
The Satisfiability Coding Lemma

Presenter: Harry Sha

March 2, 2022

SCL 1 / 33

Overview

Intro and Notations

Satisfiability Coding Lemma

Applying the lemma
The number of isolated solutions
A randomized SAT algorithm

A generalization

SCL 2 / 33

CNFs

A CNF (Conjunctive Normal Form) formula is an “AND of ORs”.
For example

(x1∨x2∨¬x3)∧(¬x1∨x2∨¬x4)∧(¬x1∨¬x2∨¬x4)∧(¬x1∨x3∨x4)

Each of the “ORs” is called a clause. We’ll use n for the number
of variables and m for the number of clauses.

SCL Intro and Notations 3 / 33

k-CNFs

A k-CNF is one where each clause has at most k literals.

We care a lot about k-CNFs because the problem of whether or
not a k-CNF is satisfiable is NP-Complete (for k ≥ 3).

We’ll call the satisfying assignments solutions.

SCL Intro and Notations 4 / 33

Structure of solutions

What can we say about the structure of solutions?

(x1∨x2∨¬x3)∧(¬x1∨x2∨¬x4)∧(¬x1∨¬x2∨¬x4)∧(¬x1∨x3∨x4)

SCL Intro and Notations 5 / 33

Today

In this talk I’ll present the Satisfiability Coding Lemma of
Ramamohan Paturi, Pavel Pudlak, and Francis Zane which sheds
light on the structure of solutions of k-CNFs.

These insights will give rise to “fast” (still exponential time!)
algorithms for k-SAT, and are crucial in state-of-the-art SAT
algorithms.

SCL Intro and Notations 6 / 33

SAT and Coding

T3
send you x asatisfying

p Éeong
hopefully EncGc can be shorter than x so we

can save on communication

SCL Satisfiability Coding Lemma 7 / 33

Encoding

Idea: Send 1 bit at a time. “Substitute” the value of a variable
after every bit. If at any point, a variable is “forced”, you don’t
need to send it.

Substitute: xi → 1 means replace all the xi ’s with 1 and all the
¬xi ’s with 0s (The opposite for xi → 0). Then, get rid of all the
clauses that have a 1, and all literals which are assigned 0.

Forced: A variable xi is forced if either xi or ¬xi is a clause (of size
one).

SCL Satisfiability Coding Lemma 8 / 33

Encoding

Idea: Send 1 bit at a time. “Substitute” the value of a variable
after every bit. If at any point, a variable is “forced”, you don’t
need to send it.

Substitute: xi → 1 means replace all the xi ’s with 1 and all the
¬xi ’s with 0s (The opposite for xi → 0). Then, get rid of all the
clauses that have a 1, and all literals which are assigned 0.

Forced: A variable xi is forced if either xi or ¬xi is a clause (of size
one).

SCL Satisfiability Coding Lemma 8 / 33

Example

I X VL V7 G AC K VRzV Ky AGX V IG V74 AGMV X V24

x 1110

Send 24 1

U X VIC V7 G AC K VTGV Ky AGX V IG V74 ACAGVX V24
t

4 X V774 rC X V 764 a XsV24

Send sea 1 4 624 n x v24
I

24 0 is forced 4 63

x I is forced We only sent two bits

SCL Satisfiability Coding Lemma 9 / 33

When does this work well?

Let x ∈ {0, 1}n be a satsifying assignment. We don’t need to send
x [i], the assignment of variable xi , if at some point, xi or ¬xi
became a unit clause. This happens when both of the following are
true

1. There is a clause C where the literal involving xi is the only
literal assigned 1. We say that C is critical for xi with respect
to x .

2. xi is the ‘last’ variable in C i.e. for xj ∈ C , j ≤ i .

SCL Satisfiability Coding Lemma 10 / 33

Critical clauses

xi has a critical clause ⇐⇒ flipping the ith bit of x results in an
unsatisfying assignment.

SCL Satisfiability Coding Lemma 11 / 33

Critical clauses

xi has a critical clause ⇐⇒ flipping the ith bit of x results in an
unsatisfying assignment.

SCL Satisfiability Coding Lemma 11 / 33

j-Isolated solutions

For this reason, if a solution x ∈ {0, 1}n has j variables with
critical clauses, we call it j-isolated. I.e. j of x ’s n neighbors are
unsatisfying.

SCL Satisfiability Coding Lemma 12 / 33

Getting ‘lucky’

Remember that in order to skip a variable’s assignment, we need it
to occur ‘last’ in the its critical clause. To address this, first shuffle
the order of the variables.

Define Encπ to be the encoding that first permutes its variables
according to the permutation π and then applies the function from
slide 8.

SCL Satisfiability Coding Lemma 13 / 33

The Satsifability Coding Lemma

Here is the Satisfiability Coding Lemma (SCL)

Theorem (Satisfiability Coding Lemma)

Let ϕ be any k-CNF over n variables. If x is a j-isolated solution
of ϕ, then the average (over permutations π) encoding length of x
under the Encπ is at most n − j/k .

SCL Satisfiability Coding Lemma 14 / 33

Proof.

Poof Let I be the set of variables w critical clauses

note II l j
El of forced variables E 1,1 Ex is forced

I E If I ai is last in its clause wt o thisiswhat itmeanstobefreed

if Pr sci is last in its clause linearity of expectation

2 IE Ya every
clause has t k literals

Ilk
So we get to delete at least she bits on average

average description length
e n Jk

SCL Satisfiability Coding Lemma 15 / 33

The number of n-isolated solutions

A n-isolated solution has no neighboring solutions. We can use the
SCL to show:

Theorem
A k-CNF over n variables has at most 2n−n/k isolated solutions.

SCL Applying the lemma 16 / 33

Fact if I S 0,13 is at prefix freeencoding
with average encoding length l 151 2

spinetsseS
this is fact I in the paper youcan

check it for theproof Ibelieve its pretty standard

SCL Applying the lemma 17 / 33

Proof We'll show for some permutation 6 theaverage
encoding of any

isolated solution is e n nk

lets compute the averageloverpermutations average encodinglength
Cover isolated Solms Denote the setof isolated Solms by I

E E 101cal II I Ideal

It 1219 x Exchange Suns

I Een K SCL

n Nk
Thus Some permutation 6 exists st the arrange encoding length of
isolated sols I n nk firstmomentmethod a

SCL Applying the lemma 17 / 33

This bound is tight - example: block parity

Let n = sk for some integer s. Break up the variable in to s groups
of k variables. Let Fi be the k-CNF computing parity on the k
variables of the ith group. Let

F = F1 ∧ F2 ∧ ... ∧ Fs .

There are 2s(k−1) = 2n−n/k solutions for F . Furthermore, every
solution of F has the same parity and are thus n-isolated.

SCL Applying the lemma 18 / 33

The algorithm

Algorithm 1: Randomized algorithm for SAT

Input: ϕ
1 while Some variable is not yet assigned do
2 if a variable xi is fixed then
3 assign xi the forced value and substitute in ϕ
4 else
5 xi = random unassigned variable
6 b = random pick from {0, 1}
7 assign xi to b and substitute b for xi in ϕ.

8 end

9 end
10 If the assignment we found is satisfying, return it!

SCL Applying the lemma 19 / 33

Success probability

Theorem
If ϕ is a satisfiable k-CNF over n variables. The algorithm in the
previous slide finds a satisfying assignment with probability at least

1

n2n−n/k

Note that this algorithm runs in time |ϕ|, so repeating the
algorithm n22n−n/k times we find a satisfying assignment with
probability approaching 1. The overall runtime of the algorithm is
then O(n2|ϕ|2n−n/k).

SCL Applying the lemma 20 / 33

Proof Let x be a j isolated satisfying assignment of
9 We first lowerband the probability that the
algorithm outputs se

Define Es at least ik variables occur at theend of their
critical clauses

E whenever we randomly assign the value it

agrees with ar assignment

Note Pr Algoutputs x Pr Ea Ea
REFEREE

We now lower band these probabilities

SCL Applying the lemma 21 / 33

Claim Pr Ea 2 Yn
Let A be the of variables that occurlast in their
critical clause Note E A Jk Since A is at most

j Pr AZ 2 Ya worst case A is always 0 or J
I kn

Claim PrEp E I 2
risk

since E holds we get to skip variables we need

to get lucky for the remaining n its variables

Thus in total Pr Algoutput x 2 Yn 2 h

SCL Applying the lemma 21 / 33

Now we sum over all satisfying assignments x Let S
be the set of satisfying assignments and I S 0,1 n

map x to the isolation of x

Pr Algworks IsPrAlgoutputsx

Izkn2
ht k

I 2
nth
I 2ft

Go n k

KES
thisis 21

I 2 Yz2a
weregood

if

SCL Applying the lemma 21 / 33

Claim If 21 I 1 for all nonempty subsets SE 0,13

let Nsk denote the set of neighborsof x in S Theexpression
is then Eg6

Nsel

Sisubsetof Strat starts
By induction on n Base case no r m

w a i

Lef S E 0,13 Fix S 110.13 n S So Oso Pns
Case 1 So St nonempty Is 2

l I 1 4 nod
xeSo KES

zyjns.nl zyjlNshol
i1

I
seeso Kes

Yat's IH
Case 2 So or St isempty If 2 24 12.41 I

s
Ixhasnoneighsthatstartw 1

SCL Applying the lemma 21 / 33

Aside: (randomized) SAT algorithms since PPZ

I 20.667n Satisfiability Coding Lemma (PPZ, 1997).

I 20.415n A Probabilistic Algorithm For k-SAT and Constraint
Satisfaction Problems (Schöning, 1999). (only better for k=3)

I 20.521n An Improved Exponential-Time Algorithm for k-SAT
(PPSZ, 2005).

I 20.387n 3-SAT Faster and Simpler - Unique-SAT Bounds for
PPSZ Hold in General (Hertli, 2011)

I Some tiny (but meaningful) improvements have been made
since.

I State of the art: Faster k-SAT Algorithms using Biased-PPSZ
(HKZZ, 2019)

SCL Applying the lemma 22 / 33

A case for RNP

F a randomized algfor 3SAT in time 2
C

1

Pez
x

x pls x Hertli
Schoning

O j

11497 1999 205 2011 2072

SCL Applying the lemma 23 / 33

Derandomization

You can derandomize this algorithm using k-wise independence.

The idea is to try every permutation in a smaller space of
permutations and prove a similar bound on probability using k-wise
independence.

SCL Applying the lemma 24 / 33

How would you find the smallest equivalent DNF?

A DNF is an OR of ANDs. We’re looking for the minimal number
of ANDs in a DNF.

(x1∨x2∨¬x3)∧(¬x1∨x2∨¬x4)∧(¬x1∨¬x2∨¬x4)∧(¬x1∨x3∨x4)

SCL A generalization 25 / 33

Implicants

(x1∨x2∨¬x3)∧(¬x1∨x2∨¬x4)∧(¬x1∨¬x2∨¬x4)∧(¬x1∨x3∨x4)

An implicant is a set of literals that imply the formula. They
correspond to a subcube of satisfying assignments. For example,
{¬x1,¬x3} is an implicant here, corresponding to the square of
solutions {0000, 0100, 0001, 0101}

SCL A generalization 26 / 33

Prime implicants and subcubes

Bigger cubes consist of smaller cubes, instead of taking many
smaller cubes, we’d rather take the bigger cube.

A prime implicant is an subcube of solutions that is not contained
within a larger cube. Equivalently, when viewed as a set of literals,
an implicant is prime if no strict subset is also an implicant.

Prime implicants are interesting and well studied things.

SCL A generalization 27 / 33

Another view of implicants

An equivalent way to define an implicant is a partial assignment
which we can view as a n-bit string I = {0, 1, ∗}n. If I is an
implicant, no matter how you fill in the ∗s, you get a satisfying
assignment.

Equivalently, every clause has a literal assigned 1.

SCL A generalization 28 / 33

Critical clauses and isolation for implicants

For an implicant I in {0, 1, ∗}n of ϕ, a clause C is critical for xi if
the literal involving xi is the only literal in C assigned 1 (the rest
are either 0 or *).

In this case if you flipping the assignment of xi makes I no longer
an implicant - there is some way of assigning the free variables to
falsify the clause C !

As before, an implicant is j-isolated if j variables have critical
clauses.

SCL A generalization 29 / 33

Definition check: Prime implicants of size j are j-isolated

Let I be a prime implicant of size j . If I is not j-isolated, there is
some variable xi that is fixed by I (not assigned *) that does not
have a critical clause. Then we claim I \ {xi} is a smaller
implicant. Indeed since xi did not have a critical clause, any clause
for which the literal involving xi was assigned 1, has another literal
assigned 1! So each clause still has at least one literal assigned 1
and I \ {xi} is still an implicant.

SCL A generalization 30 / 33

Definition check: Prime implicants of size j are j-isolated

Let I be a prime implicant of size j . If I is not j-isolated, there is
some variable xi that is fixed by I (not assigned *) that does not
have a critical clause. Then we claim I \ {xi} is a smaller
implicant. Indeed since xi did not have a critical clause, any clause
for which the literal involving xi was assigned 1, has another literal
assigned 1! So each clause still has at least one literal assigned 1
and I \ {xi} is still an implicant.

SCL A generalization 30 / 33

Encoding Implicants

There is a natural generalization of the encoding algorithm for
satisfying assignments to implicants. For any clause, if all the
literals in the clause so far have been assigned * or 0, the last one
must be a 1. So again the algorithm looks like the following.

I Send 1 bit in {0, 1, ∗} at a time.

I Substitute the values of the variable in to ϕ.

I If at any point a variable is forced, you don’t need to send it!

The only difference here is we are sending bits in {0, 1, ∗}. To
substitute ∗ for a variable xi in the formula, we simply mean to
remove all literals xi and ¬xi .

SCL A generalization 31 / 33

Encoding Implicants

There is a natural generalization of the encoding algorithm for
satisfying assignments to implicants. For any clause, if all the
literals in the clause so far have been assigned * or 0, the last one
must be a 1. So again the algorithm looks like the following.

I Send 1 bit in {0, 1, ∗} at a time.

I Substitute the values of the variable in to ϕ.

I If at any point a variable is forced, you don’t need to send it!

The only difference here is we are sending bits in {0, 1, ∗}. To
substitute ∗ for a variable xi in the formula, we simply mean to
remove all literals xi and ¬xi .

SCL A generalization 31 / 33

Implicant coding lemma

Theorem (Implicant coding lemma)

Let ϕ be any k-CNF over n variables. If x is a j-isolated implicant
of ϕ, then the average (over permutations π) encoding length of x
under the Encπ is at most n − j/k .

SCL A generalization 32 / 33

Applications

I The number of size-j prime implicants of a k-CNF is at most
3n−j/k .

I The number of prime implicants of a k-CNF is at most
3n(1−Ω(1/k)). Previous best, 3n/

√
n for general CNFs,

3n(1−Ω(1/rk)) for read r . Best lower bound is 3n(1−O(log(k))
k

)

I We can enumerate the set of prime implicants of a k-CNF in
time O(|ϕ| · n2k+2 · 3n(1−c/k)).

I The number of size-j prime implicants of a m-clause CNFs is
at most 3n(1−Ω(j/ log(m))).

I The number of prime implicants of a monotone k-CNF is at
most 2n(1−Ω(1/k)).

I The smallest DNF size for a monotone k-CNF is at most
n2n(1−0.282/k).

SCL A generalization 33 / 33

	Intro and Notations
	Satisfiability Coding Lemma
	Applying the lemma
	The number of isolated solutions
	A randomized SAT algorithm

	A generalization

