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Abstract

The relationship between counting problems (#P problems) and other problems was not known
until the discovery of Toda’s theorem, for which Toda received the 1998 Gödel Prize. The theorem
states that every problem in the polynomial hierarchy can be solved by a polynomial time algorithm
with a #P oracle. We will sketch the proof of the theorem and outline an application of it to the
study of quantum supremacy conjectures.

1 Counting Problems

A counting problem is the problem of computing a function f : {0, 1}∗ → N given some input to f . A
large number of counting problems belong to the class #P .

Definition 1. A function f : {0, 1}∗ → N is a function in #P if there is a polynomial time computable
predicate M(x, y) and a polynomial p(x) with

f(x) = |y ∈ {0, 1}p(|x|) : M(x, y) = 1|.

In other words, the function f counts the number of accepting paths of a non-deterministic polynomial
time Turing machine, or equivalently the number of certificates that a polynomial time verifier accepts
for a given input x.

A function f is #P-hard if every function in #P can be computed with a polynomial time algorithm
with oracle access to f . Furthermore, a function is #P-complete if it is in #P and also #P-hard.

Examples of #P-complete functions include:

• #SAT : Given a propositional Boolean formula φ(x1, . . . , xn), determine the number of satisfying
assignments it has. It is also straightforward to define counting analogues of other NP-complete
problems such as Hamiltonian cycle, graph colouring etc.

• If M is an n× n matrix, define its permanent to be

Perm(M) =
∑
σ∈Sn

n∏
i=1

Mi,σ(i)

where Sn is the set of all permutations of n elements. Valiant proved that the permanent is #P
-complete by reduction from #SAT .

In particular, if M is a 0-1 matrix, Perm(M) counts the number of perfect matchings in a bipartite
graph GM whose biadjacency matrix is M . This example suggests that counting problems can be
harder than decision problems, as existence of a perfect matching can be decided in polynomial
time whereas no subexponential time algorithm is currently known for (exactly) computing the
permanent of a matrix.

2 Toda’s Theorem

The power of counting was an open problem in theoretical computer science in the 1980s and 1990s.
To be more precise, let P#P be the set of problems solvable with polynomial time algorithms assuming
access to a #SAT oracle. It is immediate that NP ⊆ P#P and that coNP ⊆ P#P as one can decide

1



existence of a solution by querying the oracle. Furthermore, P#P ⊆ PSPACE since each #SAT query
can be evaluated using a polynomial amount of memory. However, there remained a huge gap between
these upper and lower bounds until the discovery of Toda’s theorem [Tod91].

Theorem 1 (Toda’s Theorem). PH ⊆ P#P . In other words, any problem in the polynomial hierarchy
has a polynomial time reduction to #SAT . Furthermore, the reduction only uses one query to the #SAT
oracle.

This was quite surprising at the time, as this seemed to imply that counting is a more powerful
resource than originally thought.

The proof proceeds in two main steps and we will summarize the proofs given in [AB09, Chapter
17], also presented in [Mos12]. First, we provide a randomized reduction from PH to a related problem
⊕SAT . Finally, we will derandomize the reduction to show that PH can be reduced to #SAT.

2.1 Step 1: Randomized Reduction to ⊕SAT
Definition 2 (The Parity Quantifier). Given a Boolean formula ϕ, we say that ⊕ϕ is true if and only
if ϕ has an odd number of satisfying assignments. ⊕SAT is the set of all formulas with an odd number
of satisfying assignments.

The first step of Toda’s theorem is the following reduction.

Theorem 2. Let m ≥ 1. There is a polynomial time randomized reduction A that takes a quantified
Boolean formulas ϕ with at most c alternating quantifiers and n variables as input, with the property
that

• If ϕ is true, then Pr[A(ϕ) ∈ ⊕SAT ] ≥ 1− 2−m

• If ϕ is false, then Pr[A(ϕ) ∈ ⊕SAT ] ≤ 2−m.

The reduction runs in time (nm)O(c).

Before we prove the theorem, we firstly observe the following properties about the parity quantifier.
Given Boolean formula ϕ let #ϕ denote the number of satisfying assignments it has. Given two Boolean
formulas ϕ1(x1, . . . , xn), ϕ2(y1, . . . , ym), there are formulas ϕ1 · ϕ2 and ϕ1 + ϕ2 satisfying #(ϕ1 · ϕ2) =
#(ϕ1)#(ϕ2) and #(ϕ1 +ϕ2) = #(ϕ1) + #(ϕ2). In particular, one can take ϕ1 ·ϕ2 = ϕ1(x)∧ϕ2(y), and

ϕ1 + ϕ2 = (zn+1 ∧ ϕ1(z1, . . . , zn)) ∨ (zn+1 ∧ zn ∧ . . . zm+1 ∧ ϕ2(z1, . . . , zm))

assuming n ≥ m. In particular, this observation implies that given formulas ⊕ϕ1,⊕ϕ2, one can find
a formula ψ for which ⊕ψ is logically equivalent to each of (⊕ϕ1) ∧ (⊕ϕ2), (⊕ϕ1) ∨ (⊕ϕ2), and ¬(⊕ϕ1).
For instance, (⊕ϕ1) ∧ (⊕ϕ2) is logically equivalent to ⊕(ϕ1 · ϕ2) and the addition ϕ1 + ϕ2 is used for
the other two cases. We prove the main theorem by combining this observation about ⊕SAT with the
Valiant-Vazirani reduction.

Theorem 3 (Valiant-Vazirani Reduction). Let β : {0, 1}n → {0, 1} be a Boolean function. There is a
randomized reduction running in poly(n) time that produces a formula α(x, y) with the property that

• If ∃x (β(x) = 1), then Pr[⊕(α(x, y) ∧ β(x)) = 1] ≥ 1
8n ,

• Otherwise, Pr[⊕(α(x, y) ∧ β(x)) = 1] = 0

The Valiant-Vazirani reduction combined with the properties of ⊕SAT and induction, can be used
to show that the claimed reduction exists.

Proof of Theorem 2 assuming Theorem 3. We will proceed by induction on the number of quantifiers c
in ϕ, and may assume that ϕ = ∃xβ(x) and β has at most c − 1 quantifiers. Otherwise, we can apply
the reduction to the negation ¬ϕ since we observed that we can always find a formula ψ for which ⊕ψ is
equivalent to ¬(⊕ϕ). The case c = 1 is covered by the Valiant-Vazirani reduction and Chernoff bounds.

Now assuming by induction that β can be converted into a ⊕SAT formula ⊕τ(y) correctly, one can
apply the Valiant-Vazirani reduction K times to conclude that the formula

α =

K∨
i=1

(⊕αi(x, y) ∧ ⊕τ(y))
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has the property if ∃x (β(x) = 1), that

Pr[

K∨
i=1

(⊕αi(x, y) ∧ ⊕τ(y)) = 1] ≥ 1− (1− 1

8n
)K ≥ 1− exp(−K

8n
),

which can be made arbitarily close to 1 by choosing K = O(nm). Otherwise, in the case where

β(x) is not satisfiable, Pr[
∨K
i=1(⊕αi(x, y) ∧ ⊕τ(y)) = 1] = 0. By the previous observations about logical

properties of ⊕SAT formulas, α can be converted into a ⊕SAT formula. Since we can argue similarly
that the failure probability of the induction hypothesis can be made arbitrarily small, this completes the
proof of the theorem.

Now it remains to prove that the Valiant-Vazirani reduction is correct. We provide the statement of
the Valiant-Vazirani reduction here. The reduction works as follows.

• Choose uniformly at random an index i ∈ {1, . . . , n} and random Boolean vectors v1, . . . , vi+1 ∈
{0, 1}n.

• Let α(x, y) be the Boolean formula α(x, y) = φv1 ∧ · · · ∧φvi+1
where φvj (x, y) is a Boolean formula

that satisfied if and only if the dot product satisfies vj · x = 0. Output α(x, y) ∧ β(x).

The correctness of the Valiant-Vazirani reduction follows from the following lemma.

Lemma 1. If S ⊆ {0, 1}n is non-empty, then given vectors v1, . . . , vn+1, we have

Pr[∃i ∈ {1, . . . , n} |S ∩ 〈v1, . . . , vi+1〉⊥| = 1] ≥ 1

8
,

where 〈v1, . . . , vi+1〉⊥ = {x ∈ {0, 1}n : vj · x = 0 for all j = 1, . . . , i+ 1}.
In particular, if β was satisfiable, the Valiant-Vazirani reduction produces a formula with a unique

(and hence an odd number of) satisfying assignments with probability at least 1
8n as claimed, since with

probability at least 1
n the index chosen in the reduction matches the index in the lemma.

We will defer the proof of the lemma to the Appendix.

2.2 Step 2: Derandomization Step

Now we will derandomize the previous reduction, at the expense of replacing ⊕SAT with #SAT. The
following lemma is straightforward to prove.

Lemma 2. If a ≡ −1 mod N then 4a3 + 3a4 ≡ −1 mod N2. Otherwise, if a ≡ 0 mod N then
4a3 + 3a4 ≡ 0 mod N2.

The lemma implies the following corollary since we can build a formula ϕ′ with 4#(ϕ)3 + 3#(ϕ)4

satisfying assignments given any formula ϕ.

Corollary 1. There is a reduction from Boolean formulas ϕ to ϕ′ with the property that ϕ ∈ ⊕SAT if
and only if #(ϕ′) ≡ −1 (mod 2l), which runs in time poly(l).

Now we can derandomize the reduction presented in Step 1 to conclude the proof of Toda’s theorem.

Proof of Theorem 1. We view the randomized reduction in Step 1 as a deterministic reduction A(ϕ, r)
that produces a formula ϕr depending some string of random bits r ∈ {0, 1}R. Assume that the reduction
succeeds with probability at least 3

4 . Now apply the reduction in Corollary 1 to ϕr with l = R + 2 to
produce some formula ϕ′r. If ϕ was true then #(ϕ′r) ≡ −1 (mod 2R+2) with probability at least 3

4 , and
otherwise #(ϕ′r) ≡ −1 (mod 2R+2) with probability at most 1

4 . This observation implies that the sum

s =
∑

r∈{0,1}R
#(ϕ′r)

lies in the range [−2R,− 3
42R] (mod 2R+2) when ϕ is true and lies in the range [− 1

42R, 0] (mod 2R+2)
when ϕ is false. These ranges are disjoint so computing s is sufficient to decide satisfiability of ϕ.

One can compute the sum s with a #SAT oracle. All of our reductions are polynomial time, so there
is a polynomial sized circuit Cϕ that computes if z is satisfying assignment of φ′r given r, z as input. Thus,
given a formula ϕ, we can construct the circuit Cϕ in polynomial time and convert it into a Boolean
formula using the Cook-Levin construction. A single #SAT oracle query can then be used to compute
the sum s, as by construction s is the number of inputs that satisfy the circuit Cϕ. This completes the
proof that any problem in PH can be reduced in polynomial time to #SAT , and thus PH ⊆ P#P .
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3 Application to Quantum Supremacy Conjectures

A recent application of Toda’s theorem is to the study of quantum supremacy conjectures. A generally
agreed upon definition of a problem that display quantum supremacy is any problem that (1) can be
solved using a quantum device being built with current technology, and (2) no (classical) randomized
polynomial time algorithm exists for the problem, assuming that the polynomial hierarchy does not
collapse.

Examples of experiments in the past few years that claim to have achieved quantum supremacy
include Google’s random circuit sampling experiment [AAB+19], and a boson sampling experiment done
by the University of Science and Technology in China [ZWD+20]. In these problems, a quantum circuit
produces some distribution DC over strings that a quantum device would ideally be able to reproduce
with small error. On the other hand, one would like to argue that any randomized classical algorithm
has no hope of sampling from DC with small error. The typical outline of such an argument proceeds in
the following steps, which is done in [AA11] for the case of boson sampling experiments.

1. Argue that approximating the output probabilities in DC is a #P-hard problem.

2. Argue that if there was a randomized polynomial time algorithm to approximately sample from
DC , then one can approximate the output probabilities of DC using a BPPNP algorithm. This
step typically uses the Stockmeyer’s approximate counting algorithm.

3. Using Toda’s theorem, PH ⊆ P#P . However, if we assume a randomized polynomial time exists
for our problem, then (1) and (2) imply we can solve a #P-hard problem in BPPNP. Therefore,
PH ⊆ P#P ⊆ BPPNP, which implies that the polynomial hierarchy collapses to the third level,
since BPP is in the 2nd level of the polynomial hierarchy (Sipser-Lautemann theorem).

Step (1) is currently the least understood but perhaps provides the most interesting research di-
rections. In particular in the case of boson sampling, there are interesting conjectures concerning the
behaviour of the permanent Perm(X) for a matrix X where X has identically and independently dis-
tributed Gaussian entries, which have been proposed in [AA11] and imply that estimating boson sampling
probabilities is #P-hard. There seems to have been a lot of progress made in studying these conjectures
in recent years and there seem to be remain many interesting open questions to investigate.
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A Proof of Lemma 1

We follow the proof given in Paul Beame’s notes [Bea04]. The lemma follows immediately from the
following lemmas.

Lemma 3. Let S ⊆ {0, 1}n be a non-empty set and v1, . . . , vn+1 be vectors in {0, 1}n. Then:

1. If 0n ∈ S, Pr[|S ∩ 〈v1, . . . , vn+1〉⊥| = 1] > 1
2 .

2. If 0n /∈ S and 2i−1 ≤ |S| ≤ 2i, then Pr[|S ∩ 〈v1, . . . , vi+1〉⊥| = 1] > 1
8 .

Proof. Observe that if x 6= 0 and v ∈ {0, 1}n is chosen randomly, then Pr[v · x = 0] = 1
2 . Therefore, if

v1, . . . , vj were chosen independently, Pr[vi · x = 0 for all i = 1, . . . , j] = 1
2j .

Suppose we are in the first case where 0n ∈ S. Then by the union bound,

Pr[∃x ∈ S, x 6= 0, x ∈ 〈v1, . . . , vn+1〉⊥] ≤ |S| − 1

2n+1
<

2n

2n+1
=

1

2
.

This establishes the first case.
For the second case, assume that x 6= y and x, y 6= 0n. Given vectors v1, . . . , vi+1, define h(x) =

(v1 · x, . . . , vi+1 · x). We can observe that

Pr[h(x) = h(y) = 0i+1] =
1

22(i+1)

as we are assuming that x and y are linearly independent. Therefore, for fixed x, by the union bound
and our assumption on |S|,

Pr[∃y ∈ S − {x}, h(x) = h(y) = 0i+1] ≤ |S| − 1

22(i+1)
<

2i

22(i+1)
=

1

2i+2
.

This calculation implies that for a fixed x,

Pr[h(x) = 0i+1 and it is the unique solution in S] >
1

2i+1
− 1

2i+2
=

1

2i+2
.

Therefore, summing over all x ∈ S,

Pr[∃x ∈ S, h(x) = 0i+1 and it is the unique solution] >
|S|

2i+2
≥ 2i−1

2i+2
=

1

8
.
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