Linear space (but larger than data)
• Suffix arrays
• Linear building time, less space
• Powerful search:

– any substring
– approximate search
– regular expressions

• Applications: biology, music, linguistic, etc.

Link Ranking

• Incoming links count (Li, 1997)
• HITS (Kleinberg, 1998)

– Authorities: good pages
– Hubs: good links

• PageRank (Page & Brin, 1998)
– Random walk + random jumps if “bored”

• Many variations of these ideas
• Good to find communities, spam, etc.
• Application to other problems (e.g. ranking

relations)

14

Agenda

1. Motivation
2. An Introduction to IR
3. Requirements for DB-IR
4. Semi-structured Data
5. Industrial DB-IR Examples: Oracle, Verity
6. DB Approaches
7. IR & Hybrid Approaches
8. Open Problems
9. Bibliography

3. Requirements for DB-IR

• Motivating Applications
• Data and Query Requirements
• Sample Use Cases

Sample Paper on the Web

15

Bibliography Entry

<proceedings>
<inproceedings>
<author>Ricardo Baeza-Yates</author>
<author>Gonzalo Navarro</author>
<title>XQL and Proximal Nodes</title>
...

</inproceedings>
</proceedings>

• Describes metadata for the workshop article
• The XML data conforms to the DBLP schema

(DTD)

Paper Content in XML

<workshop date=”28 July 2000”>
<title> XML and Information Retrieval: A SIGIR 2000 Workshop
</title>
<editors> David Carmel, Yoelle Maarek, Aya Soffer
</editors>
<proceedings>
<paper id=”1”>
<title> XQL and Proximal Nodes </title>
<author> Ricardo Baeza-Yates </author>
<author> Gonzalo Navarro </author>
<abstract> We consider the recently proposed language …
</abstract>
<section name=”Introduction”>

Searching on structured text is becoming more important with XML …
</section>
…
<cite xmlns:xlink=”http://www.acm.org/sigir/.../paper/xmlql”> … </cite>

</paper>
…

</workshop>

• The XML data conforms to the publisher’s DTD

A Digital Library Application

• Web interface for the citation
Access Content

Citations

Similar Documents

16

Applications Areas

• Scientific, Technical and Medical Reference
Books, Journals, Publications

• Case Law and Litigation Materials
• Regulatory and Business Filings
• Maintenance, Repairs and Operations Manuals
• Product Documentation

– Design
– Procurement (SRM)
– Customer Service (CRM)

• Collaboration, Portals
• Web, Intranet, Group & Personal Repositories
• Represents “80% of enterprise data”

Data Requirements

• Text, Documents, Images, Application Files,
Multimedia Content

• Structured Data
– Relations: Refers (From, To)
– Hierarchies: proceedings/paper/section

• Semi-structured Data
– Editorial comments on the paper

• Assumption: XML provides a reasonably way to
capture the requirements above

Objects

Nested

Publishing Relational Data

<users>
<user_tuple>

<userid>
1243
</userid>
<name>
humphrey
</name>
<rating>

...

<items>
<item_tuple>

<itemno>
1066

</itemno>
<description>
unicycle

</description>
<offered_by>

...

<bids>
<bid_tuple>

<userid>
1243

</userid>
<itemno>
1066

</itemno>
<bid_amount>

...

ITEMNO DESCRIPTION OFFERED_BY RESERVE_PRICEITEMS

USERID NAME RATINGUSERS

USERID ITEMNO BID_AMOUNT BID_DATEBIDS

<bidlisting>
<bid>
<user>
<userid> 1243 </userid> <name> humphrey </name>
<rating> ...

</user>
<item>
<itemno> 1066 </itemno> <descr> unicycle </descr>
<offered_by> ...

</item>
<bid_amount>

...

17

Queries on Views - Integration
<users>

<user_tuple>
<userid>
1243
</userid>
<name>
humphrey
</name>
<rating>

...

<items>
<item_tuple>

<itemno>
1066

</itemno>
<description>
unicycle

</description>
<offered_by>

...

<bids>
<bid_tuple>

<userid>
1243

</userid>
<itemno>
1066

</itemno>
<bid_amount>

...

<bidlisting>
<bid>
<user>
<userid> 1243 </userid> <name> humphrey </name>
<rating> ...

</user>
<item>
<itemno> 1066 </itemno> <descr> unicycle </descr>
<offered_by> ...

</item>
<bid_amount>

...

Local

Global

Heterogeneous Sources - P2P
<users>

<user_tuple>
<userid>
1243
</userid>
<name>
humphrey
</name>
<rating>

...

<bids>
<bid_tuple>

<userid>
1243

</userid>
<itemno>
1066

</itemno>
<bid_amount>

...

<bidlisting>
<bid>
<user>
<userid> 1243 </userid> <name> humphrey </name>
<rating> ...

</user>
<item>
<itemno> 1066 </itemno> <descr> unicycle </descr>
<offered_by> ...

</item>
<bid_amount>

...

<items>
<item_tuple>

<itemno>
1066

</itemno>
<description>
unicycle

</description>
<offered_by>

...

<products>
<product>

<upc>
34707-05560

</upc>
<category>
scooter

</category>
<manufacturer>

...

products in bike category?

Query Requirements Overview

• Developing the web application Content-only

Structure-only

Content and Structure

Relevance, Similarity

Score

Top-k

18

Proteomics Portal (courtesy T. Topaloglou, Protana)

Cross database query
involving, sequence
similarity, text search,
and relational subquery

• Map the proteins seen in a experiments to the scientific literature

DB-IR Query Requirements

• Express arbitrary Full-Text (FT) searches
• Select the substructures where the FT

condition applies (search context)
• Select the substructures to be returned (return

context)
• Choose how to determine relevance for results

and (weighted) queries
• Access and combine the relevance scores
• Limit answer to top-k
• Support approximate structural searches

S. Amer-Yahia, N. Koudas, D. Srivastava, ICDE 2003 Tutorial

• Full composition of FT and structural queries

Additional DB-IR Requirements

• Efficient and scalable query evaluation,
supported by
– Indexes (FT and structural)
– Optimizer (plans and operators)

• Rich functionality for presenting answers
– Visual interfaces
– Highlight the FT terms in context

• Support queries on integrated views
• Query heterogeneous structure

– Within a single collection
– In data repository crawled from web sources
– Across peer sources

19

Sample Use Cases

• Quick overview of the range of possible DB-IR
requirements
– Identify search and return contexts
– Motivate relevance
– Illustrate composition

• Extension of use cases from Full-text XQuery
(//www.w3.org/TR/xmlquery-full-text-use-cases)

Finding Text in Elements

• Find all book titles containing the word "usability“
• Find all books with the phrase "usability tests" in

book or chapter titles
– Multiple search contexts, different return

• Find all books with the phrase "usability tests"
(even across elements)

• Find all book titles for books with abstracts
mentioning software developers (interpreted as
having broad terms “software” near “developer”)
– Proximity
– Thesaurus (developer, programmer)

Finding Text in Structure

• Find the first two sections mentioning “task” in
chapters on "conducting usability tests“ with
the book abstract not mentioning “software”
– Structured search contexts

• book/chapter//section
• book/chapter
• book/abstract

• Do the above ignoring footnotes in chapters but
not in abstracts
– Modifies the search contexts
– Match the contexts approximately

20

Ranking

• Find how relevant to "usability" are the books
• Find the best two books on "usability tests“

– Take into account reviewers comments
• Return all books with only the sections highly

relevant to "usability”
• Rank on both approximate structure and

content matching the sections mentioning
“task” in chapters on "conducting usability
tests“ with the book abstract not mentioning
“software”

Composing Queries

• For books with "usability" in the title create a
flat list of all titles and the authors

• Find the 10 most relevant books about
conducting "usability tests" which have more
than one author and are published after "2000“

• Find all books published after "2001" which
share a subject with the 10 most relevant
books on “usability" that have titles mentioning
“software“ and “developer”

The (VLDB-only) DB-IR Saga

0

2

4

6

8

10

12

14

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04

Year

Pa
pe

rs

21

Agenda

1. Motivation
2. An Introduction to IR
3. Requirements for DB-IR
4. Semi-structured Data
5. Industrial DB-IR Examples: Oracle, Verity
6. DB Approaches
7. IR & Hybrid Approaches
8. Open Problems
9. Bibliography

4. Semistructured Data

• XQuery
• XQuery & Full-text
• Structured Text Models

– Proximal Nodes

XQuery History

 SQL OQL

XML
QL

Quilt

XQuery

XPath
1.0

LorelPatterns

XSLT
XSL XQL

98

XQ L
99

XPath
2.0

XQL
98

22

XML Query Language Comparison

XML Query Language Comparison

XML Query Language Comparison

23

XML Query Language Comparison

XML Query Data Model

• Joint with XPath 2.0, XSL 2.0
– Last version of Feb 2004

• Ordered, labeled forest
• Based on XML Information Set, PSVI
• Has node identity
• DTDs (from SGML, IR style)
• XML Scheme (DB style)

– Provide data types

XQuery and the Data Model

DOM

SAX

DBMS

XML

Java

COBOL

DOM

SAX

DBMS

XML

Java

COBOL

XML
Query

W3C
XML

Query
Data
Model

W3C
XML

Query
Data
Model

24

XML Query Formal Semantics

• XQuery is a functional language
– A query is an expression
– Expressions can be nested with full generality.
– A pure functional language with impure syntax

• Static Semantics
– Type inference rules
– Structural subsumption

• Dynamic Semantics
– Value inference rules
– Define the meaning of XQuery expressions in

terms of the XML Query Data Model

XQuery Expressions

• Element constructors
• Path expressions
• Restructuring

– FLWOR expressions
– Conditional expressions
– Quantified expressions

• Operators and functions
• List constructors
• Expressions that test or modify data types

<bib>

<book year="1994">

<title>TCP/IP Illustrated</title>

<author>

<last>Stevens</last>

<first>W.</first>

</author>

<publisher>Addison-Wesley</publisher>

<price> 65.95</price>

</book>

Path Expressions

{-- XQuery uses the abbreviated syntax
of XPath for path expressions --}

document(“bib.xml”)

/bib/book/author

/bib/book//*

//author[last=“Stevens” and first=“W.”]

document(“bib.xml”)//author

25

� FOR - LET - WHERE - ORDER BY - RETURN
� Similar to SQL’s SELECT - FROM - WHERE

for $book in document("bib.xml")//book
where $book/publisher = "Addison-Wesley"
return

<book>
{

$book/title,
$book/author

}
</book>

FLWOR Expressions

SQL vs. XQuery

• SQL:
SELECT itemno
FROM items AS i
WHERE description LIKE 'Book'
ORDER BY itemno;

• XQuery:
FOR $i IN //item_tuple
WHERE contains($i/description, ”Books")
RETURN $i/itemno ORDERBY(.)

"Find item numbers of books"

Inner Join

• SQL:
SELECT u.name, i.description
FROM users AS u, items AS i
WHERE u.userid = i.offered_by
ORDER BY name, description;

• XQuery:
FOR $u IN //user_tuple, $i IN //item_tuple

WHERE $u/userid = $i/offered_by
RETURN

<offering> {
$u/name,
$i/description

} </offering> ORDERBY(name, description)

"List names of users and descriptions of the items they offer"

26

Text Search

<section><title>Procedure</title>
The patient was taken to the operating room where she was placed in
a supine position and

<anesthesia>induced under general anesthesia
</anesthesia>
<prep> <action>Foley catheter was placed to decompress the

bladder</action>
and the abdomen was then prepped and draped in sterile fashion.

</prep>
<incision>A curvilinear incision was made

<geography>in the midline immediately infraumbilical
</geography>
and the subcutaneous tissue was divided
<instrument>using electrocautery.</instrument>

</incision>

Conditions on Text

Equality:

//section[title=“Procedure”]

Full-text:

//section[contains(title, “Procedure”)]

Full-text Requirements - I

• Full-text predicates and SCORE functions are
independent

• Full-text predicates use a language subset of SCORE
functions

• Allow the user to return and sort-by SCORE (0..1)
• SCORE must not require explicit global corpus

statistics
• SCORE algorithm should be provided and can be

disabled
• Problems:

– Not clear how to rank without global measures
– Many/no answers problems
– Search then rank is not practical
– How to integrate other SCORE functions?

Full-text Requirements - II

• Minimal operations:
– Single-word and phrase search with stopwords
– Suffix, prefix, infix
– Proximity searching (with order)
– Boolean operations
– Word normalization, diacritics
– Ranking relevance (SCORE)

• Search over everything, including
attributes

• Proximity across markup elements
• Extensible

27

XQuery Implementations

• Software AG's Tamino XML Query
• Microsoft, Oracle,
• Lucent Galax
• GMD-IPSI\item X-Hive
• XML Global
• SourceForge XQuench, Saxon, eXist, XQuery Lite
• Fatdog
• Qexo (GNU Kawa) - compiles to Java byte code
• Openlink, CL-XML (Common Lisp), Kweelt,...
• Soda3, DB4XML and about 15 more

Why XQuery?

� Expressive power

� Easy to learn (?)

� Easy to implement (?)

� Optimizable in many environments

� Related to concepts people already know

� Several current implementations

� The accepted W3C XML Query Language

Structured Text Models

• Trade-off: expressiveness vs. efficiency
• Models (1989-1995)

– Hybrid model (flat fields)
– PAT expressions
– Overlapped lists
– Reference lists
– Proximal nodes
– Region algebra

• Proposed as Algebra for XML-IR-DB Sandwich

– p-strings
– Tree matching

28

Comparison - I

Comparison - II

Comparison - III

29

Example: Proximal Nodes
(Navarro & Baeza-Yates, 1995)

• Hierarchical structure
• Set-oriented language
• Avoid traversing the whole database
• Bottom-up strategy
• Solve leaves with indexes
• Operators work with near-by nodes
• Operators cannot use the text contents
• Most XPath and XQuery expressions can

be solved using this model

Proximal Nodes: Data Model

• Text = sequence of symbols (filtered)
• Structure = set of independent and disjoint

hierarchies or “views”
• Node = Constructor + Segment
• Segment of node ⊇ segment of children
• Text view, to modelize pattern-matching

queries
• Query result = subset of some view

Proximal Nodes: Hierarchies

30

Proximal Nodes: Operations

Proximal Nodes: Query Example

Proximal Nodes: Architecture

31

Agenda

1. Motivation
2. An Introduction to IR
3. Requirements for DB-IR
4. Semi-structured Data
5. Industrial DB-IR Examples: Oracle, Verity
6. DB Approaches
7. IR & Hybrid Approaches
8. Open Problems
9. Bibliography

5. Industrial DB-IR Examples:
Oracle, Verity
• DB View: Oracle
• IR View: Verity
• Provided by them!
• Thanks to

– Omar Alonso (Oracle)
– Prabakhar Raghavan (Verity)

A DB Example: Oracle

• Oracle Text
– Complete API for building any type of search

application
– Features range from basic keyword searching to

advanced techniques like classification and information
visualization

• Oracle Ultra Search
– Out-of-the-box solution that requires no coding
– Can search across OCS components, websites,

databases, files, email, and Portal
– Built on top of Oracle Text

• Included free with the standard system

32

Oracle Text Search Architecture

Common Myths about Oracle Search
(according to Oracle)

• Database-Integrated Search Technology is slow
• Oracle’s Search Technology is less functional than

specialized search-only engines
• Major sites must run specialized search engines
• Oracle is expensive
• Oracle is complex
• Oracle’s search technology will not scale out
• You can only search database-resident content with

Oracle

Oracle Text Search Functionality
y Fully integrated with the database
y Premier text search quality (TREC-8 win)
y Advanced linguistics: built-in extensible thesaurus, themes,

gists, fuzzy, internationalization features for multilingual
applications, etc.

y Document services: multilingual highlighting, themes,
navigation …

y XML support
y Classification (TREC-10 win)
y Statistical Text Processing: Clustering
y Integrated with JDeveloper Java IDE
y Filters for 100+ document formats
y Specialized indexes for catalogs, classification, XPath

searches
y Visualization
y Integrated web-crawler and out-of-the-box-GUI with Ultra

Search

33

Quality
• Link awareness

– Popular pages and hubs
– Website structure
– Page structure

• Duplicate elimination
– Remove URLs with duplicate or near duplicate content

• Spelling correction
– Component that uses a dictionary and data from query logs
– Did you mean …?

• KWIC (Key Word In Context)
– Highlights relevant parts of the document
– No need to open the URL if it doesn’t look relevant

Performance
• Oracle Text integrates with and benefits from

features like
– Data partitioning
– RAC
– Query optimization

• Common and rare queries
– Small index on URL and title for common queries
– Large index on document content for rare queries

• Query Relaxation
– Enables you to execute most restrictive query first
– Then relaxing the search

Ease of Use

• Users want a simple and easy to use search
interface

• Hide all the complexity and expose simple
interface

• Ultra Search
• Two search modes

– Basic: simple search box where search results are
sorted by relevance

– Advanced: interface with more options where user
has more control over the collection

34

Personalization

• Know user search patterns
– What do they search?
– When do they search?

• Search query log analysis
– Which queries were made?
– Which queries were successful?
– How many times was each query made?

Advanced Features
• Classification

– Supervised classification of content
– Two ways: rules or training sets
– You can group a number of categories into a taxonomy
– Very useful for defining a common vocabulary in an

enterprise
• Clustering

– Unsupervised classification of patterns into groups
– The engine analyzes the document collection and outputs a

set of clusters with documents on it
– Very useful for discovering patterns or nuggets in collections
– Could be used as a starting point when there is no taxonomy

present

Information Visualization

• Present searched information in ways other than hit-
lists

• Shows relationship across items in addition to
satisfying query results

• Better IR using visual metaphors
• Very useful for

– Navigation through large data sets
– Discover relationships and associations between items
– Focus + context tasks

• Number of visualizations available
– StretchViewer
– Interactive Viewer (ThemeMap, Cluster visualization)
– Integration with 3rd party vendors

35

StretchViewer

ThemeMap

ThemeStar

36

Is Oracle’s Text Search Complex?

• Easy to Develop
– Simple SQL and PL/SQL interface

• Can be used by any developer that knows SQL
• Can be called by any tool that knows SQL
• Using any language: Java, JSP, PL/SQL, C, etc.

– Choice of datastores
• Stored in the database
• Stored in the file system
• Stored on the web (URL)
• User-defined datastore

• Easy to Deploy
• Easy to Maintain

Oracle Text API

• Three index types
– context: classic text searching
– ctxcat: catalog searching
– ctxrule: classification/routing applications

• Extensions to SQL
– select title from my_table where
contains(text,’Java’)>0;

– select title from my_categories where
matches(myquery, mydoc) > 0;

Oracle Text API – II

• Operators: Boolean expressions, phrases,
proximity, fuzzy, stemming, wildcards,
accumulate scores, term weighting, XPath,
etc.

• Packages
– CTX_DOC: document services
– CTX_QUERY: query feedback
– CTX_REPORT: index information
– CTX_OUTPUT: logging
– CTX_THES: thesaurus features
– CTX_CLS: training set
– CTX_ADM: administration
– CTX_DDL: create/manages index preferences,

sections, stop lists

37

An IR Example: Verity
Structured data

• Indexing databases
– Used to import data from ODBC databases into

Verity indexes (“collections”)
– Similar to Verity gateways to other backend

repositories e.g., Lotus Notes, Exchange,
Documentum, Filenet, etc.

• Parametric selection for search
– Intersect full-text search with range

queries/selection
– When a field is a taxonomy (e.g.,

Continent/Country/City/Street), you have relational
taxonomies = Cartesian product of taxonomies

Database indexing – 2 choices

• “Export” to XML or Bulk Insert File

• ODBC Gateway

• The common theme to either approach is to
preserve the database structure in the index,
such that you can query/display/sort on fields
of integer, float, date, string, “attachment” data
types.

“Export” to XML or BIF - Overview
• Many applications use a database as a storage

component.
• Verity may not have an official gateway to that

system because the APIs may not exist and/or a
simpler solution exists.

• Sample list of applications that may be indexed using
this approach
– MatrixOne, Siebel, Interwoven, Fatwire, Virage, many others

• The general concept is to temporarily export the
database row/field structure in a Verity compatible
format.

• A variety of integration languages have been used –
including, but not limited to ASP, Java/JSP/JDBC,
Perl/ODBC, etc.

38

Verity Gateways

• Pre-built Gateways provide access to the most
common enterprise repositories

• Gateway developer’s kit enables you to build
custom gateways to virtually any application

• K2 Enterprise enforces existing security
models
– Including native security of applications accessed by

Verity Gateways
– Ensures end-users can only view the information that

they are authorized to access

Verity Gateways

Pre-built Verity Gateways
• Available for the following repositories:

– Documentum
– File Systems (NFTS and UNIX)
– HTTP
– Lotus Notes
– Microsoft Exchange
– ODBC databases

Verity Gateway Development Kit
• Quickly and easily build secure custom

gateways to additional repositories

ODBC gateway

• Verity product that uses ODBC (Data-Direct
drivers) to stream records from database into
Verity collections.

• A graphical tool (MMC plug-in) is used to build
the text-based configurations that control the
desired mapping behavior.

39

ODBC GW - Certified Platforms

• Windows (with access to Oracle, DB2, Microsoft SQL
Server)

• Solaris (with access to Oracle and DB2)
• AIX (with access to Oracle and DB2)
• HP-UX (with access to Oracle and DB2)
• Linux (with access to Oracle and DB2)

• Other databases such as Informix, Sybase, MySQL
and others are supported
– Gateway uses ODBC 3.5 API calls to insure compatibility

Feature Highlights

• SQL statements that select fields from one
or more tables (gateway join)

• Full Data Type support
– Blobs, unsigned/signed integers, floats, dates
– Filebyname – treat field as file system path and

automatically follow and index

• Multi-row records
• Compound primary keys
• Efficient spidering

– Event-driven updates – use database triggers
– Where clauses can be used for crawling limit

Verity K2 Enterprise Search -
Parametric Selection
• Intuitive interface enables users to easily sort

and filter information by selecting pre-set
parameters and searching through filtered text
fields and document content for specific text

40

Verity K2 Enterprise Search -
Parametric Selection Example

Verity K2 Enterprise Search -
Relational Taxonomies

• Allows users to quickly narrow down
information in the way that makes the most
sense to them
– Users take alternate paths through the same

topics or categories to quickly and easily narrow
down on the information they need

– Users can navigate to information using two or
more taxonomies at once

• Dramatically improve the finding experience
for data with attributes

Verity K2 Enterprise Search -
Relational Taxonomies Example

41

Agenda

1. Motivation
2. An Introduction to IR
3. Requirements for DB-IR
4. Semi-structured Data
5. Industrial DB-IR Examples: Oracle, Verity
6. DB Approaches
7. IR & Hybrid Approaches
8. Open Problems
9. Bibliography

6. DB Approaches

• IR on Relational Data
– Keyword search

• IR on XML
– Keyword search
– Full QL + IR extension
– Algebras and Evaluation

6-1. IR on Relational: Keywords

• BANKS
– Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe,

Soumen Chakrabarti, S. Sudarshan, Keyword
Searching and Browsing in Databases using BANKS,
ICDE 2002

• DBXplorer
– Sanjay Agrawal, Surajit Chaudhuri, Gautam Das,

DBXplorer: A System for Keyword-Based Search
over Relational Databases, ICDE 2002

• DISCOVER
– Vagelis Hristidis, Yannis Papakonstantinou:

DISCOVER, Keyword Search in Relational
Databases, VLDB 2002

42

Keyword Search
• Keywords could be:

– In the same tuple
– In the same relation
– In the Data or the Metadata
– Connected through primary-foreign key

relationships
• Results can be scored based on:

– Distance of keywords within a tuple
– Distance between keywords in # edges
– IR-style ranking
– Random walk probability (PageRank style)
– Some combination of the above

Example Query [V. Hristidis]

Keywords: Smith Miller

o1←c1 ←n1 →c2
→o3

4

o1←c1→o22

ResultSize

Results:ORDERS
ORDERKEY CUSTKEY TOTALPRICE CLERK ...
1000105 12312 $5,000 John Smith
1000111 12312 $3,000 Mike Miller
1000125 10001 $7,000 Mike Miller
1000110 10002 $8,000 Keith Brown

CUSTOMER
CUSTKEY NAME NATIONKEY ...
12312 Brad Lou 01
10001 George Walters 01
10013 John Roberts 01

NATION
NATIONKEY NAME REGIONKEY
01 USA N.America

c1

c2

c3

o1
o2
o3
o4

n1

Smaller sizes usually
denote tighter association
between keywords

6-2. IR on XML: Keywords

• XKeyword
– V. Hristidis, Y. Papakonstantinou, A. Balmin,

Keyword proximity search on XML graphs, ICDE
2003

– A. Balmin, V. Hristidis, N. Koudas, Y.
Papakonstantinou, D. Srivastava, T. Wang, A System
for Keyword Search on XML Databases, VLDB 2003

• XSearch
– S. Cohen, J. Mamou, Y. Kanza, Y. Sagiv, XSearch: a

semantic search engine for XML, VLDB 2003
• XRANK

– L. Guo, F. Shao, C. Botev, J. Shanmugasundaram,
XRANK: Ranked keyword search over XML
documents, SIGMOD 2003

43

XSearch Example

<proceedings>
<inproceedings>
<author>Moshe Y. Vardi</author>
<title>Querying Logical Databases</title>

</inproceedings>
<inproceedings>
<author>Victor Vianu</author>
<title>A Web Odyssey: From Codd to

XML</title>
</inproceedings>

</proceedings>

The Content-Only Approach

Find papers by Vianu on the topic of
“logical databases”

• Each document in the corpus is treated as a
unit.

• A document containing some of the three query
terms is considered as a result

This fragment does not represent
a paper about logical databasesThis fragment does not represent

a paper by Vianu

The document is not relevant to the query.
This does not work!!!

The document is returned BUT it does not

contain any paper on “logical databases” by Vianu
The document contains the three query terms.

Hence, it is returned by a standard search engine. BUT

<proceedings>
<inproceedings>
<author>Moshe Y. Vardi</author>
<title>Querying Logical Databases</title>

</inproceedings>
<inproceedings>
<author>Victor Vianu</author>
<title>A Web Odyssey: From Codd to

XML</title>
</inproceedings>

</proceedings>

44

XQuery+FT Query Language

FOR $i IN document(“bib.xml”)//inproceedings
WHERE $i/author contains ‘Vianu’

AND $i/title contains ‘Logical’
AND $i/title contains ‘Databases’

RETURN <result>
<author> $i/author </author>

<title> $i/title </title>
</result>

FOR $i IN document(“bib.xml”)//inproceedings
WHERE $i/author contains ‘Vianu’

AND $i/title contains ‘Logical’
AND $i/title contains ‘Databases’

RETURN <result>
<author> $i/author </author>

<title> $i/title </title>
</result>

• Much more complicated query expression than search box
• Extensive knowledge of the document structure is required to

write the query
• Still need to choose a mechanism for ranking the results

This does work, BUT

Requirements from the Search Tool

• A simple syntax that can be used by naive users
• Search results should include XML fragments

and not necessarily full documents
• The XML fragments in an answer, should be

semantically related
– For example, a paper and an author should be

in an answer only if the paper was written by
this author

• Search results should be ranked
• Search results should be returned in “reasonable”

time

XSEarch Query Syntax

• A query is a list of query terms
• A query term can be a

– Keyword, e.g., database

– Tag, e.g., inproceedings:

– Tag-keyword combination, e.g., author:Vianu

• Optionally preceded by a ‘+’

45

Appearance of logical in the
fragment increases the rank of
this fragment

Note that the different document fragments matching
these query terms must be “semantically related”

The Example Revisited

• Find papers by Vianu on the topic of “logical
databases”

logical +database inproceedings: author:Vianulogical +database inproceedings: author:Vianu

Appearance of the tag
inproceedings, in the fragment,
increases the rank of this fragment

Appearance of Vianu under the
tag author, in the fragment,
increases the rank of this fragment

The keyword database
must appear in the fragment

XSEarch:

<proceedings>
<inproceedings>
<author>Moshe Y. Vardi</author>
<title>Querying Logical Databases</title>

</inproceedings>
<inproceedings>
<author>Victor Vianu</author>
<title>A Web Odyssey: From Codd to XML</title>

</inproceedings>
</proceedings>

<title>A Web Odyssey: From Codd to XML</title>

<author>Victor Vianu</author>

Good Result!
title and author elements ARE semantically related

author:Vianu title:

<proceedings>
<inproceedings>
<author>Moshe Y. Vardi</author>
<title>Querying Logical Databases</title>

</inproceedings>
<inproceedings>
<author>Victor Vianu</author>
<title>A Web Odyssey: From Codd to XML</title>

</inproceedings>
</proceedings>

<title>Querying Logical Databases</title>

<author>Victor Vianu</author>

Bad Result!
title and author elements ARE NOT semantically related

XSEarch: author:Vianu title:

46

proceedings

Moshe Y.
Vardi

inproceedings

author title

Querying
Logical
Databases

author
title

Victor
Vianu

A Web Odyssey:
From Codd to XML

inproceedings

Circled nodes belong to different inproceedings entities

Relationship
treeLowest common

ancestor of circled
nodes

Example (1)

Circled nodes belong to the same inproceedings entity
(see MLCAS in Li, Yu, Jagadish, Schema-Free XQuery, VLDB 2004)

proceedings

Moshe Y.
Vardi

inproceedings

author title

Querying
Logical
Databases

author
title

Victor
Vianu

A Web Odyssey:
From Codd to XML

inproceedings

Relationship
tree

Lowest common
ancestor of circled

nodes

Example (2)

Query Processing and Ranking
User

Query
Processor Ranker

XML FilesIndexerIndices
Index Repository

1
2 3 4

L1L2L3L4

• Document fragments are extracted using
indexes

• Extracted fragments are returned ranked by
the estimated relevance

47

Result Ranking

Several factors increase the rank of a result
• Similarity between query and result
• Weight of labels appearing in the result
• Characteristics of result tree

TF-ILF
– Extension of TF-IDF, classical in IR
– Term Frequency: number of occurrences of a

query term in a fragment
– Inverse Leaf Frequency: number of leaves

containing a query term divided by number of
leaves in the corpus

TF-ILF
• Term frequency of keyword k in a leaf node nl

• Inverse leaf frequency

TF-ILF is the product between tf and ilf

6-2. IR on XML: TeXQuery

• Composability: conversion back and
forth from FullMatch to XQuery data
model (within TexQuery expression)

48

TeXQuery Expressions

• Contains
FTContainsExpr::= ContextExpr ”ftcontains” FTSelection
returns true if a node in ContextExpr satisfies FTSelection

//book[
.//section ftcontains ("usability" && "software")
]/title

• Score
FTScoreExpr::= ContextExpr ”ftscore” FTWeightedSelection
returns a sequence of scores (for ranking and top-k)

//book ftscore ("usability" weight 0.8
&& $i/topic weight 0.2)

TeXQuery Full-Text Model

QL-IR Design Choices

• SQL/MM structured text proposal
– L. Brown, M. Consens, I. Davis, C. Palmer, F. Tompa, A

Structured Text ADT for Object-Relational Databases,
Theory and Practice of Object-Systems 1998

– Functions have IR sublanguage as an argument, so the
expression string can be constructed as a query

– Explicit mark_subtexts() function supports highlighting
matches

• TeXQuery
– IR sublanguage grammar exposed and fully composable

with XQuery
– Implementation defined positions and scores

49

6-2. IR on XML: TIX Algebra

• TIX is an extension of the bulk XML algebra
TAX that manipulates collections of scored
trees with matching defined via scored pattern
trees
S. Al-Khalifa, C. Yu, H. Jagadish, Querying structure text
in an XML database, SIGMOD 2003

• Find document components in articles that
– Are part of an article written by an author with last

name ‘‘Doe’’ and are about ‘‘search engine’’
– Relevance to ‘‘internet’’ and ‘‘information retrieval’’ is

desirable (but not necessary)

Scoring:
$4.score = ScoringFunction(

{"search engine"}, {"internet", "information retrieval"})
$1.score = $4.score

Example Scored Pattern

Article

Article or any
other

descendant

Author

Name=‘Doe’

)(' Cρσ Scored data
trees ~ p

Scored pattern
tree (p)

Scored Selection

Scored data
trees C

50

)(' , CLρρΠ

A scored
pattern
tree (p)

A projection
list (PL)

Scored Projection

Scored data
trees C

Scored data
trees ~ C

• Combine multiple scores (from multiple pattern
matches) by keeping the maximum

• Find relevant document components in articles as before
• For articles containing such components, find the reviews

with similar titles

Scoring:
$6.score =
ScoringFunction({"search engine"},
{"internet", "information retrieval"})

$2.score = $6.score

$joinScore =
ScoreSim($3.content, $8.content)

$1.score =
ScoreBar($joinScore, $6.score)

Scored Joins

Article

Article or
any

other
descendant

Author

Name=‘Doe’

Article-title

Review

Title

tix_prod

IR-style Operations

• Threshold
– Projection that retains input trees where at

least one node has a top-k score, or a score
higher than a threshold

• Pick
– Projection that uses a condition with

functions that can traverse the tree to
remove redundant answers

• Operations implemented using stack-based
algorithms on regions

51

Query Evaluation with Relevance
R. Fagin, A. Lotem, M. Naor, Optimal aggregation algorithms

for middleware, JCSS 2003 (Garlic System 1995)

• Threshold Algorithm
– Given m sorted lists with object rankings
– Aggregate the rankings from each list for

each object
– Return the top k ranked objects
– Instance Optimal Solution: do sorted access

(and the corresponding random access) until
you know you have seen the top k answers

• IR Application: objects are document (fragments)
and each list has the relevance of each
document for a given keyword

Agenda

1. Motivation
2. An Introduction to IR
3. Requirements for DB-IR
4. Semi-structured Data
5. Industrial DB-IR Examples: Oracle, Verity
6. DB Approaches
7. IR & Hybrid Approaches
8. Open Problems
9. Bibliography

7. Hybrid & IR Approaches

• Overview of Approaches
• Retrieval Models
• Indexing
• INEX
• Ranking XML

52

Overview of Approaches

• RBD + IR: Two different APIs
• RDB + IR Hybrid: QUIQ, MOA, HySpirit, ...
• RBD “text search” accelerator

– Text content is transformed to flat XML
– XML is searched using an IR API
– Results can be later combined with SQL

• IR System with SQL support
– Special indexes for atomic data types

• XML Databases
– Atomic data types as attributes (metadata)
– Implementation on top of structured text models?

QUIQ (Kabra et al, 2003)

• Tuple: <tag-name, tag-type, tag-value>
• Query: match-filter-quality

– Result: AND of match & filter
– Match are approximate constraints
– Filter are exact constraints
– Relevance is adjusted by quality

• Indexing: built on top of a RDBMS
– Non-text data is mapped to pseudo-words
– Unified index & common TF-IDF model
– Deferred update operations

• Evaluation: 60% faster than a RDBMS text extension

Retrieval Models

• Relational Model: DB2XML, XML-QL, TSIMMIS,
LOREL

• Object-oriented Model: SOX, StruQL, …
• Extended Vector Model
• Weighted Boolean Model: XQL, …
• Probabilistic Model: XIRQL, ELIXIR, JuruXML, ...

53

Indexing

• Flat File: add information, SQL accelerators,...
• Semi-structured:

– Field based: no overlapping, Hybrid model,..
– Segment based: Overlapped list, List of references, p-strings
– Tree based: Proximal Nodes, XRS, ...

• Structured:
– IR/DB, Path-based, Position-based, Multidimensional

• Indexes:
– Structure + Value index (XML on top of RDBs):

• Toxin, Dataguides, T-indexes, Index Fabric, etc.

– Integrated Full-text and Structure index:
• Proximal Nodes, Region Algebra, String Indexing, ...

XPath over Proximal Nodes
(Navarro & Ortega, 2003)

2.5
-

2.5
-

3.7

-

3.3
1.3
3.2
4.2
1.8

1.3

4.0
3.3
4.1
4.0
3.4

3.3

3.4
0.7
3.8
3.7
0.7

0.7

8.8
2.2
8.8
8.8
9.8

9.8

20.5
2.8

58.9
22.7
9.9

2.6

1.8
0.5
1.8
0.9
0.4

0.5

/tstmt/bookcoll/book/

chapter

/tstmt/coverpg/coverpg
[titlel]

/tstmt[//chapter

/tstmt[//chapter]

v[.=~-”love”]

/tstmt[/coverpg/title

/following-silbling:
:subtitle

ToxinMSSaxonGrepeXistXindIXPNQuery

• A fast implementation of XPath subset
• Maps XPath expressions into Proximal Nodes algebra
• Format translation of Axes
• Node + Text index
• Lazy evaluation

INEX

• Initiative for the Evaluation of XML
• Three types of tasks:

– Content only search
– Content & Structure Search
– Clustering

• Started in 2002
• Cooperative relevance assesment
• About 40 groups per year

54

Ranking XML

• Content only:
– exploit hierarchical structure
– exploit importance of tags

• Content & structure:
– Query languages with uncertainty & vagueness
– Data types with vague predicates
– Strict & fuzzy structural conditions
– Dynamic tf × idf

Integrated IR (Bremer & Gertz)

• Extension to XQuery
• Based on XML fragments
• Schemas are extended DataGuides

– Enumeration of all rooted label paths

• Ancestor relationships from structural joins
• RANKBY operator

– based on local & dynamic tf-idf
• New node enumeration encoding
• Path & term-index

– Other smaller indexes (in total less than 60%)

• More than 10 times faster than other XQuery
prototypes

Agenda

1. Motivation
2. An Introduction to IR
3. Requirements for DB-IR
4. Semi-structured Data
5. Industrial DB-IR Examples: Oracle, Verity
6. DB Approaches
7. IR & Hybrid Approaches
8. Open Problems
9. Bibliography

55

8. Open Problems

• Heterogenous data
• Ranking tuples & XML
• New retrieval models
• DB issues for documents
• Simple/succinct vs. complex/verbose QL

– Define an XQuery core?
• Optimization and algebras
• Efficient algorithms
• Indexing & searching
• Quality evaluation (Web, XML)

Thank You

1. Motivation
2. An Introduction to IR
3. Requirements for DB-IR
4. Semi-structured Data
5. Industrial DB-IR Examples: Oracle, Verity
6. DB Approaches
7. IR & Hybrid Approaches
8. Open Problems
9. Bibliography

Come to SIGIR 2005, Salvador, Bahia, Brazil (August)

9. Bibliography – 1
• Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval,

Addison-Wesley, 1999.
• Baeza-Yates & Navarro, Integrating contents and structure in

text retrieval, SIGMOD 25 (1996), 67-79.
• Baeza-Yates and Navarro, XQL and Proximal Nodes, JASIST

53, 504--514, 2002.
• Baeza-Yates, Carmel, Maarek, and Sofer, editors. Special issue

on XML Retrieval, JASIST, 53, 2002.
• Baeza-Yates, Fuhr, and Maarek, editors. Proceedings of the

SIGIR 2002 Workshop on XML and Information Retrieval.
• Bremer & Gertz, Integrating Document & Data Retrieval Based

on XML, to appear.
• Chinenyanga and Kushmerik, Expressive retrieval from XML

documents, Proc. of the 24th SIGIR, 163-171, New York, 2001.
• Delgado & Baeza-Yates, A Comparison of XML Query

Languages, Upgrade 3, 12-25, 2002.

56

Bibliography - 2

• Fuhr and Grossjohann , XIRQL: An XML query language based
on IR concepts. ACM TOIS 22, 313--356, 2004.

• Fuhr, Govert, Kazai, and Lalmas, editors. INitiative for the
Evaluation of XML Retrieval. Proceedings of the First INEX
Workshop. Dagstuhl, Germany, Dec., 8--11, 2002

• Fuhr, Lalmas, and Malik, editors. Proc. of the Second INEX
Workshop. Dagstuhl, Germany, Dec. 15--17, 2003, 2004.

• Grabs and Schek, Flexible information retrieval from XML with
PowerDB-XML, In INEX 2003, 141-148.

• Kabra, Ramakrishnan, Ercegovac, The QUIQ Engine: A Hybrid
IR DB System, ICDE 2003.

• Luk, Leong, Dillon,Chan, Croft & Allan, A Survey on Indexing
and Searching XML, "Special Issue on XML and IR”, JASIST,
2002.

• Mass, Mandelbrod, Amitay, and Soffer, JuruXML - an XML
retrieval system at INEX 2002. In INEX 2003, 73-90.

Bibliography - 3
• Mihajlovic, Hiemstra, Block & Apers, An XML-IR-DB Sandwich:

Is it better with an Algebra in between?, I Workshop on DB-IR
integration at SIGIR, 2004.

• Navarro and Baeza-Yates, Proximal Nodes, SIGIR 1995 (journal
version in ACM TOIS, 1997).

• Navarro and Ortega, IXPN: An index-based XPath
implementation, Technical Report, U. de Chile, 2003.

• Piwowarski, Vu, and Gallinari. Bayesian networks and INEX
2003. In INEX 2004.

• Sayyadian, Shakery, Doan & Zhai, Toward Entity Retrieval over
Structured and Text Data, I Workshop on DB-IR integration at
SIGIR, 2004.

Bibliography - 4

• S. Amer Yahia, M. Fernandez, D. Srivastava, Y.Xu,
Phrase Matching in XML, VLDB 2003

• D. Florescu, D. Kossmann, I. Manolescu, Integrating
Keyword Search into XML Query Processing, WWW
2000

• R. Goldman, N. Shivakumar, S. Venkatasubramanian, H.
Garcia-Molina, Proximity Search in Databases, VLDB
1998

• A. Theobald, G. Weikum, The index-based XXL search
engine for querying XML data with relevance ranking,
EDBT 2002

• S. Al-Khalifa, C. Yu, H. Jagadish, Querying structure text
in an XML database, SIGMOD 2003

57

Bibliography - 5

• K. Böhm , K. Aberer , E. Neuhold , X. Yang, Structured
document storage and refined declarative and
navigational access mechanisms in HyperStorM, The
VLDB Journal 1997

• E. Brown, Fast evaluation of structured queries for
information retrieval, SIGIR 1995

• S. Amer-Yahia, S. Cho, D. Srivastava, Tree pattern
relaxation, EDBT 2002

• S. Amer-Yahia, L. Lakshmanan, S. Pandit, FleXPath:
flexible structure and full-text querying for XML, SIGMOD
2004

• S. Amer-Yahia, N. Koudas, D. Srivastava, Approximate
Matching in XML, ICDE 2003 Tutorial

Bibliography - 6

• G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, S.
Sudarshan, Keyword Searching and Browsing in
Databases using BANKS, ICDE 2002

• S. Agrawal, S. Chaudhuri, G. Das, DBXplorer: A System
for Keyword-Based Search over Relational Databases,
ICDE 2002

• V. Hristidis, Y. Papakonstantinou: DISCOVER, Keyword
Search in Relational Databases, VLDB 2002

• V. Hristidis, Y. Papakonstantinou, A. Balmin, Keyword
proximity search on XML graphs, ICDE 2003

• A. Balmin, V. Hristidis, N. Koudas, Y. Papakonstantinou,
D. Srivastava, T. Wang, A System for Keyword Search
on XML Databases, VLDB 2003

• S. Cohen, J. Mamou, Y. Kanza, Y. Sagiv, XSearch: a
semantic search engine for XML, VLDB 2003

• L. Guo, F. Shao, C. Botev, J. Shanmugasundaram,
XRANK: Ranked keyword search over XML documents,
SIGMOD 2003

