The Satisfiability Coding Lemma

Presenter: Harry Sha

March 2, 2022

scL 1/33

Overview

Intro and Notations

Satisfiability Coding Lemma

Applying the lemma
The number of isolated solutions
A randomized SAT algorithm

A generalization

scL 2/33

CNFs

SCL

A CNF (Conjunctive Normal Form) formula is an "AND of ORs".
For example

(x1Vx2V=x3)A(—x1Vxo V=oxa) A(—x1V—xp Voxa) A(—x1 Vxs Vxg)

Each of the “ORs" is called a clause. We'll use n for the number
of variables and m for the number of clauses.

Intro and Notations

3/33

k-CNFs

SCL

A k-CNF is one where each clause has at most k literals.

We care a lot about k-CNFs because the problem of whether or
not a k-CNF is satisfiable is NP-Complete (for k > 3).

We'll call the satisfying assignments solutions.

Intro and Notations

4/33

Structure of solutions

What can we say about the structure of solutions?

(x1VxaV=x3)A(—x1Vxa Voxa) A(—x1Voxe Voxa) A(—x1 Vxs Vxg)

SCL Intro and Notations 5/33

Today

SCL

In this talk I'll present the Satisfiability Coding Lemma of
Ramamohan Paturi, Pavel Pudlak, and Francis Zane which sheds
light on the structure of solutions of k-CNFs.

These insights will give rise to “fast” (still exponential time!)

algorithms for k-SAT, and are crucial in state-of-the-art SAT
algorithms.

Intro and Notations

6/33

SAT and Coding

[Co«g«’m& 2=0cc(c)...]
C’b\' A’[-W\DI\LX <.

\-\%\, \d W o
send o %, 0\90&”\89‘(}\13
aiopmat of P

/Q@/’@

hplly Bel) oo b ok Bz om e

@ Sonle. %) cbvwwmm&'w\,

SCL Satisfiability Coding Lemma

7/33

Encoding

Idea: Send 1 bit at a time. “Substitute” the value of a variable
after every bit. If at any point, a variable is “forced”, you don't
need to send it.

SCL Satisfiability Coding Lemma 8 /33

Encoding

SCL

Idea: Send 1 bit at a time. “Substitute” the value of a variable
after every bit. If at any point, a variable is “forced”, you don't
need to send it.

Substitute: x; — 1 means replace all the x;'s with 1 and all the
—x;'s with Os (The opposite for x; — 0). Then, get rid of all the

clauses that have a 1, and all literals which are assigned 0.

Forced: A variable x; is forced if either x; or —x; is a clause (of size
one).

Satisfiability Coding Lemma

8/33

Example
Q= (x, V)CIV'OLQ Axy Lo} \I-ﬂcb Al v, V'!L.B/\(—m v Xy vxs

x= 1110

© Sd w=1
= WM%V pleY V—OLD Ak Vo, V"Xqﬁ/\(«ar:v Xy vxﬂ
L

?- (XLVWM\A(WIL\MLB A (2 vxq\ _
v

© Sed -l Wel) (g v).
l
® x4=0 is (vedl ©- (3%3

@t =1 head! (e mb e b WO

SCL Satisfiability Coding Lemma 9/33

When does this work well?

SCL

Let x € {0,1}" be a satsifying assignment. We don't need to send
x[i], the assignment of variable x;, if at some point, x; or —x;
became a unit clause. This happens when both of the following are
true

1. There is a clause C where the literal involving x; is the only
literal assigned 1. We say that C is critical for x; with respect
to x.

2. x; is the ‘last’ variable in Ci.e. for x; € C, j <.

Satisfiability Coding Lemma

10 /33

Critical clauses

Critical clauses

x; has a critical clause <= flipping the ith bit of x results in an
unsatisfying assignment.

SCL Satisfiability Coding Lemma 11 /33

J-lIsolated solutions

For this reason, if a solution x € {0,1}" has j variables with
critical clauses, we call it j-isolated. l.e. j of x's n neighbors are
unsatisfying.

SCL Satisfiability Coding Lemma 12 /33

Getting ‘lucky’

SCL

Remember that in order to skip a variable's assignment, we need it
to occur ‘last’ in the its critical clause. To address this, first shuffle
the order of the variables.

Define Enc; to be the encoding that first permutes its variables

according to the permutation 7 and then applies the function from
slide 8.

Satisfiability Coding Lemma 13 /33

The Satsifability Coding Lemma
Here is the Satisfiability Coding Lemma (SCL)

Theorem (Satisfiability Coding Lemma)

Let ¢ be any k-CNF over n variables. If x is a j-isolated solution

of ¢, then the average (over permutations) encoding length of x
under the Enc, is at most n — j/k.

SCL Satisfiability Coding Lemma 14 / 33

Proof.

Poek: Lf T b fe st of wods w/ ool dous,
e \’SL—Q
EE#&} Rred voroldes 1 = EELI& = Cead3]
> ELZ1%% o bob i b comm v ¢ 3] (e e v b td)

s~x

= elé Pr(x, g bgk m ik cb\usg (el o opedblen).
2 ?:1 Ve (Wﬂ o has < L fikale)
= e .

S o ?)év b dokle ok laegr e ok o oweoog

= a\r«b%; descrpien \efg*\ 2 nedh .

SCL Satisfiability Coding Lemma 15 /33

The number of n-isolated solutions

A n-isolated solution has no neighboring solutions. We can use the
SCL to show:

Theorem
A k-CNF over n variables has at most 2"~"/k solated solutions.

SCL Applying the lemma 16 / 33

SCL

T -

a chhnr;\ini:kn
§ 32:S>%13 % a i QQZMAVB

ot oRr madwe) !mﬁ@n L, &le2"
/\F/

o«m%ﬁgi’i’»"‘?k

e e Bk 1w e P, Y n
Gk & 80 o pofll Tbdere i pody el

Applying the lemma

17 /33

Pﬁso&;'- el don Be Soma P:cm“Hw‘on 6, Y owesgy.
cn&d\\«g % amj tobed Muden B € nnA L

Lérs Cbmp&e -{-\r\q OWeszCmv Pwu&&w) awo%z evm:\ws (s{j{-k
(owr Rdobed dng). Dorke tha o of mdoded Shy by T.

ELETigeol]- 54T, a0

- mLALIEL (aeg)

2 F0 3 0% (scl) .

= n M.
—“’NS, Sora. Perw‘v&an 6 ex\ﬂc 2 A QWPWMVU\Q@-\« oft
\ &c\m\red s 2 ok g‘ﬁjv oowent melved e

SCL Applying the lemma 17 /33

This bound is tight - example: block parity

SCL

Let n = sk for some integer s. Break up the variable in to s groups
of k variables. Let F; be the k-CNF computing parity on the k
variables of the ith group. Let

F=FANFPRAN..NFs.

There are 25(k—1) — on—n/k s5|utions for F. Furthermore, every
solution of F has the same parity and are thus n-isolated.

Applying the lemma

18 / 33

The algorithm

Algorithm 1: Randomized algorithm for SAT

Input: ¢
1 while Some variable is not yet assigned do

2 if a variable x; is fixed then

3 ‘ assign x; the forced value and substitute in ¢
4 else

5 x; = random unassigned variable

6 b = random pick from {0, 1}

7 assign x; to b and substitute b for x; in .

8 end

9 end
10 If the assignment we found is satisfying, return it!

SCL Applying the lemma

19 /33

Success probability

SCL

Theorem
If ¢ is a satisfiable k-CNF over n variables. The algorithm in the
previous slide finds a satisfying assignment with probability at least

1
n2n—n/k

Note that this algorithm runs in time ||, so repeating the
algorithm n®2"="/k times we find a satisfying assignment with
probability approaching 1. The overall runtime of the algorithm is
then O(n?|p|2"~"/¥).

Applying the lemma

20 /33

Pook. L % % a Jisoted %‘Q‘M iopmed- of
€ e St lowedoond Ha (J(ﬂoﬁo}\rkd Yot W

De?ma_ E1 &(mgk—J/k\Iomldcs W&r'\\'éerddp%r
ovhad dawses.

E. ¢ Wereren v&m&&aaﬁxg\% wlve, i
oojess wibh oo omg\"\ﬂr\{“.

Nove RiMa obpb <3 > Rlaab]- Be]RIE G
g e

[
0 oo loser bnd e ?ro‘c»(d[dﬁe.

SCL Applying the lemma

21/33

SCL

Coim RIELD 2 5.
b A b b #o0 wolds ok cxec b i Ao
ovol dose. Nde EDAV= S Sew A i ok ewt
5, BIOAZ L 2 K% (M\L o A g olmv}s O ;\3.

%
Y

Gon: REIEL 2 3™
Since & Vo\ds_, e %Ar b @d?j/lk woroldas, e naod
b %2\— (uc\cx\ B @minmﬂ n-A< voroldlas .

—K\os, in &, PrIMS GX?.& xl 2 X Dlwyk“

Applying the lemma

21/33

SCL

Now , uwe Sun ower ol Szkk‘%»l'mg Q?S“@Nvafh) . Lk §
\De ‘l'\m NS Sa&r;‘;\iwo\ Q“B"Maﬂjﬁ od T 8 %0)1),._n%
mop X b *‘m ‘.’\sée}a:n A x..’

I ENB unlcs] = %gs PEAB m‘\f(m\s x|

N+ ﬂ")/v-

e = (zo-m) e
RN

PN

- :\iev; 21 ".

Applying the lemma

21 /33

Coim - Zs,a“ 2L Bl ey sbuh S<io3
& WG dede Hhe s agrmiﬁ‘\rm:?c 2 n &Reqr@aq
s e ZE

By whdwn o e B e neo . i‘j“‘fﬁi*t‘**{*‘

L Se Fo0,137 B $- 12013 NS So- 0%,13°0 %
wml / \n\ml y BNM‘

Gea b S.G omeny. gtm 2

m,,(z){ﬂ INg)|+
2 /1\ 3
: Jﬁ“i N () TR,
e \\(ﬂl \Nele
Gse LG o G o nply.)" 7 QV\‘ = ZBVT s 1 |
e e X\A_cr " nw}w Sk ot 4/ 41

SCL Applying the lemma 21 /33

Aside: (randomized) SAT algorithms since PPZ

SCL

20:6671 Gatisfiability Coding Lemma (PPZ, 1997).

204157 A Probabilistic Algorithm For k-SAT and Constraint
Satisfaction Problems (Schoning, 1999). (only better for k=3)

20-521n An Improved Exponential-Time Algorithm for k-SAT
(PPSZ, 2005).

20-387n 3_SAT Faster and Simpler - Unique-SAT Bounds for
PPSZ Hold in General (Hertli, 2011)

Some tiny (but meaningful) improvements have been made
since.

State of the art: Faster k-SAT Algorithms using Biased-PPSZ
(HKZZ, 2019)

Applying the lemma

22/33

N e & PR
Do odmiand dpy & FDT 3 e I

LR L] 205 20l 72

SCL Applying the lemma 23 /33

Derandomization

You can derandomize this algorithm using k-wise independence.

The idea is to try every permutation in a smaller space of

permutations and prove a similar bound on probability using k-wise
independence.

SCL Applying the lemma 24 /33

How would you find the smallest equivalent DNF?

A DNF is an OR of ANDs. We're looking for the minimal number
of ANDs in a DNF.

SCL A genera lization 25 /33

Implicants

SCL

(x1Vx2V=x3)A(—x1VxaVoxa) A(—x1Voxe Voxa) A(—x1 VxsVxg)

An implicant is a set of literals that imply the formula. They
correspond to a subcube of satisfying assignments. For example,
{=x1,-x3} is an implicant here, corresponding to the square of
solutions {0000, 0100,0001,0101}

A generalization

26 /33

Prime implicants and subcubes

Bigger cubes consist of smaller cubes, instead of taking many
smaller cubes, we'd rather take the bigger cube.

A prime implicant is an subcube of solutions that is not contained
within a larger cube. Equivalently, when viewed as a set of literals,

an implicant is prime if no strict subset is also an implicant.

Prime implicants are interesting and well studied things.

SCL A generalization 27 /33

Another view of implicants

An equivalent way to define an implicant is a partial assignment
which we can view as a n-bit string / = {0,1,*}". If | is an
implicant, no matter how you fill in the s, you get a satisfying
assignment.

Equivalently, every clause has a literal assigned 1.

SCL A generalization 28 /33

Critical clauses and isolation for implicants

For an implicant / in {0,1,%}" of ¢, a clause C is critical for x; if
the literal involving x; is the only literal in C assigned 1 (the rest
are either 0 or *).

In this case if you flipping the assignment of x; makes / no longer
an implicant - there is some way of assigning the free variables to

falsify the clause C!

As before, an implicant is j-isolated if j variables have critical
clauses.

SCL A generalization 29 /33

Definition check: Prime implicants of size j are j-isolated

SCL A generalization 30/33

Definition check: Prime implicants of size j are j-isolated

SCL

Let / be a prime implicant of size j. If | is not j-isolated, there is
some variable x; that is fixed by / (not assigned *) that does not
have a critical clause. Then we claim I\ {x;} is a smaller
implicant. Indeed since x; did not have a critical clause, any clause
for which the literal involving x; was assigned 1, has another literal
assigned 1! So each clause still has at least one literal assigned 1
and I\ {x;} is still an implicant.

A generalization

30/33

Encoding Implicants

There is a natural generalization of the encoding algorithm for
satisfying assignments to implicants. For any clause, if all the
literals in the clause so far have been assigned * or 0, the last one
must be a 1. So again the algorithm looks like the following.

SCL A generalization 31/33

Encoding Implicants

There is a natural generalization of the encoding algorithm for
satisfying assignments to implicants. For any clause, if all the
literals in the clause so far have been assigned * or 0, the last one
must be a 1. So again the algorithm looks like the following.

» Send 1 bit in {0,1,} at a time.
» Substitute the values of the variable in to .
> If at any point a variable is forced, you don't need to send it!

The only difference here is we are sending bits in {0,1,*}. To
substitute * for a variable x; in the formula, we simply mean to
remove all literals x; and —x;.

SCL A generalization

31/33

Implicant coding lemma

Theorem (Implicant coding lemma)

Let ¢ be any k-CNF over n variables. If x is a j-isolated implicant

of p, then the average (over permutations 7) encoding length of x
under the Enc, is at most n — j/k.

SCL A generalization 32 /33

Applications

SCL

>

>

The number of size-j prime implicants of a k-CNF is at most
3n—j/k

The number of prime implicants of a k-CNF is at most
3n(1-2(1/k)) Previous best, 3"/4/n for general CNFs,

3n(1=2(1/rk)) for read r. Best lower bound is 3"(1~ SLegl)

We can enumerate the set of prime implicants of a k-CNF in
time O(’90| . n2k+2 i 3n(1—c/k)).

The number of size-j prime implicants of a m-clause CNFs is
at most 3(1—(/ log(m)))

The number of prime implicants of a monotone k-CNF is at
most 2n(1=(1/k)).

The smallest DNF size for a monotone k-CNF is at most
non(1-0.282/k)

A generalization

33/33

	Intro and Notations
	Satisfiability Coding Lemma
	Applying the lemma
	The number of isolated solutions
	A randomized SAT algorithm

	A generalization

