


















































The Orthogonal Vectors Problem: 

Definition and Hardness 

Conjecture

26



OV: Problem Description

 Two vectors 𝑢, 𝑣 ∈ {0,1}𝑑 (or binary strings of length 𝑑) are orthogonal if σ𝑖∈ 𝑑 𝑢𝑖 ⋅ 𝑣𝑖 = 0

 Sum is considered over ℝ (not 𝔽2)

 Equivalently, they are orthogonal if ڀ𝑖∈ 𝑑 𝑢𝑖 ∧ 𝑣𝑖 = 0 (there is no position at which both 

vectors have a 1)

Problem:

 Input: Two lists 𝐴, 𝐵 of 𝑛 𝑑-dimensional 0 − 1 vectors

 Output: “Accept” iff there is an orthogonal pair 𝑢, 𝑣 ∈ 𝐴 × 𝐵

27



What is 𝒅?

 Obvious brute-force running time of 𝑂 𝑛2 ⋅ 𝑑

 If 𝑑 is sufficiently smaller than 𝑛 (for e.g., 𝑑 ≪ log𝑛), we must have redundant vector copies in each list, so we 
can weed them out first and then brute-force 

 In particular, it follows that if 𝑑 ≤ 1 − 𝜀 log𝑛 for some constant 𝜀 > 0, then there is a 𝑂 𝑛2−𝜀 ⋅ 𝑑 = ෨𝑂(𝑛2−𝜀) time 
algo for 𝑂𝑉𝑛,𝑑

 Natural question: What about 𝑑 = 𝑐 log𝑛 for any constant 𝑐? 

 Specifically, is there a universal constant 𝜀 > 0 so that for every constant 𝑐, 𝑂𝑉𝑛,𝑐 log 𝑛 can be solved in ෨𝑂(𝑛2−𝜀)
time?

 Orthogonal Vectors Conjecture (OVC) [R. Williams, Theor. Comp. Sci. ‘05]: No, there is not!

Remarks:

 Think of this regime (𝑑 = 𝑂(log𝑛)) as the smallest possible for which 𝑂𝑉𝑛,𝑑 becomes interesting. OVC says that 
even in this case, “truly sub-quad. time” is impossible

 Note the order of quantifiers here! Because for a given constant 𝑐, ෨𝑂(𝑛2−𝜀𝑐) is possible, for 𝜀𝑐 depending on 𝑐

28



Connection to SETH: 

why we believe in 

OVC

29



Strong Exponential Time Hypothesis: Introduction

 𝑘 − 𝐶𝑁𝐹 − 𝑆𝐴𝑇:

 Input: Boolean variables 𝑥1, … , 𝑥𝑛 and a formula in the conjunctive normal form i.e. of the 
form 𝐶1 ∧ ⋯∧ 𝐶𝑚 where each 𝐶𝑖 is the logical 𝑂𝑅 of at most 𝑘 variables (or their negations) 

 Output: “Accept” iff there exists an assignment to these variables on which this formula 
evaluates to 1

 Obvious 𝑂(2𝑛 ⋅ 𝑚𝑛) algorithm

 SETH asserts that we can’t do much better for arbitrary 𝑘. More precisely:

 SETH: for every 𝜀 > 0, there is a 𝑘 such that 𝑘 − 𝐶𝑁𝐹 − 𝑆𝐴𝑇 on 𝑛 variables, 𝑚 clauses 
cannot be solved in 2 1−𝜀 𝑛 ⋅ poly(𝑚) time

 Equivalently, if there is a 2 1−𝜀 𝑛 ⋅ poly(𝑚) time algorithm for some 𝜀 > 0 that can solve 
SAT on CNF Formulas (for all 𝑘) on 𝑛 variables and 𝑚 clauses , then SETH is false

30



SETH implies OVC!

 Contrapositive: Want to show that a “fast” algo for OV yields “fast” algo for SAT

 In other words, given a SAT instance on 𝑛 variables 𝑥1, … , 𝑥𝑛 and 𝑚 clauses 𝐶1, … , 𝐶𝑚, want to construct an OV instance 

on which we can apply this supposed “fast” algo

 This OV instance will have lists 𝐴, 𝐵 of size 𝑁 = 2𝑛/2, consisting of binary strings (vectors) of length 𝑚

 How to define these vectors? Use “split and list”. Split variable set into halves: {𝑥1, … , 𝑥𝑛/2} and {𝑥𝑛/2+1, … , 𝑥𝑛}. 𝐴 then 

consists of vectors 𝑢𝛼, where 𝛼 is a partial assignment that assigns bits to the first half of variables. 𝐵 consists of the set 
of 𝑣𝛽

 1, if 𝛼 does not satisfy 𝐶𝑖 1, if 𝛽 does not satisfy 𝐶𝑖

0, otherwise 0, otherwise

 So 𝑢𝛼 , 𝑣𝛽 are orthogonal iff 𝛼 ∪ 𝛽 satisfies all the clauses

 Note that it takes 𝑂(2𝑛/2 ⋅ 𝑚) time to go from a given SAT instance to defining these lists 𝐴, 𝐵

 If there is an algo that solves 𝑂𝑉𝑁,𝑑 in ෨𝑂(𝑁2−𝜀) time, then SAT, after above reduction, on any 𝑘 can be solved in time 

𝑂 2𝑛/2 ⋅ 𝑚 + (2𝑛/2
2−𝜀

) = 𝑂 2
1−

𝜀
2
𝑛

 This contradicts SETH!

31

𝑢𝛼 𝑖 = 𝑣𝛽 𝑖 =



Fast Algorithm for OV

 Reminder: OVC states that there is no universal constant 𝜀 > 0 so that for every 
constant 𝑐, 𝑂𝑉𝑛,𝑐 log 𝑛 can be solved in ෨𝑂(𝑛2−𝜀) time

 But for a given 𝑐, one may still hope for ෨𝑂(𝑛2−𝜀𝑐) time

 And indeed, Abboud, R. Williams, and Yu (SODA ‘15) prove the following:

 Theorem: For Boolean vectors of dimension 𝑑 = 𝑐(𝑛) log 𝑛, OV can be solved in 

𝑛
2−

1

𝑂 log 𝑐 𝑛 time by a randomized algorithm that is correct with high probability

 T. M. Chan and R. Williams (SODA ‘16) derandomize this:

 Theorem: There is a deterministic algorithm for 𝑂𝑉𝑛, 𝑑= 𝑐(𝑛) 𝑙𝑜𝑔 𝑛 that runs in 𝑛
2−

1

𝑂 log 𝑐 𝑛

time, provided 𝑑 ≤ 2 log 𝑛 𝑜 1

32



All hail the polynomial method

 Checking if a pair of vectors 𝑥𝑖 , 𝑦𝑗 ∈ 𝐴 × 𝐵 is orthogonal is the formula

𝐸 𝑥𝑖 , 𝑦𝑗 = ⋀𝑘=1
𝑑 (¬𝑥𝑖[𝑘] ∨ ¬𝑦𝑗[𝑘])

 Block them up into 𝑠 parts 𝐴1, … , 𝐴𝑠 & 𝐵1, … , 𝐵𝑠, each containing 𝑛/𝑠 vectors (𝑠 tbd)

 Write down the formula that evaluates if there is an orthogonal pair in 𝐴𝑖 × 𝐵𝑗 (big 𝑂𝑅 of 𝑠2

pairs of 𝐸(⋅,⋅))

 Convert that formula into a polynomial, of not-too-large degree! How?

 Razborov & Smolensky in the 80s figured out low-degree “probabilistic” polynomials that 
“approximate” 𝐴𝑁𝐷 and 𝑂𝑅 functions really well

 Finally, set 𝑠 accordingly to use “fast rectangular matrix multiplication” by Coppersmith 

(∃ constant 𝐶 ≈ 0.172 s.t. multiplication of an 𝑁 × 𝑁𝐶 matrix with an 𝑁𝐶 × 𝑁 matrix can be 
done using ෨𝑂(𝑁2) arithmetic operations)

33
















































































































	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: The Orthogonal Vectors Problem: Definition and Hardness Conjecture
	Slide 27: OV: Problem Description
	Slide 28: What is bold italic d?
	Slide 29: Connection to SETH: why we believe in OVC
	Slide 30: Strong Exponential Time Hypothesis: Introduction
	Slide 31: SETH implies OVC!
	Slide 32: Fast Algorithm for OV
	Slide 33: All hail the polynomial method
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88

