
Algebraic Topology and Distributed ComputingA PrimerMaurice Herlihy1 and Sergio Rajsbaum21 Computer Science DepartmentBrown University, Providence, RI 02912herlihy@cs.brown.edu ???2 Digital Equipment Corporation, Cambridge Research LabOne Kendall Square, Cambridge, MA 02139rajsbaum@crl.dec.comyAbstract. Models and techniques borrowed from classical algebraic topol-ogy have recently yielded a variety of new lower bounds and impossibilityresults for distributed and concurrent computation. This paper explainsthe basic concepts underlying this approach, and shows how they applyto a simple distributed problem.1 IntroductionThe problem of coordinating concurrent processes remains one of the centralproblems of distributed computing. Coordination problems arise at all scales indistributed and concurrent systems, ranging from synchronizing data access intightly-coupled multiprocessors, to allocating data paths in networks. Coordi-nation is di�cult because modern multiprocessor systems are inherently asyn-chronous: processes may be delayed without warning for a variety of reasons,including interrupts, pre-emption, cache misses, communication delays, or fail-ures. These delays can vary enormously in scale: a cache miss might delay aprocess for fewer than ten instructions, a page fault for a few million instruc-tions, and operating system pre-emption for hundreds of millions of instructions.Coordination protocols that do not take such delays into account run the riskthat if one process is unexpectedly delayed, then the remaining processes maybe unable to make progress.Recently, techniques and models borrowed from classical algebraic topologyhave yielded a variety of new lower bounds for coordination problems. This paperis an attempt to explain the basic concepts and techniques underlying theseresults. We are particularly interested in making the mathematical conceptsaccessible to the Computer Science community. Although these concepts are??? Research partly supported by ONR N00014-91-J-4052, ARPA Order 8225.y On leave from Instituto de Matem�aticas, U.N.A.M., M�exico. Part of this work wasdone while visiting the Laboratory for Computer Science, MIT. Partly supported byDGAPA Projects.

abstract, they are elementary, being fully covered in the �rst chapter of Munkres'standard textbook [18].Our discussion focuses on a class of problems called decision tasks, describedin Section 2. In Section 3, we show how decision tasks can be modeled usingsimplicial complexes, a standard combinatorial structure from elementary topol-ogy. In Section 4, we review the notion of a chain complex, which provides analgebraic vocabulary for describing the topological properties of simplicial com-plexes. In Section 5, we show how these combinatorial and algebraic notionscan be applied to prove a variety of lower bounds for a well-known problem indistributed computing, the k-set agreement task [7].2 ModelA set of n + 1 sequential threads of control, called processes, communicate byapplying operations to objects in shared memory. Examples of shared objects in-clude message queues, read/write variables, test-and-set variables, or objects ofarbitrary abstract type. Processes are asynchronous: they run at arbitrarily vary-ing speeds. Up to t processes may fail. Because the processes are asynchronous,a protocol cannot distinguish a failed process from a slow process.To distill the notion of a distributed computation to its simplest interestingform, we focus on a simple but important class of problems called decision tasks.We are given a set of n+ 1 sequential processes P0; : : : ; Pn. Each process startsout with a private input value, typically subject to task-speci�c constraints. Theprocesses communicate for a while, then each process chooses a private outputvalue, also subject to task-speci�c constraints, and then halts.Decision tasks are intended to model \reactive" systems such as databases,�le systems, or
ight control systems. An input value represents informationentering the system from the outside world, such as a character typed at akeyboard, a message from another computer, or a signal from a sensor. An outputvalue models an e�ect on the outside world, such as an irrevocable decision tocommit a transaction, to dispense cash, or to launch a missile.Perhaps the simplest example of a decision task is consensus [9]. Each processstarts with an input value and chooses an output value. All output values mustagree, and each output value must have been some process's input value. If theinput values are boolean, the task is called binary consensus. The consensus taskwas originally studied as an idealization of the transaction commitment problem,in which a number of database sites must agree on whether to commit or aborta distributed transaction.A natural generalization of consensus is k-set agreement [7]. Like consensus,each process's output value must be some process's input value. Unlike consen-sus, which requires that all processes agree, k-set agreement requires that nomore than k distinct output values be chosen. Consensus is 1-set agreement.A program that solves a decision task is called a protocol. A protocol is t-resilient if any non-faulty process will �nish the protocol in a �xed number of

steps, regardless of failures or delays by up to t other processes. A protocol iswait-free if it tolerates failures or delay by all but one of the processes.3 Combinatorial StructuresFormally, an initial or �nal state of a process is a vertex, v = hPi; vii, a pair con-sisting of a process id and a value (either input or output). A set of d+1 mutuallycompatible initial or �nal process states is modeled as a d-dimensional simplex ,(or d-simplex). A simplex is properly colored if each vertex is labeled with adistinct process id. The complete set of possible initial (or �nal) process statesis represented by a set of properly colored simplexes, closed under containment,called a simplicial complex (or complex). The dimension of C is the dimensionof a simplex of largest dimension in C. Where convenient, we use superscripts toindicate dimensions of simplexes and complexes. The k-th skeleton of a complex,skelk(Cn), is the subcomplex consisting of all simplexes of dimension k or less.The set of process ids associated with simplex Sn is denoted by ids(Sn), and theset of values by vals(Sn). Sm is a (proper) face of Sn if the vertexes of Sm are a(proper) subset of the vertices of Sn. If K and L are complexes, a simplicial map� : K ! L carries vertexes of K to vertexes of L so that simplexes are preserved.It is often convenient to visualize vertexes, simplexes, and complexes as pointsets in Euclidian space. A vertex is simply a point, and an n-simplex is the con-vex hull of n+1 a�nely-independent5 vertexes. A complex is represented by a setof (geometric) simplexes arranged so that that each pair of simplexes intersectseither in a common face, or not at all. The point set occupied by such a com-plex is called its polyhedron. Although we use this geometric interpretation forillustrations and informal discussions, we do not use it in our formal treatment.A decision task for n+ 1 processes is given by an input complex I, an outputcomplex O, and a map � carrying each input n-simplex of I to a set of n-simplexes of O. This map associates with each initial state of the system (aninput n-simplex) the set of legal �nal states (output n-simplexes). It is convenientto extend � to simplexes of lower dimension: when n� t � m < n, �(Sm) is theset of legal �nal states in executions where only the indicated m + 1 processestake steps.For example, the input complex for binary consensus is constructed by assign-ing independent binary values to n+1 processes. We call this complex the binaryn-sphere, because its polyhedron is homeomorphic to an n-sphere (exercise leftto the reader). The output complex consists of two disjoint n-simplexes, corre-sponding to decision values 0 and 1. Figure 1 illustrates the input and outputcomplexes for two-process binary consensus.As an example of an interesting output complex, consider the renaming task[1], in which each process is given a unique input name taken from a large namespace, and must choose a unique output name taken from a much smaller namespace. Figure 2 shows the output complex for the three-process renaming task5 v0; : : : ;vn are a�nely independent if v1� v0; : : : ;vn� v0 are linearly independent.

Input Complex Output Complex

∆

P 0 Q 0

P 1

P 0 Q 0

P 1Q 1 Q 1Fig. 1. Input and Output Complexes for 2-Process Consensus
P 0 Q 3 R 0 P 3 Q 0 R 3

P 2R 1Q 2 Q 1 P 1R 2

R 0 P 3 Q 0 R 3 P 0

Q 2

P 0

P 1

Q 3

R 2

P 0

A

A

B

BFig. 2. Output Complex for 3-Process Renaming with 4 Namesusing four output names. Notice that the two edges marked A are identical, asare the two edges marked B. By identifying these edges, we can see that thiscomplex has a polyhedron homeomorphic to a torus.At the end of a protocol, the process's local state is its view of the computa-tion: its input value followed by the sequence of operations (including argumentsand results) applied to shared objects. It is convenient to view a process as exe-cuting a protocol for a �xed number of steps, and then choosing its output valueby applying a task-speci�c decision map � to its local state.We can treat any protocol as an \uninterpreted" protocol simply by treatingeach process's local state as its decision value (i.e., omitting the task-speci�cdecision map �). This uninterpreted protocol itself de�nes a complex P, calledits protocol complex. Each vertex v in this complex is labeled with a processid and a local state such that there exist some execution of the protocol inwhich process id(v) �nishes the protocol with local state val(v). A simplex

Tm = (t0; : : : ; tm) is in this complex if there is an execution of the protocol inwhich each process id (ti) �nishes the protocol with local state val (ti) (i.e., thevertexes of any simplex are compatible local states). For an input simplex Sm,let P(Sm) be the subcomplex of P generated by executions in which only theprocesses in ids(Sm) take steps, starting with input values from vals(Sm).
P 0

Q 0

R 0

S 0

P 1

Q 1

R 1

S 1Fig. 3. Two Views of Protocol Complex for Single-Round Test-And-Set Protocol
Fig. 4. Protocol Complexes for Multi-Round Test-And-Set ProtocolsFor example, consider a system in which asynchronous processes communi-cate by applying test-and-set6 operations to shared variables. Figure 3 shows twoviews of the protocol complex for a a four-process one-round protocol in whichprocesses P and Q share one test-and-set variable, and R and S share another.Both variables are initialized to 0, and each process executes a single test-and-set6 Recall that test-and-set atomically writes a 1 to a variable and returns the variable'sprevious contents.

operation and halts. This complex consists of four tetrahedrons, correspondingto the four possible outcomes of the two test-and-set operations. The left-handside shows a schematic view of the complex, where each vertex is labeled with aprocess id and the result of the operation, while the right-hand side shows thesame complex in three-dimensional perspective. Figure 4 shows two more proto-col complexes for protocols in which the processes respectively iterate two andthree-round test-and-set protocols, using fresh, 0-initialized variables for eachround.What does it mean for a protocol to solve a decision task? Recall that aprocess chooses a decision value by applying a decision map � to its local statewhen the protocol is complete. Expressed in our terminology, a protocol solves adecision task hI;O;�i if and only if there exists a simplicialmap � : P ! O suchthat for all Sm 2 I, and all Tm 2 P(Sm), �(Tm) 2 �(Sm), for n� t � m � n.This de�nition is just a formal way of stating that every execution of the protocolmust yield an output value assignment permitted by the decision task. Thismight seem like a roundabout way to formulate such an obvious property, butit has an important and useful advantage. We have moved from an operationalnotion of a decision task, expressed in terms of computations unfolding in time,to a purely combinatorial description.We are now ready to describe our strategy for proving impossibility results.To show that a decision task has no protocol in a given model of computation,it is enough to show that no decision map � exists. Because decision maps aresimplicial, they preserve topological structure. If we can show that a class ofprotocols generates protocol complexes that are \topologically incompatible"with the task's output complex, then we have established impossibility.4 Algebraic StructuresSo far, our model is entirely combinatorial. To analyze the topological structureof simplicial complexes, however, we now need to introduce some algebraic con-cepts. Our discussion closely follows that of Munkres [18, Section 1.13], whichthe reader is encouraged to consult for more details.Let K be an n-dimensional simplicial complex, and Sq = (s0; : : : ; sq) a q-simplex of K. An orientation for Sq is an equivalence class of orderings ons0; : : : ; sq, consisting of one particular ordering and all even permutations ofit. For example, an orientation of a 1-simplex (s0; s1) is just a direction, eitherfrom s0 to s1, or vice-versa. An orientation of a 2-simplex (s0; s1; s2) can beeither \clockwise," as in (s0; s1; s2), or \counterclockwise," as in (s0; s2; s1) (seeFigure 5). By convention, simplexes are oriented in increasing subscript orderunless explicitly stated otherwise.A q-chain of K is a formal sum of oriented q-simplexes:Pì=0 �i � Sqi , whereeach �i is an integer, and the Sqi range over the q-simplexes of K. When writingchains, we typically omit q-simplexes with zero coe�cients, unless they are allzero, when we simply write 0. We write 1 � Sq as Sq and �1 � Sq as �Sq . Weidentify �Sq with Sq having the opposite orientation. The q-chains of K form

a free Abelian group Cq(K), called the q-th chain group of K. For technicalreasons, it is convenient to de�ne C�1(K) to be the (in�nite cyclic) group ofintegers under addition.
s0 s1

s2

s0 s1

s2Fig. 5. An Oriented Simplex and its BoundaryLet Sq = (s0; : : :sq) be an oriented q-simplex. De�ne facei(Sq), the ith faceof Sq , to be the (q � 1)-simplex (s0; : : : ; ŝi; : : : ; sq), where circum
ex denotesomission. The boundary operator @q : Cq(K) ! Cq�1(K), q > 0, is de�ned onsimplexes: @Sq = qXi=0(�1)i � facei(Sq);and extends additively to chains: @(�0+�1) = @�0+@�1. The zero-dimensionalboundary operator7 @0 : C0(K) ! C�1(K) is de�ned by @0(s) = 1, for eachvertex s. The boundary operator has the important property that applying ittwice causes chains to vanish: @q�1@q� = 0: (1)The boundary operator is illustrated in Figure 5. Henceforth, we usually omitsubscripts from boundary operators.We illustrate these concepts with an example. Let S2 = (s0; s1; s2) be anoriented 2-simplex (a \solid" triangle), and _S1 the complex of its proper faces(a \hollow" triangle). The complex _S1 includes three 0-simplexes (vertexes): s0,s1, and s2, and three 1-simplexes: S1i = face i(S2), 0 � i � 2. The boundariesfor each of these simplexes are shown in Figure 7. The 0-th chain group of _S1,C0(_S1), is generated by the si, meaning that all 0-chains have the form�0 � s0 + �1 � s1 + �2 � s2;where the �i are integers. The �rst chain group, C1(_S1), is generated by the S1i ,and all 1-chains have the form�0 � S10 + �1 � S11 + �2 � S12 ;7 Munkres [18] calls this operator an augmentation, and denotes it by �.

where the S10 each have standard orientation. Since _S1 contains no simplexes ofhigher dimension, the higher chain groups are trivial.A q-chain � is a boundary if � = @� for some (q+1)-chain �, and it is a cycleif @� = 0. The boundary chains form a group Bq(K) = im(@q+1), and the cyclesform a group Zq(K) = ker(@q). Equation 1 implies that Bq(K) is a subgroup ofZq(K), and their quotient group is called the qth homology group:8Hq(K) = Zq(K)=Bq(K):Informally, homology groups measure the extent to which a complex has holes.Any non-zero element of Hq(K) is a q-cycle but not a q-boundary, correspondingto the intuitive notion of a q-dimensional \hole". Conversely, if Hq(K) = 0 (thetrivial single-element group), then every q-cycle is a q-boundary, so K has no\holes" of dimension q. H0(K) = 0 if and only if K is connected. If Hq(K) = 0for every q, we say that K is acyclic.For example,H0(_S1) is trivial, because _S1 is connected. H1(_S1) is non-trivial:the chain @S2 is a cycle (because @@S2 = 0), but not a boundary (because S2 isnot a simplex of _S1). It can be shown that H1(_S1) is in�nite cyclic, generatedby the equivalence class of @S2 [18, 31.8].The chain complex C(K) is the sequence of groups and homomorphismsfCq(K); @qg. Let C(K) = fCq(K); @qg and C(L) = �Cq(L); @0q	 be chain com-plexes for simplicial complexes K and L. A chain map � is a family of homo-morphisms. �q : Cq(K)! Cq(L);that commute with the boundary operator: @0q ��q = �q�1 �@q. (In dimension -1,��1 is just the identity map.) Chain maps thus preserve cycles and boundaries.Recall that a simplicial map from K to L carries vertexes of K to vertexesof L so that every simplex of K maps to a simplex of L. Any simplicial map� induces a chain map �# from C(K) to C(L): when �(Sq) is of dimensionq, �#(Sq) = �(Sq), otherwise �#(Sq) = 0. Note, however, that not all chainmaps are induced by simplicial maps. Henceforth, we abuse notion by omittingsubscripts and sharp signs from chain maps. In this paper, we de�ne chain mapsby giving their values on simplexes (the chain group generators) and extendingadditively.If �; : C(K) ! C(L) are chain maps, then a chain homotopy from � to is a family of homomorphismsDq : Cq(K)! Cq+1(L);such that @0q+1Dq +Dq�1@q = �q � q:Very roughly, if two chain maps are homotopic, then one can be deformed intothe other; see Munkres [18] for intuitive justi�cation for this de�nition.8 Strictly speaking, these are the reduced homology groups [18, p.71].

De�nition1. An acyclic carrier from K to L is a function � that assigns toeach simplex Sq of K a non-empty subcomplex of L such that (1) �(Sq) isacyclic, and (2) if Sp is a face of Sq , then �(Sp) � �(Sq).
Fig. 6. The Complex S2 and a SubdivisionFor example, a subdivision of a complex is an acyclic carrier. Informally,a complex is subdivided by partitioning each component simplex into smallersimplexes, as illustrated in Figure 6. Here, the acyclic carrier maps the 2-simplexS2 to the entire subdivided complex, and each face S1i to the correspondingsubdivided face. While every subdivision is an acyclic carrier, an acyclic carrierneed not be a subdivision.A homomorphism � : Cq(K) ! Cq(L) is carried by � if each simplex ap-pearing with a non-zero coe�cient in �(Sm) is in the subcomplex �(Sm).Theorem2 [Acyclic Carrier Theorem]. Let � be an acyclic carrier from Kto L.(1) If � and are two chain maps from C(K) to C(L) that are carried by �,then there exists a chain homotopy of � to that is also carried by �.(2) There exists a chain map from C(K) to C(L) that is carried by �.A proof of this theorem can be found in Munkres's text [18, 13.3]. The fol-lowing lemma is an immediate consequence of the de�nitions.Lemma3. If �; : C(K)! C(L) are both carried by �, and for each Sq in K,q = dim(Sq) = dim(�(Sq)), then Cq+1(�(Sq)) = 0, Di = 0 for all i, and � and are equal chain maps.Returning to our example, the rotation map � : _S1 ! _S1 de�ned by �(si) =si+1mod3 induces a chain map � : C(_S1) ! C(_S1), shown in Figure 7. To verifythat � is a chain map, it su�ces to check that �(@S1i) = @�(S1i). The identitymap � : _S1 ! _S1 also induces a chain map � : C(_S1) ! C(_S1). We now showthat � and � are chain homotopic, by displaying both an acyclic carrier �, andan explicit chain homotopy D. �(si) is the complex consisting of S1i�1mod3 andits vertexes, and �(S1i) is the subcomplex of _S1 containing S1i , �(S1i), and theirvertexes. Both � and � are carried by �, and both �(si) and �(S1i) are acyclic

s0 s1 s2 S10 S11 S12@ 1 1 1 s2 � s1 s2 � s0 s1 � s0� s1 s2 s0 �S11 �S12 S10D �S12 �S10 S11 0 0 0� s0 s1 s2 S10 + @S2 S11 � @S2 S12 + @S2Fig. 7. Maps used in Extended Example(being contractible). The chain homotopy D is given in Figure 7. It is easilyveri�ed that (D@ + @D)(S) = (�� �)(S):Although every simplicial map induces a chain map, some chain maps are notinduced by any simplicial map. Consider the chain map � given in Figure 7.Notice that �(@S2) = 4 �@S2, so this map \wraps" the triangle boundary arounditself four times, something no simplicial map could do. This map is not chainhomotopic to � or �, which \wrap around" only once.5 An ApplicationRecall that in the k-set agreement task [7], each process is required to choosesome process's input value, and the set of values chosen should have size atmost k. We �rst give a theorem specifying an algebraic property that preventsa protocol from solving k-set agreement, and then we apply this theorem to avariety of di�erent models of computation. The arguments presented here aretaken from Herlihy and Rajsbaum [13].Theorem4. Let S` be a simplex each of whose vertexes is labeled with a distinctinput value, and S` the complex of its faces. Let � be a protocol, P its protocolcomplex, and � its decision map. If there exists an acyclic carrier � from S` toP such that vals(�(�(S))) = vals(S) (2)for all simplexes S in S`, then � cannot solve k-set agreement for k � `.Proof. Let � : C(O) ! C(S`) be the chain map induced by the simplicial mapsending hPi; vji to the vertex of S` with value vj . The acyclic carrier theoremguarantees a chain map � : C(S`) ! C(P) carried by �. By slight abuse ofnotation, let � be the chain map induced by the (simplicial) decision map �. Wehave: C(S`) �! C(P) �! C(O) �! C(S`)Let � : C(S`) ! C(S`) be the composition of �, �, and �. Let � be the acycliccarrier from S` to itself, �(Si) = Si, and � the identity chain map on S`. Thus� is carried by �. Equation 2 implies that � is an acyclic carrier also for �.

Because dim(Si) = i = dim(�(Si)), Lemma 3 implies that the two maps areequal. Therefore �(S`) = �(S`) = S`.Assume for contradiction that k � `. In each execution, however, no morethan ` values are chosen, implying that � reduces the dimension of every `-simplex. The chain map � thus sends every `-simplex to the 0 chain, so � � � ��(S`) = �(S`) = 0, a contradiction. utWe now show how to apply Theorem 4. Consider a model in which processescommunicate by reading and writing shared variables. For any wait-free proto-col, Herlihy and Shavit [14] showed that P(Sm) is acyclic for every input simplexSm, 0 � m � n. Let Sn be an input simplex where each vertex has a distinctinput. The map �WF that assigns to each face Sm of Sn the protocol subcom-plex P(Sm) is an acyclic carrier. The only input values read or written in anyexecution in P(Sm) are the values from Sm, so each process must decide somevalue from vals(Sm), and therefore �WF satis�es the conditions of Theorem 4.Corollary5. There is no wait-free read/write n-consensus protocol [4, 14, 20].For t-resilient protocols, a similar argument shows:Corollary6. There is no t-resilient read/write t-consensus protocol.Although read/write memories are important from a theoretical point of view,modern multiprocessor architectures provide a variety of more powerful synchro-nization primitives, including test-and-set, fetch-and-add, compare-and-swap,and load-linked/store-conditional operations. How do these primitives a�ect theability to solve k-set agreement? One way to classify these synchronization prim-itives is by consensus number [11, 16]: how many processes can solve consensususing such primitives. For example, test-and-set has consensus number 2, mean-ing that protocols using read, write, and test-and-set operations can solve con-sensus for two processes, but not three.There is a direct connection between an object's consensus number andthe homology of its protocol complexes. Consider a system in which processesshare both read/write variables and objects that allow any c processes to reachconsensus. Using shared objects that solve consensus among c processes, Her-lihy and Rajsbaum [12] showed that it is possible to solve k-set agreement fork = d(n + 1)=ce (via an easy protocol, left to the reader), but for no lower value ofk. In other words, for any protocol complex P in this model, P(Sn) has no holesof dimension less than d(n+ 1)=ce � 1 (i.e., these low-order homology groupsare trivial). This result is illustrated by the protocol complexes of Figures 3 and4: here, n = 3 and c = 2. Each of these complexes has non-trivial homology indimension d4=2e�1 = 1, but trivial homology in dimension d4=2e�2 = 0 (beingconnected). More generally, at one extreme, when c = 1, P(Sn) is acyclic [14].For higher consensus numbers, however, the complex may have holes. If the con-sensus number is low, then holes appear only in higher dimensions, but as theconsensus number grows, the holes spread into increasingly lower dimensions.Finally, when c = n+ 1, the protocol complex may become disconnected.

Let Sj be an input simplex, where j = d(n+ 1)=ce � 1, and Sj its complexof faces. These observations about the homology of the protocol complex canbe exploited to construct an acyclic carrier �c from Sj to P. This carrier doesnot directly satisfy Equation 2, because �c(S) may include processes not inids(S). Nevertheless, it is possible to modify the decision values of the processesin ids(�c(S)) � ids(S) so as to satisfy Equation 2 (see [12] for details).Corollary 7. There is no wait-free (d(n+ 1)=ce � 1)-set agreement protocol ifprocesses share read/write variables and objects with consensus number c [12].This result can be further generalized by including objects that allow any mprocesses to solve j-set agreement, a task we call (m; j)-consensus. There is anacyclic carrier from `-simplexes of I to P, for ` � J(n+ 1), whereJ(u) = j j umk+minfj; u modmg � 1: (3)By a similar argument:Corollary 8. There is no wait-free (n + 1; J(n + 1) � 1)-consensus protocol ifprocesses share a read/write memory and (m; j)-consensus objects.Finally, we turn our attention to synchronous models. Chaudhuri, Herlihy, Lynch,and Tuttle [8] considered a model in which n+1 processes communicate by send-ing messages over a completely connected network. Computation in this modelproceeds in a sequence of rounds. In each round, processes send messages toother processes, then receive messages sent to them in the same round, and thenperform some local computation and change state. Communication is reliable,but up to t processes can fail by stopping in the middle of the protocol, perhapsafter sending only a subset of their messages. Let Pr be the protocol complexafter r rounds. In the Bermuda Triangle construction, Chaudhuri et al. identi�edan acyclic carrier from an `-simplex S` to Pr, for r < bt=`c, satisfying Equation2.Corollary 9. There is no t-resilient (n+1; k)-consensus protocol that takes fewerthan bt=kc + 1 rounds in the synchronous fail-stop message-passing model [8].6 Related WorkIn 1985, Fischer, Lynch, and Paterson [9] showed that the consensus task has no1-resilient solution in a system where asynchronous processes communicate byexchanging messages. In 1988, Biran, Moran, and Zaks [3] gave a graph-theoreticcharacterization of a class of tasks that could be solved in asynchronous message-passing systems in the presence of a single failure.Herlihy and Shavit [14] were the �rst to use simplicial complexes to modeldecision tasks, and to formulate properties of decision tasks in terms of sim-plicial homology. They showed that the protocol complex for every wait-freeread/write protocol is simply connected with trivial homology (i.e., it has no

holes). They also give a complete characterization of tasks that have a wait-freesolution in read/write memory [14, 15]. Herlihy and Rajsbaum [12] showed thatif read/write variables are augmented by more powerful shared objects thanread/write registers, then the protocol complexes may have holes (non-trivialhomology), but only in the higher dimensions.The k-set agreement task was �rst proposed by Soma Chaudhuri [7] in 1989,along with a conjecture that it could not be solved in asynchronous systems. In1993, three independent research teams, Borowsky and Gafni [4], Herlihy andShavit [14], and Saks and Zaharoglou [20] proved this conjecture correct.Attiya, Bar-Noy, Dolev, Koller, Peleg, and Reischuk [1] showed that in asyn-chronous systems, the renaming task has a solution if the output name space issu�ciently large, but they were unable to demonstrate the existence of a solu-tion for a range of smaller output name spaces. In 1993, Herlihy and Shavit [14]showed that the task has no solution for these smaller name spaces.Most of the technical content this paper is adapted from Herlihy and Rajs-baum [13], which simpli�es the impossibility results of [14] by eliminating theneed for certain continuous arguments. Attiya and Rajsbaum [2] take a di�erentapproach, proving a number of results about wait-free read/write memory byextending the simplicial model with a combinatorial notion called a \dividedimage".In an intriguing recent development, Gafni and Koutsoupias [10] have shownthat it is undecidable whether a wait-free read/write protocol exists for three-process tasks, using an argument based on the impossibility of computing theprotocol complex's fundamental group, a topological invariant related to the �rsthomology group.7 ConclusionsWe believe that these techniques and models, borrowed from classical algebraictopology, represent a promising new approach to the theory of distributed com-puting. Because these notions come from a mature branch of mainstream math-ematics, the terminology (and to a lesser degree, the notation) is largely stan-dardized, and the formalisms have been thoroughly debugged. Most importantly,however, this model makes it possible to exploit the extensive literature that hasaccumulated in the century since Poincar�e and others invented modern algebraictopology.We close with a brief summary of some open problems. The problem ofclassifying the computational power of objects for wait-free computation hasattracted the attention of many researchers [5, 6, 16, 17, 19]. We have seen thatthe protocol complexes for di�erent kinds of objects share certain topologicalproperties: read/write complexes have no holes, set-agreement complexes have noholes below a certain dimension, and so on. It is intriguing to speculate whethersome kind of topological classi�cation of protocol complexes might yield a usefulcomputational classi�cation of objects.

We believe the time is ripe to apply these techniques to other tasks, to othermodels that make di�erent timing or failure assumptions, as well as to long-lived objects that service repeated requests. Finally, most of the results surveyedhere are impossibility results; little is known about the complexity of solvableproblems in most models.AcknowledgmentsWe are grateful to Hagit Attiya, Prasad Chalasani, Alan Fekete, MichaelangeloGrigni, Somesh Jha, ShlomoMoran, Lyle Ramshaw, Amber Settle, Lewis Stiller,Mark Tuttle, and David Wittenberg for their comments.References1. H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and R. Reischuk. Renaming in an asyn-chronous environment. Journal of the ACM, 37(3):524{548, July 1990.2. H. Attiya and S. Rajsbaum. A combinatorial topology framework for wait-freecomputability. Preprint.3. O. Biran, S. Moran, and S. Zaks. A combinatorial characterization of the dis-tributed tasks which are solvable in the presence of one faulty processor. In Pro-ceedings 7th Annual ACM Symposium on Principles of Distributed Computing,pages 263{275, August 1988.4. E. Borowsky and E. Gafni. Generalized FLP impossibility result for t-resilientasynchronous computations. In Proceedings 25th Annual ACM Symposium onTheory of Computing, pages 206{215, May 1993.5. E. Borowsky, E. Gafni, and Y. Afek. Consensus power makes (some) sense! InProceedings 13th Annual ACM Symposium on Principles of Distributed Computing,pages 363{373, August 1994.6. T Chandra, V. Hadzilacos, P. Jayanti, and S. Toueg. Wait-freedom vs. t-resiliencyand the robustness of wait-free hierarchies. In Proceedings 13th Annual ACMSymposium on Principles of Distributed Computing, pages 334{343, August 1994.7. S. Chaudhuri. Agreement is harder than consensus: Set consensus problems intotally asynchronous systems. In Proceedings 9th Annual ACM Symposium OnPrinciples of Distributed Computing, pages 311{234, August 1990.8. S. Chaudhuri, M.P. Herlihy, N. Lynch, and M.R. Tuttle. A tight lower bound fork-set agreement. In Proceedings 34th annual IEEE Symposium on Foundations ofComputer Science, pages 206{215, October 1993.9. M. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of distributed commitwith one faulty process. Journal of the ACM, 32(2):374{382, April 1985.10. E. Gafni and E. Koutsoupias. 3-processor tasks are undecidable. In Proceedings14th Annual ACM Symposium on Principles of Distributed Computing, August1995.11. M.P. Herlihy. Wait-free synchronization. ACM Transactions on ProgrammingLanguages and Systems, 13(1):123{149, January 1991.12. M.P. Herlihy and S. Rajsbaum. Set consensus using arbitrary objects. In Pro-ceedings 13th Annual ACM Symposium on Principles of Distributed Computing,August 1994.

13. M.P. Herlihy and S. Rajsbaum. Algebraic spans. In Proceedings 14th Annual ACMSymposium on Principles of Distributed Computing, August 1995.14. M.P. Herlihy and N. Shavit. The asynchronous computability theorem for t-resilient tasks. In Proceedings 25th Annual ACM Symposium on Theory of Com-puting, pages 111{120, May 1993.15. M.P. Herlihy and N. Shavit. A simple constructive computability theorem forwait-free computation. In Proceedings 26th Annual ACM Symposium on Theoryof Computing, pages 243{252, May 1994.16. P. Jayanti. On the robustness of Herlihy's hierarchy. In Proceedings 12th AnnualACM Symposium on Principles of Distributed Computing, pages 145{158, August1993.17. J. Kleinberg and S. Mullainathan. Resource bounds and combinations of consensusobjects. In Proceedings 12th Annual ACM Symposium on Principles of DistributedComputing, pages 133{145, August 1993.18. J.R. Munkres. Elements Of Algebraic Topology. Addison Wesley, Reading MA,1984. ISBN 0-201-04586-9.19. G. Peterson, R. Bazzi, and G. Neiger. A gap theorem for consensus types. InProceedings 13th Annual ACM Symposium on Principles of Distributed Computing,pages 344{354, August 1994.20. M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The topologyof public knowledge. In Proceedings 25th Annual ACM Symposium on Theory ofComputing, pages 101{110, May 1993.

This article was processed using the LaTEX macro package with LLNCS style

