 
The UAI Technical Program will take place from July 1 to July 3. (The The UAI-2000 Full-Day Course on Uncertainty and UAI-2000 Workshops will be held on June 30.) We are pleased to announce Sanjoy Dasgupta has been awarded the UAI-2000 Best Student Paper prize for his paper "Experiments with random projection."
8:45AM - 9:00AM Welcome (Kathy Laskey, Craig Boutilier, Moisés Goldszmidt)
9:00AM - 10:40AM Plenary Session 1: Inference
Making Sensitivity Analysis Computationally Efficient 
Uffe Kjærulff,
Linda C. van der Gaag
A Differential Approach to Inference in Bayesian Networks 
Adnan Darwiche
Adaptive Importance Sampling for Estimation in Structured Domains 
Luis E Ortiz,
Leslie Kaelbling
Rao-Blackwellised Filtering for Dynamic Bayesian Networks 
Arnaud Doucet,
Nando de Freitas,
Kevin Murphy,
Stuart Russell
10:40AM - 11:00AM Break
11:00AM - 12:00PM Invited Talk
Extracting Biological Understanding from Genome-wide Gene
Expression Data
David Botstein, Department of Genetics, Stanford University
12:00PM - 1:30PM Lunch Break
1:30PM - 3:10PM Plenary Session 2: Learning I
Variational Relevance Vector Machines 
Christopher Bishop,
Michael Tipping
An uncertainty framework for classification 
Loo-Nin Teow,
Kia-Fock Loe
Gaussian Process Networks 
Nir Friedman,
Iftach Nachman
A two-round variant of EM for Gaussian mixtures 
Sanjoy Dasgupta,
Leonard Schulman
3:10PM - 3:30PM Break
3:30PM - 5:30PM Poster Session A
Reversible Jump MCMC Simulated Annealing for Neural Networks 
Christophe Andrieu,
Nando de Freitas,
Arnaud Doucet
Markov Chains of Bayesian Multinets 
Jeff Bilmes
Bayesian Classification and Feature Selection from Finite Data Sets 
Frans Coetzee,
Steve Lawrence,
C. Lee Giles
A Bayesian Method for Causal Modeling and Discovery Under Selection 
Gregory Cooper
Minimum Message Length Clustering Using Gibbs Sampling 
Ian Davidson
Being Bayesian about Network Structure 
Nir Friedman,
Daphne Koller
Conditional Plausibility Measures and Bayesian Networks 
Joseph Halpern
YGGDRASIL - A Statistical Package for Learning Split Models 
Søren Højsgaard
Probabilistic Arc Consistency: A connection between constraint reasoning and probabilistic reasoning 
Michael Horsch,
Bill Havens
Feature selection and dualities in maximum entropy discrimination 
Tony Jebara,
Tommi Jaakola
A postulate-based analysis of merging operations in possibilistic logic 
Souhila Kaci,
Salem Benferhat,
Didier Dubois,
Henri Prade
Tractable Bayesian Learning of Tree Belief Networks 
Marina Meila,
Tommi Jaakola
Using ROBDDs for inference in Bayesian networks with troubleshooting as an example 
Thomas D. Nielsen,
Pierre-Henri Wuillemin,
Finn Jensen,
Uffe Kjærulff
Value-Directed Belief State Approximation for POMDPs
Pascal Poupart,
Craig Boutilier
Pivotal Pruning of Trade-offs in QPNs 
Silja Renooij,
Linda C. van der Gaag,
Simon Parsons,
Shaw Green
Monte Carlo inference via greedy importance sampling 
Dale Schuurmans,
Finnegan Southey
Combining Feature and Prototype Pruning by Uncertainty Minimization 
Marc Sebban,
Richard Nock
On the Use of Skeletons when Learning in Bayesian Networks 
Harald Steck
Dynamic Trees: A structured variational method giving efficient propagation rules 
Amos Storkey
A Branch-and-Bound Algorithm for MDL Learning Bayesian Networks 
Jin Tian
Model-Based Hierarchical Clustering 
Shivakumar Vaithyanathan,
Byron Dom
Variational Approximations between Mean Field Theory and the Junction Tree Algorithm 
Wim Wiegerinck
Model Criticism of Bayesian Networks with Latent Variables 
David Williamson,
Russell Almond,
Robert Mislevy
9:00AM - 10:40AM Plenary Session 3: Decision Making
Representing and solving asymmetric Bayesian decision problems 
Thomas D. Nielsen,
Finn Jensen
Evaluating Influence Diagrams using LIMIDs 
Dennis Nilsson,
Steffen Lauritzen
A Qualitative Linear Utility Theory for Spohn's Theory of Epistemic Beliefs 
Phan Giang,
Prakash P. Shenoy
Utilities as Random Variables: Density Estimation and Structure Discovery 
Urszula Chajewska,
Daphne Koller
11:00AM - 12:00PM Invited Talk
The Computer Science of Big Science Statistics
Andrew Moore, School of Computer Science, Carnegie Mellon University
12:00PM - 1:30PM Lunch Break
1:30PM - 3:10PM Plenary Session 4: Data Visualization/Collaborative Filtering/User Modeling
Dependency Networks for Density Estimation, Collaborative Filtering, and Data Visualization
David Heckerman,
Max Chickering,
Chris Meek,
Robert Rounthwaite,
Carl Kadie
Collaborative Filtering by Personality Diagnosis: A Hybrid Memory- and Model-Based Approach 
David Pennock,
Eric Horvitz,
Steve Lawrence,
C. Lee Giles
Conversation as Action Under Uncertainty 
Tim Paek,
Eric Horvitz
Building a Stochastic Dynamic Model of Application Use 
Peter Gorniak,
David Poole
3:10PM - 3:30PM Break
3:30PM - 5:30PM Poster Session B
Perfect Tree-Like Markovian Distributions 
Ann Becker,
Dan Geiger,
Chris Meek
The Complexity of Decentralized Control of Markov Decision Processes 
Daniel Bernstein,
Shlomo Zilberstein,
Neil Immerman
Approximately Optimal Monitoring of Plan Preconditions
Craig Boutilier
Computational Investigation of Low-Discrepancy Sequences in Bayesian Networks 
Jian Cheng,
Marek Druzdzel
A Decision Theoretic Approach to Targeted Advertising 
Max Chickering,
David Heckerman
Any-Space Probabilistic Inference 
Adnan Darwiche
Mix-nets: Factored Mixtures of Gaussians in Bayesian Networks With Mixed Discrete And Continuous Variables 
Scott Davies,
Andrew Moore
Inference for Belief Networks Using Coupling From the Past 
Michael Harvey,
Radford Neal
Marginalization in Composed Probabilistic Models
Radim Jirousek
Game Networks 
Pierfrancesco La Mura
Combinatorial optimization by learning and simulation of Bayesian 
Pedro Larrañaga,
Ramon Etxeberria,
Jose A. Lozano,
Jose M. Peña
Causal Mechanism-based Model Construction 
Tsai-Ching Lu,
Marek Druzdzel,
Tze-Yun Leong
Credal Networks under Maximum Entropy 
Thomas Lukasiewicz
Risk agoras: Dialectical argumentation for scientific reasoning 
Peter McBurney,
Simon Parsons
PEGASUS: A policy search method for large MDPs and POMDPs 
Andrew Ng,
Mike Jordan
Probabilistic Models for Query Approximation with Large Sparse Binary Datasets 
Dmitry Pavlov,
Heikki Mannila,
Padhraic Smyth
Compact Securities Markets for Pareto Optimal Reallocation of Risk 
David Pennock,
Michael Wellman
Nash Convergence of Gradient Dynamics in Iterated General-Sum Games 
Satinder Singh,
Michael Kearns,
Yishay Mansour
A Knowledge Acquisition Tool for Bayesian-Network Troubleshooters 
Claus Skaanning
Conditional Independence and Markov Properties in Possibility Theory 
Jirina Vejnarova
User Interface Tools for Navigation in Conditional Probability Tables and Graphical Elicitation of Probabilities in Bayesian Networks 
Haiqin Wang,
Marek Druzdzel
Exploiting Qualitative Knowledge in the Learning of Conditional Probabilities of Bayesian Networks 
Frank Wittig,
Anthony Jameson
9:00AM - 10:40AM Plenary Session 5: Learning II
Learning Graphical Models of Images, Videos and Their Spatial Transformations
Brendan Frey,
Nebojsa Jojic
Efficient Likelihood Computations Using Value Abstractions 
Nir Friedman,
Dan Geiger,
Noam Lotner
Experiments with random projection 
Sanjoy Dasgupta
The Anchors Hierachy: Using the triangle inequality to survive high dimensional data 
Andrew Moore
11:00AM - 12:00PM Invited Talk
Representation and Recognition of Human Behavior for Perception
Aaron Bobick, Georgia Tech College of Computing
12:00PM - 1:30PM Lunch Break
1:30PM - 2:45PM Plenary Session 6: Foundations
Separation Properties of Sets of Probability Measures 
Fabio Cozman
Maximum Entropy and the Glasses You Are Looking Through 
Peter Grunwald
Probabilities of Causation: Bounds and Identification 
Jin Tian,
Judea Pearl
2:45PM - 3:00PM Break
3:00PM - 4:15PM Plenary Session 7: Logical Models
"Stochastic logic programs: sampling, inference and applications "
James Cussens
A Complete Calculus for Possibilistic Logic Programming with Fuzzy Propositional Variables 
Teresa Alsinet,
Lluís Godo
Probabilistic Models for Agents' Beliefs and Decisions 
Brian Milch,
Daphne Koller
4:15PM - 4:30PM Break
4:30PM - 5:50PM Plenary Session 8: Multiagent Systems/Planning
Probabilistic State-Dependent Grammars for Plan Recognition 
David Pynadath,
Michael Wellman
Policy Iteration for Factored MDPs 
Daphne Koller,
Ron Parr
Learning to Cooperate via Policy Search 
Leonid Peshkin,
Kee-Eung Kim,
Nicolas Meuleau,
Leslie Kaelbling
Fast Planning in Stochastic Games 
Michael Kearns,
Yishay Mansour,
Satinder Singh