
Balanced Graph Partitioning

Konstantin Andreev∗ Harald Räcke †

ABSTRACT
In this paper we consider the problem of (k, ν)-balanced
graph partitioning - dividing the vertices of a graph into k
almost equal size components (each of size less than ν · n

k
)

so that the capacity of edges between different components
is minimized. This problem is a natural generalization of
several other problems such as minimum bisection, which
is the (2, 1)-balanced partitioning problem. We present a
bicriteria polynomial time approximation algorithm with
an O(log2 n)-approximation for any constant ν > 1. For
ν = 1 we show that no polytime approximation algorithm
can guarantee a finite approximation ratio unless P = NP .
Previous work has only considered the (k, ν)-balanced par-
titioning problem for ν ≥ 2.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems

General Terms
Algorithms, Theory

Keywords
Graph Partitioning, Approximation Algorithms, Bicriteria
Approximation

1. INTRODUCTION
The problem of partitioning graphs into equal sized com-

ponents while minimizing the number of edges between dif-
ferent components is extremely important in parallel com-
puting. For example, parallelizing many applications in-

∗Mathematics Department, Carnegie-Mellon University,
Pittsburgh PA 15213. Email: konst@cmu.edu
†Computer Science Department, Carnegie-Mellon Univer-
sity, Pittsburgh PA 15213. This work was supported by the
NSF under grant CCR-0122581. Email: harry@cs.cmu.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’04, June 27–30, 2004, Barcelona, Spain.
Copyright 2004 ACM 1-58113-840-7/04/0006 ...$5.00.

volves the problem of assigning data or processes evenly to
processors, while minimizing the communication.

This issue can be posed as the following graph partitioning
problem. Given a graph G = (V,E), where nodes represent
data or tasks and edges represent communication, the goal is
to divide V into equal sized parts V1, . . . , Vk while minimiz-
ing the capacity of edges cut. Here k denotes the number of
processors of the parallel machine on which the application
is to be executed.

Apart from this example, graph partitioning algorithms
also play an important role in areas such as VLSI layout,
circuit testing, and sparse linear system solving.

The graph partitioning problem considered above is al-
ready NP-complete for the case k = 2, which is also called
the Minimum Bisection problem. Due to the importance of
the problem many effort has been made to develop efficient
heuristics (see [9, 6]) and approximation algorithms (see [4,
5]).

If k is not constant the problem is much harder. There-
fore the following version of the problem with relaxed bal-
ance constraint was introduced. In the (k, ν)-balanced par-
titioning problem the task is to partition the graph into k
pieces of size at most ν n

k
, while minimizing the capacity

of edges between different partitions. However, the perfor-
mance of a partitioning algorithm is compared to the opti-
mum algorithm that has to create partitions of equal size
and is thus more restricted. This approach is sometimes
called bicriteria-approximation, resource-augmentation, or
pseudo-approximation in the literature.

To the best of our knowledge the previous work about
the (k, ν)-balanced partitioning problem only focuses on the
case ν ≥ 2. In this case it is possible to get an approximation
ratio of O(log n) as shown by Even et al. [2].

In this work we consider the (k, 1 + ε)-balanced partition-
ing problem for arbitrary constants ε. We show that we can
get a polylogarithmic approximation w.r.t. the capacity of
edges between different partitions. Furthermore, we show
that it is not possible to obtain even a finite approximation
factor for the case ε = 0. The latter result is in some sense
the justification for looking at bicriteria approximation al-
gorithms instead of “real” approximation algorithms.

1.1 Related Work
The first heuristics for minimum bisection were given by

Kernighan and Lin [9] and subsequently improved in terms
of running time by Fiduccia and Mattheyses [6].

The first non-trivial approximation algorithm for this prob-
lem is due to Saran and Vazirani [12] who obtained an ap-
proximation ratio of n/2. Subsequently the ratio was im-

proved by Feige et al. [4] to O(
√
n·polylog(n)). In their sem-

inal paper [5] Feige and Krauthgamer were able to improve
the ratio to the currently best known bound of O(log2 n).

For some special graph classes better bounds are known.
For planar graphs a bound of O(log n) is given in [5], and for
graphs of minimum degree Ω(n), Arora et al. [1] presented
a PTAS.

For general k some of the above algorithms can be ex-
tended. The algorithm by Saran and Vazirani gives an upper
bound of k−1

k
n for the (k, 1)-balanced partitioning problem.

Feige and Krauthgamer extend their algorithm to give an
approximation ratio of O(log2 n) for general k. Note how-
ever that these algorithms require a running time that is
exponential in k.

The relaxed problem version was considered by Leighton
et al. [10] and Simon and Teng [13]. Their solutions are
based on recursive partitioning the graph with approximate
separators, yielding an approximation factor ofO(log n log k).
Even et al. [3] have used the spreading metrics technique to
improve this to O(log n log logn) and later ([2]) to O(log n).
In the latter paper it is also shown that any (k, ν)-balanced
partitioning problem with ν > 2 can be reduced to a (k′, ν′)-
balanced partitioning problem with k′ ≤ k and ν′ ≤ 2, i.e.,
that it is only necessary to analyze the problem for small
values of ν.

We do not think that the above solutions for the (k, 2)-
balanced partitioning problem can be easily extended to
(k, 1 + ε)-balanced partitioning problems with ε < 1. The
reason is that the above solutions rely mainly on partition-
ing the graph into pieces of size less than n/k, while cutting
as few edges, as possible. Obviously, an optimal algorithm
for the (k, 1)-balanced partitioning problem has to partition
the graph into small pieces as well. From this the authors
deduce that their algorithm cuts only a small factor more
edges than the optimal (k, 1)-balanced partitioning. Since
pieces of size less than n/k can be packed into k partitions
such that no partition receives more than 2n/k nodes, they
get a good solution to the (k, 2)-balanced partitioning prob-
lem.

Nevertheless if we require that the balance-constraint is
relaxed by less than a factor of 2, we have to carefully choose
the piece-sizes into which the graph is cut since we have
to be able to pack these pieces into k partitions of size at
most ν n

k
. Therefore it is necessary to combine the graph

partitioning algorithm with an algorithm for scheduling the
resulting pieces into partitions of small size.

1.2 Basic Notations and Definitions
Throughout this paper G = (V,E) denotes the input

graph and n = |V | denotes the number of nodes of G. A
partitioning of G into ` parts is a collection of ` disjoint
subsets V1, . . . , V` that cover V , i.e., V = V1∪̇ · · · ∪̇V`. For
a partitioning P we use cost(P) to denote the capacity of
edges cut by the partitioning, i.e., edges between different
sets Vi.

We investigate the (k, 1 + ε)-balanced partitioning prob-
lem, that is the problem of finding a minimum cost parti-
tioning of G into k parts such that each part contains at
most (1 + ε)n

k
nodes.

We seek a bicriteria approximation algorithm for this prob-
lem; we compare the cost of an approximation algorithm to
the cost of the optimum (k, 1)-balanced partitioning algo-
rithm that has to output parts of exactly equal size and is

thus more restricted. We call the result of the latter algo-
rithm the optimum (k, 1)-balanced partitioning and denote
it with OPTk.

Throughout the paper we assume that the unbalance fac-
tor ε is smaller than 1. This does not simplify the problem
because the results of [2] show that an instance with ε > 1
can be reduced to a problem instance with ε ≤ 1.

2. HARDNESS RESULTS FOR BALANCED
PARTITIONING

It is well known already that the (2, 1)-partitioning prob-
lem, in other words the minimum bisection problem, is NP-
complete (see [7]). For this problem efficient approximation
algorithms have been recently obtained in [5]. The follow-
ing theorem shows that it is not possible to derive even a
finite approximation factor for the general problem where k
is not a constant. This is the main motivation for analyzing
bicriteria approximation algorithms for this case, that is al-
gorithms that are allowed to violate the balance constraint
of the partitions.

Theorem 2.1. The (k, 1)-balanced partitioning problem
has no polynomial time approximation algorithm with finite
approximation factor unless P=NP.

Proof. We use a reduction from the 3-Partition problem
defined as follows. We are given n = 3k integers a1, a2, . . . , an
and a threshold A such that A

4
< ai <

A
2

and

n∑

i=1

ai = kA.

The task is to decide if the numbers can be partitioned into
triples such that each triple adds up to A. This problem
is strongly NP-complete (see [7]). This means it is already
NP-complete in the case that all numbers (ai, A) are poly-
nomially bounded.

Suppose that we have an approximation algorithm for
(k, 1)-balanced partition with finite approximation factor.
We can use this algorithm to solve an instance of 3-Partition
with polynomially bounded numbers, in the following man-
ner.

We construct a graph G such that for each number ai it
contains a clique of size ai. If the 3-Partition instance can be
solved, the (k, 1)-balanced partitioning problem in G can be
solved without cutting any edge. If the 3-Partition instance
cannot be solved, the optimum (k, 1)-balanced partitioning
in G will cut at least one edge. An approximation algo-
rithm with finite approximation factor has to differentiate
between these two cases. Hence, it can solve the 3-Partition
problem which is a contradiction under the assumption that
P=NP.

Note that the above proof is only valid since the 3-Partition
problem is strongly NP-complete, which means that the
problem is still difficult if all numbers are bounded by some
polynomial in the length of the input. (Otherwise the con-
struction of the graph in the above proof would not be poly-
nomial time.)

3. ALGORITHM AND ANALYSIS
In this section we prove the following theorem.

Theorem 3.1. There is a polynomial time algorithm for
partitioning a graph G = (V,E) into k disjoint components
V1, . . . , Vk ⊂ V such that each component contains at most
(1 + ε)n

k
nodes, and cuts at most O(log2 n/ε4) ·OPTk.

Our algorithm for solving the (k, 1+ε)-balanced partition-
ing problem proceeds in two phases. In the first phase the
graph is decomposed via a recursive decomposition scheme.
This means we use a separation algorithm that gets a part
of the graph as input, and outputs two non-empty subsets
of this part, for recursively decomposing the graph. To each
such recursive decomposition corresponds a binary decom-
position tree T . Each node vt of T corresponds to a part
Vvt ⊂ V obtained during the decomposition as follows. The
root of the tree corresponds to the node set V of the input
graph G, the leaves correspond to individual vertices of G,
and the two directed descendants of a node vt correspond
to the two subparts obtained when applying the separation
algorithm to Vvt .

The separation algorithm is as follows. Let’s set

ε′ :=
ε/3

1 + ε/3
.

In each divide step the algorithm tries to find a minimum ε′-
balanced separator, that is a partition of an input set V into
two parts with size more than ε′ · |V | that cuts a minimum
number of edges. However, we allow our algorithm to relax
the balance constraint. We use an approximation algorithm
that returns an ε′/2-balanced cut, i.e. every part contains at
least ε′/2 · |V | nodes, and that cuts a capacity of at most

O(S · logn/ε3),

where S denotes the total capacity of edges in an optimum
ε′-balanced cut. This can be done in time Õ(n2/ε) (see [11]).
This separation algorithm gives a decomposition of height
O(log n/ε), since in each divide step the larger set is reduced
by a factor of at least (1− ε′/2).

3.1 Coarse T-partitionings
To solve the (k, 1 + ε)-balanced partitioning problem effi-

ciently, we do not look at all possible partitionings, but we
reduce the search space by only considering partitionings
with a special structure that is induced by the decomposi-
tion tree T . In order to describe this structure we introduce
the following definition.

Definition 1. We call a partitioning a T-partitioning if
it only contains subsets of T , i.e., subsets that occurred dur-
ing the recursive decomposition process and that therefore
correspond to some node of T . We call a T -partitioning
coarse if it does not contain any small subsets. More pre-
cisely it does not contain subsets Vvt for which the parent
subset Vvp (with vp parent of vt in the tree) contains less
than εn

3k
nodes.

Our algorithm computes a coarse T -partitioning P and
then tries to transform such a partitioning into a (k, 1 + ε)-
balanced partition by merging some of the subsets of P .
However, the latter step is not always possible. Therefore
we introduce a definition that captures whether a given T -
partitioning P can be transformed into a (k, 1 + ε)-balanced

partition. Let J denote the index set of sets in P , i.e.,
P = {Vj , j ∈ J}. We say that P is (1 + ε)-feasible if J
can be partitioned into k distinct index sets J1, . . . , Jk such
that

∀` ∈ {1, . . . , k} :
∑

j∈J`

(1 + ε/2)dlog1+ε/2 |Vj |e ≤ (1 + ε) · n
k
,

where (1 + ε/2)dlog1+ε/2 |Vj |e means that |Vj | is rounded to
the next power of (1 + ε/2).

Note that the above definition is not straightforward in the
sense that we do not simply require that ∀` ∈ {1, . . . , k} :∑
j∈J` |Vj | ≤ (1 + ε) · n

k
, which means that the total size of

all sets in a part is smaller than (1 + ε) · n
k

. The reason for
the rounding to powers of (1 + ε/2) is that this definition of
(1+ε)-feasibility will allow us to check this property in poly-
nomial time, whereas for the straightforward definition the
decision whether a coarse T -partitioning is (1 + ε)-feasible
is NP-complete.

The following lemma shows that we only have to consider
feasible coarse T -partitionings in order to solve the (k, 1+ε)-
balanced partitioning problem with a polylogarithmic ap-
proximation ratio.

Lemma 3.2. There is a (1+ε)-feasible coarse T -partitioning
that cuts at most O(log2 n/ε4) · cost(OPTk) edges, where
OPTk denotes the optimum (exact) (k, 1)-balanced partition-
ing.

Proof. Think of the optimum partitioning OPTk as a
coloring of the graph with k distinct colors. We successively
transform OPTk into a coarse T -partitioning that is (1 + ε)-
feasible.

First we create a new partitioning OPT′K that only con-
tains subsets of T . This is done in the following manner.
Initially OPT′K is empty. As long as there exists a node v
of G that is not yet contained in a set of OPT′K we tra-
verse the path from the root of T to the leaf that represents
v. We take the first set on this path that is colored “al-
most monochromatically” according to the coloring induced
by OPTk, and add it to our partitioning OPT′k. Almost
monochromatically means that at least a 1

1+ε/3
-fraction of

the nodes of the set are colored the same. More formally, a
set Vx ⊂ V is colored almost monochromatically if there is a
color c such that at least 1

1+ε/3
|Vx| nodes of Vx are colored

with c. We call c the majority color of Vx since more than
half of the nodes of Vx are colored with c (recall that we
assumed ε ≤ 1). Note that the sets that are taken by this
algorithm are disjoint, i.e., OPT′k is a partitioning of G in
the end.

Now, we modify OPT′k to get a coarse T -partitioning
OPT′′k that contains no small sets. Initially, OPT′′k is equal
to OPT′k. We will successively remove small sets from OPT′′k
in the following way. Suppose there is a set Vvt ∈ OPT′′k
such that the parent set Vvp contains less than εn

3k
nodes.

The nodes in Vvp are all contained in sets of OPT′′k that
correspond to descendants of vp in T . We remove all these
sets from OPT′′k and add Vvp instead. OPT′′k is still a T -
partitioning after this step; therefore continuing in this man-
ner gives a T -partitioning that contains no small sets, in
other words a coarse T -partitioning.

In order to prove the lemma we now show that OPT′′k is
(1+ε)-feasible and that cost(OPT′′k) ≤ O(log2 n)·cost(OPTk).

Claim 3.3. OPT′′k is (1 + ε)-feasible.

Proof. We first show that OPT′k is (1 + ε)-feasible. We
do this by merging the sets to a (k, 1+ ε)-balanced partition
in the following way. Merge all sets of OPT′k that have
the same majority color into one partition. This gives k
partitions. We have to show that no partition is too large
with respect to the definition of (1 + ε)-feasibility. Fix a
partition and let J denote the index set of the sets in this
partition. Further, let Mj denote the number of nodes in a
set Vj , j ∈ J that are colored with the majority color. We
have

∑

j∈J
|Vj | = (1 + ε/3) ·

∑

j∈J

1

1 + ε/3
|Vj |

≤ (1 + ε/3) ·
∑

j∈J
Mj = (1 + ε/3) · n

k
,

where the last equality holds since in OPTk any color is used
exactly n

k
times. In the definition of (1 + ε)-feasibility the

sizes of subsets are rounded to powers of (1+ ε/2). This can
increase the above sum only by a factor of (1 + ε/2). Hence,
it is smaller than (1 + ε/2) · (1 + ε/3) · n

k
≤ (1 + ε) · n

k
.

Now we will show that OPT′′k is feasible as well. For this
we have to decide in which partitions to put the sets of
OPT′′k that are not contained in OPT′k (all other sets remain
in their partition). We do this greedily. For a given set that
is not yet assigned we choose a partition that still contains
less than n/k nodes and assign the set to this partition. It
is guaranteed that we find a partition with less than n/k
nodes since the total number of nodes is n and there are k
partitions. In this manner no partition receives more than
(1 + ε)n

k
nodes. Again, rounding only increases this term by

a factor of (1 + ε/2), which proofs the claim.

The following claim shows that OPT′′k well approximates
the optimum solution w.r.t. the capacity of cut edges.

Claim 3.4. cost(OPT′′k) ≤ O(log2 n/ε4) · cost(OPTk).

Proof. We will show that

cost(OPT′k) ≤ O(log2 n/ε4) · cost(OPTk) .

This is sufficient since OPT′′k is obtained from OPT′k by
merging sets, which gives cost(OPT′′k) ≤ cost(OPT′k).

The cost of OPT′k is the capacity of all edges between dif-
ferent sets of the partitioning. A convenient interpretation
of this cost is that it is created by the ancestors of sets in
OPT′k, in the following way. Suppose that there is an an-
cestor set Vva for some set Vvt of OPT′k (i.e., va is ancestor
of vt in the tree). We say that the cost created by Vva is
the capacity of edges that are cut in the divide step of the
recursive decomposition that divided Vva . In this way we
have assigned the cost of OPT′k to the ancestor sets in T .

Now, we amortize the cost created by an ancestor set Vva
against the capacity of edges that are cut by the optimum
partitioning OPTk within Vva . Consider the partitioning of
Vva induced by the optimum coloring of OPTk. No partition
has more than 1

1+ε/3
· |Vva | = (1 − ε′)|Vva | nodes because

Vva is not colored almost monochromatically. We merge
partitions of Vva into a setM in decreasing order of there size
until M contains more than ε′ · |Vva | nodes. Since ε′ < 1/3
we have that |M | ≤ (1 − ε′)|Vva |. This means M induces
an ε′-balanced cut for Vva . OPTk cuts all edges within this
cut. Since, the divide step for Vva uses an approximation to

the optimum ε′-balanced cut we get

costVva (OPT′k) ≤ O(log(n)/ε3) · costVva (OPTk) ,

where costVva (OPT′k) denotes the cost of OPT′k created by
Vva , and costVva (OPTk) denotes the capacity of edges cut
by the optimum partitioning within Vva .

Since, a single edge of G is at most used height(T) times
for amortization we get that

cost(OPT′k) ≤ height(T) ·O(log n/ε3) · cost(OPTk)

≤ O(log2 n/ε4) · cost(OPTk) .

This completes the proof of the claim.

Claims 3.3 and 3.4 give the lemma.

3.2 The algorithm
In this section we show how to find an optimal (1 + ε)-

feasible coarse T -partitioning OPTT . From Lemma 3.2 it
follows that this partitioning gives a (k, 1 + ε)-partitioning
with an approximation factor of O(log2 n/ε4) w.r.t. the ca-
pacity of edges cut.

The main observation for this algorithm is that tree sets
that are smaller than εn

3k
or larger than (1 + ε)n

k
do not

have to be considered. The first type of set cannot be con-
tained in OPTT because of the definition of a coarse T -
partitioning. The second type of set cannot be contained
since then OPTT would not be feasible, because such a large
set cannot be assigned to a partition without exceeding the
balance constrained (the partitition would have size larger
than (1 + ε)n

k
).

By removing all nodes from T that correspond to one of
the above sets, we partition T into many small sub-trees
T1, . . . , T`. For each tree Ti we have

height(Ti) ≤ log(
1 + ε

ε/3
)/ log(

1

1 + ε′
) = O(

1

ε
log(

1

ε
)) .

Furthermore, each tree contains at most 2O(1/ε log(1/ε)) nodes.
Note that both of these values are constant.

We can use a dynamic programming approach on these
trees to find OPTT in polynomial time, as follows. Suppose
that the partitioning for the first sub-trees T1, . . . , Ti−1 is
fixed. Then the optimum partitioning for sub-trees Ti, . . . , T`
only depends on the size of the sets that are chosen in sub-
trees T1, . . . , Ti−1. Since we only check for (1+ ε)-feasibility
of a partitioning we can round these sizes to powers of
(1 + ε/2).

Let t denote the number of (1+ε/2)-powers in the interval
(εn

3k
, (1+ε)n

k
). The powers of (1+ε/2) partition this interval

into t + 1 sub-intervals. A subset whose size is in the s-th
interval has rounded size

rs := (1 + ε/2)dlog1+ε/2
εn
3k
e · (1 + ε/2)s−1 .

Let OPTT (Ti, . . . , T`|g1, . . . , gt+1) denote the cost of an
optimal T -placement for sub-trees Ti, . . . , T` if already gs
sets of rounded size rs are used in the partitioining for
T1, . . . , Ti−1. We want to derive a dynamic programming
recurrence for this term. For this we need some notation.
We say that g1, . . . , gt+1 is feasible if it is possible to pack gs
items of size rs, s ∈ {1, . . . , t+1} into k bins of size (1+ε)n

k
.

This is the well known bin packing problem which, in gen-
eral, is NP-complete but can be solved in polynomial time
for our case because we only have items of a constant num-
ber of different sizes due to the rounding. Solving such a

bin packing problem needs time O(p2s) (see [8]), where p
denotes the number of pieces and s denotes the number of
different sizes. In our case the number of pieces is bounded

by 1+ε/2
ε/3

k = O(k/ε) because each set has size at least εn
3k

and

the total rounded size of all sets cannot exceed (1 + ε/2)n.
The number of different sizes is t+ 1 which gives a running
time of O((k

ε
)t+1).

Let for a T -partitioning P of a sub-tree, xs(P) denote the
number of sets with rounded size rs that are contained in
P . The recurrence for OPTT (Ti, . . . , T`|g1, . . . , gt+1) is as
follows.

OPTT (Ti, . . . , T`|~g)

= min
T -part. P

for Ti

{cost(P) + OPTT (Ti+1, . . . , T`|~g)} ,

if g1, . . . , gt+1 is feasible. (Here we used the short-hand no-
tation ~g to denote g1, . . . , gt+1.) In the case that g1, . . . , gt+1

is infeasible we define

OPTT (Ti, . . . , T`|g1, . . . , gt+1) =∞ .

3.3 Running Time
Let’s first calculate the running time of the dynamic pro-

gramming. What time is needed for computing OPTT with
the above recurrence? The dynamic programming table has
O(`·(k/ε)t+1) = O(n·(k/ε)t+1) entries because gi = O(k/ε);
otherwise the rounded size of sets used in T1, . . . , Ti−1 were
larger than (1 + ε/2) ·n, and ` ≤ n. For each entry the algo-
rithm needs time O((k/ε)t+1) to decide whether g1, . . . , gt+1

is feasible. To compute the minimum the algorithm can
iterate over all partitionings of subtree Ti. There are at

most O(22O(1/ε·log(1/ε))

) such partionings since there are only

2O(1/ε·log(1/ε)) nodes in a subtree. On the whole the dy-
namic programming algorithm has a running time of at most

O(n · (k/ε)O(log 1/ε)+1 · 22O(1/ε·log(1/ε))

) which is polynomial
in n for constant ε.

The overall running time is the maximum of the separa-
tion algorithm Õ(n2/ε) and the dynamic programming al-

gorithm O(n · (k/ε)O(log 1/ε) ·22O(1/ε·log(1/ε))

). For example if
k = n/2 and ε = 1/2 then the overall running time will be

Õ(n2).

4. CONCLUSIONS
We presented a polynomial time approximation algorithm

for the (k, ν)-balanced partitioning problem that achieves an
O(log2 n)-approximation ratio w.r.t. the capacity of edges
between different partitions. The algorithm extends in a
straightforward manner to the case where the nodes of the
graphs are weighted and the goal is to balance the weight
among the partitions (this works if the node weights are
polynomially bounded).

It seems a challenging task to improve the running time
of the algorithm such that the dependence on 1

ε
is not that

heavy. Another interesting problem is to generalize the
problem to the case where the different partitions are re-
quired to have different size. This could be used to model
parallel scheduling on different machines, by making the par-
titions for fast processors larger.

5. REFERENCES
[1] Sanjeev Arora, David Karger, and Marek Karpinski.

Polynomial time approximation schemes for dense
instances of NP-hard problems. In 27th Annual ACM
Symposium on the Theory of Computing, pages
284–293, 1995.

[2] Even, Naor, Rao, and Schieber. Fast approximate
graph partitioning algorithms. SIAM Journal of
Computing, 28(6):2187–2214, 1999.

[3] Guy Even, Joseph Naor, Satish Rao, and Baruch
Schieber. Divide-and-conquer approximation
algorithms using spreading metrics. Journal of the
ACM(JACM), 47(4):585–616, 2000.

[4] U. Feige, R. Krauthgamer, and K. Nissim.
Approximating the minimum bisection size. In 32nd
Annual ACM Symposium on the Theory of
Computing, pages 530–536, 2000.

[5] Uriel Feige and Robert Krauthgamer. A
polylogarithmic approximation of the minimum
bisection. SIAM Journal on Computing,
31(4):1090–1118, 2002.

[6] C. M. Fiduccia and R. M. Mattheyses. A linear time
heuristic for improving network partitions. In 19th
IEEE Design Automation Conference, pages 175–181,
1982.

[7] M. R. Garey and D. S. Johnson. Computers and
intractability: A guide to the theory of
NP-completeness. W.H. Freeman and Co, San
Francisco, CA, 1979.

[8] D. Hochbaum and D. Shmoys. A polynomial
approximation scheme for scheduling on uniform
processors: Using the dual approximation approach.
SIAM Journal on Computing, 17(3):539–551, 1988.

[9] B.W. Kernighan and S. Lin. An efficient heuristic for
partitioning graphs. Bell Sys. Tech. Journal,
49:291–308, 1970.

[10] T. Leighton, F. Makedon, and S. Tragoudas.
Approximation algorithms for vlsi partition problems.
In IEEE International Symposium on Circuits and
Systems, (ISCAS ’90), volume 4, pages 2865–2868,
1990.

[11] T. Leighton and S. Rao. Multicommodity max-flow
min-cut theorems and their use in designing
approximation algorithms. Journal of the
ACM(JACM), 46(6):787–832, 1999.

[12] Huzur Saran and Vijay V. Vazirani. Finding k-cuts
within twice the optimal. SIAM Journal of
Computing, 24(1):101–108, 1995.

[13] Horst D. Simon and Shang-Hua Teng. How good is
recursive bisection? SIAM Journal on Scientific
Computing, 18(5):1436–1445, 1997.

