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Abstract  
An interactive proof system is a method 

by which one party of unlimited resources, 
called the prover, can convince a party of lim- 
ited resources, call the verifier, of the truth of 
a proposition. The verifier may toss coins, 
ask repeated questions of the prover, and run 
efficient tests upon the prover's responses 
before deciding whether to be convinced. 
This extends the familiar proof system impli- 
cit in the notion of NP in that  there the 
verifier may not toss coins or speak, but only 
listen and verify. Interactive proof systems 
may not yield proof in the strict mathemati- 
cal sense: the "proofs" are probabilistic with 
an exponentially small, though non-zero 
chance of error. 

We consider two notions of interactive 
proof system. One, defined by Goldwasser, 
Micali, and Rackoff [GMR] permits the 
verifier a coin that  can be tossed in private, 
i.e., a secret source of randomness. The 
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second, due to Babai, [B] requires that  the 
outcome of the verifier's coin tosses be public 
and thus accessible to the prover. 

Our main result is that  these two sys- 
tems are equivalent in power with respect to 
language recognition. 

The notion of interactive proof system 
may be seen to yield a probabilistic analog to 
NP much as BPP is the probabilistic analog 
to P. We define the probabilistic, nondeter- 
ministic, polynomial time Turing machine and 
show that  it is also equivalent in power to 
these systems. 

1. In troduct ion  
In this century, the notions of proof and 

computation have been formalized and under- 
stood. With the arrival of complexity theory, 
the notion of what is efficiently provable 
became of interest. The class NP captured 
this notion, containing those languages for 
which proofs of membership can be verified 
by a deterministic polynomial time Turing 
machine. We can view NP as a proof-system 
consisting of two communicating Turing 
machines: the prover who guesses the proof 

* Research  supported in par t  by NSF  G r a n t  8509905 
DCR. 
** Research  supported in  par t  by NSF Gran t  MCS- 
8304769 a n d  Air Force Gran t  AFOSR-82-0326.  

59 



and the polynomial time deterministic 
verifier, who checks the correctness of the 
proof. 

Randomization has been recognized to be 
a fundamental ingredient in defining what is 
efficiently computable (e.g RP, BPP, RNC). 
In this paper, we seek to understand how ran- 
domization affects the definition of what is 
efficiently provable. 

A conventional deterministic NP verifier 
does not accept statistical evidence as a con- 
vincing argument, regardless of how 
overwhelming it may be. As a consequence, 
the kind of languages contained in NP are 
precisely those whose proofs of membership 
can be fully put down in writing and shown 
to others. The verifier does not actively parti- 
cipate in the proof process or interact with 
the prover in any way. It suffices for the 
prover to speak and the verifier to listen. 

Randomization and interaction are 
essential ingredients of two recent formaliza- 
tions of the concept of an efficient proof sys- 
tem. One formalization is due to Babai [B] 
and the other to Goldwasser, Micali and 
Rackoff [GMR]. Both definitions would col- 
lapse to NP if no coins were flipped. 

Interactive Proof  Systems 
In defining what they called interactive 

proof systems, Goldwasser, Micali and 
Rackoff's intent was to make as general a 
definition as possible of what is provable to a 
probabilistic verifier willing to accept statisti- 
cal evidence. Their broader goal was to 
define the concept of the "knowledge" com- 
municated during a proof. 

An interactive proof system consists of a 
prover with unlimited computation power and 
a probabilistic polynomial time verifier who 
receive a common input x. The prover and 
the verifier can exchange messages back and 
forth for a polynomial in the length of x 
number of times. There are no restrictions on 
how the verifier may use his coin tosses: he 
can toss coins, perform any polynomial time 
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computations on them and send the outcome 
of the computation to the prover. In particu- 
lar, he need not show the outcome of the 
coins to the prover. 

The secrecy of the verifier's coin tosses 
seemed essential to certain examples of 
interactive proof systems. The most notable 
is a recent result of Goldreich, Micali and 
Wigderson [GMW] showing an interactive 
proof-system for the graph non-isomorphism 
problem. This is somewhat remarkable in 
light of the fact that  graph non-isomorphism 
is not known to be in NP. We sketch this 
example in section 2.1. 

The interactive proof system (IP) defines 
a hierarchy of languages. Namely, L is in 
IP[k] if there exists a k-move (k alternations 
of message exchanges between prover and 
verifier with the verifier sending the first 
message) interactive proof system such that: 
for every input x(L, the probability that the 
verifier accepts is greater than 2/3, and for 
every input x not in L, even against an 
optimal prover, the probability that the 
verifier accepts is less than 1/3. 

Arthur-Merlin Games: A n  In te rac t ive  
Proof  System with a Publ ic  Coin 

Babai's formalization of efficient proof 
system attempts to capture the smallest class 
of languages extending NP, for which statisti- 
cal proofs of membership exist. The primary 
motivation was to place the matrix group 
non-membership and matrix group order prob- 
lems in a complexity class "just above NP". 
His proof-system, presented as a game, con- 
sists of a powerful prover (capable of optimal 
moves) called Merlin, and a probabilistic poly- 
nomial time verifier called Arthur which 
receive a common input x. Merlin wins the 
game if he can make Arthur accept x. 
Arthur and Merlin alternate exchanging mes- 
sages back and forth for at most a polynomial 
in the length of x times. At the end of the 
interaction, Arthur decides whether to accept 
or reject (i.e., whether Merlin won or lost). 



The difference between the Arthur- 
Merlin proof system and the GMR proof sys- 
tem is in the restricted way that Arthur is 
allowed to use his coin tosses during the 
game. Arthur's moves consist merely of toss- 
ing coins and sending their outcomes to Mer- 
lin. Thus the Arthur-Merlin game is a special 
case of an interactive proof system. 

The Arthur-Merlin games define a 
hierarchy of complexity classes, in a manner 
similar to IP. We say L is in AM[k] if there 
exists an Arthur-Merlin k-move game (i.e., k 
alternating message exchanges between 
Arthur and Merlin, Arthur sending first) such 
that for every input x~L, the probability that 
Arthur accepts x is greater than 2/3; and for 
every input x not in L, the probability that 
an optimal Merlin wins is less than 1/3. 

The elegant simplicity of the definition 
of the Arthur-Merlin game facilitates addi- 
tional results. Babai showed that  for every 
constant k, AM[k] collapses to AM[2]. This 
in turn is a subset of both H2 P and 
nonuniform-NP. The relative power of proof 
systems with a bounded and an unbounded 
number of exchanged messages remains an 
interesting open question. 

In this paper we prove the equivalence of 
these two types of interactive proofs with 
respect to language recognition. As a conse- 
quence the above results extend to IP. 

Our Result 
Let Q denote a polynomial. Let IP[Q] 

(and AM[Q]) denote those languages L for 
which there exists a Q-move interactive proof 
system (and Q-move Arthur-Merlin proof- 
system respectively). Namely, Q(H) mes- 
sage exchanges between the prover and the 
verifier are allowed on input x. 

In this paper, we show that for any poly- 
nomial Q, 

IP[Q] c AM[Q+2] 

i.e., the GMR proof system is as powerful as 
the Babai proof system. 

2. Examples and Related Work 

2.1. An Example of An Interactive Proof 
System 

Goldreich, Micali and Wigderson [GMW] 
have recently demonstrated the following 
interactive proof system for the graph non- 
isomorphism problem. 

Let NONISO={(Go G1) such that the 
graph G 1 is not isomorphic to the graph Go}. 
Theorem (GMW): NONISO ~ IP. 
proof." Let the prover and verifier receive as 
input two n node graphs G o and G 1 on ver- 
tices V. The following steps 1 and 2 get exe- 
cuted n times in parallel. 

step 1: The verifier flips a fair coin to 
choose cC{0,1} and a random permuta- 
tion ~ of V. The verifier then computes 
R = ~(Gc) and sends R to the prover. 
step 2: The prover tells the verifier 
whether c=0  or 1. 
final step: if the prover makes a mistake 
in step 2 in guessing what c is, the 
verifier rejects, otherwise he accepts. 
If the two input graphs G 1 and G 2 are 

not isomorphic to each other, then there 
exists a prover who can distinguish the case 
that R is isomorphic to G O from the case that 
R is isomorphic to G1, and thus can always 
tell correctly in step 2 of the protocol whether 
c =0 or c=l, and make the verifier accept. 

On the other hand, if Go is isomorphic to 
G1, then by the randomness of the permuta- 
tion 9, R is as likely to be ~(Go) as it is to be 
~(G1). The prover who does not know c will 
err in step 2 of the protocol with probability 
1/2. QED 

Clearly, the secrecy of the coin is essen- 
tial to this protocol. 

One consequence of this result, combined 
with Babai's and ours, is that  the graph non- 
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isomorphism problem has polynomial-size, 
non-deterministic circuits. 

Several other interactive proof systems 
for number theoretic problems and the matrix 
group membership problem appear in 
[GMR,B]. 

2.2. Rela ted  Work 
The difference between IP and AM 

games is analogous to that  between alterna- 
tion [CKS] and alternation with partial infor- 
mation [R]. In the case of alternation both 
players play optimally subject to their 
knowledge and only the referee who deter- 
mines the outcome is required to be polyno- 
mial time bounded. Condon and Ladner [CL] 
describe this connection in a general setting. 

Other relevant results concerning 
interactive proof systems appear in [H] and 
[F]. Prior to our result, Johan Hastad [HI 
showed that  the union U IP[k] is contained 

k > 0  
in ~3. Paul Feldman IF] showed that  the 
prover in an interactive proof system with a 
polynomial number of interactions need not 
be more powerful than a PSPACE machine. 
Boppana and Hastad [BH] showed that  if co- 
NP C AM then for any i, ~CAM. This and 
our result show that  the polynomial hierar- 
chy collapses to ~2 P if graph isomorphism is 
NP-complete. 

Fortnow and Sipser [FS] have shown 
that  there is an oracle F such that  co- 
NP F ~ IP F. 

Other works related to the study of ran- 
domized proof systems appear in [Pa] and 
[ZF]. In Papadimitriou's "Games Against 
Nature", the verifier is also a probabilistic 
polynomial time machine which flips coins 
and presents them to an the prover which is a 
capable of optimal moves. The difference is 
that the probability of convincing the verifier 
need not be bounded away from 1/2. This 
apparently affects the strength of the system 
as Papadimitriou's games are as powerful as 
PSPACE. 

Furer and Zachos [ZF], in a work inves- 
t igating the robustness of probabilistic com- 
plexity classes, introduce a framework of pro, 
babilistic existential and universal 
quantifiers and prove several combinatorial 
lemmas about them. The AM complexity 
classes can be formulated in terms of these 
special quantifiers. 

2.3. Connect ions  with  C r y p t o g r a p h y  
An interactive proof system can be 

viewed as a model for proving the correctness 
of two party cryptographic protocols [GMR]. 
The prover and verifier in an interactive 
proof system model the two participants in a 
cryptographic protocol with one exception: the 
cryptographic prover is not all powerful, but a 
probabilistic polynomial time machine with a 
secret unknown to the verifier. 

A key property of cryptographic proto- 
cols is the amount of "knowledge" released to 
the verifier during the execution of the proto- 
col. Very informally, we say that  a prover in 
an interactive proof system releases "zero- 
knowledge" if even a devious verifier can 
learn no more than the validity of the asser- 
tion being proved. In a "secure" protocol the 
prover has this property. (see [GMR] for pre- 
cise definitions). In [GMW] it has been 
shown, that  if one-way functions exist then 
every language in NP has a zero-knowledge 
proof protocol. 

Using this and our transformation from 
private-coin to public-coin protocols, Ben-or 
[Be] has very recently shown that  all 
languages in IP have zero-knowledge, public- 
coin protocols, given the existence of one-way 
functions. Implications of this are not yet 
fully clear, but it may be tha t  public coins are 
adequate for secure cryptographic protocols. 

3. Definit ions 
We represent the verifier and the prover 

of an interactive proof system as two func- 
tions V and P. 
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Definition: An Interactive proof protocol is 
given by two functions: 

V: E* × ~* × E* --~ E* ~ {accept, reject} 

Let si denote the concatenation of i pairs 
of messages, s i = # x l # y l #  . . .  # x i # y  i. We 
write V ( w , r , s i ) = x i +  1 to mean that  V on 
input w, with random sequence r, and 
current message stream s produces next mes- 
sage Xi+l. We say P(si#Xi+l)=yi+ 1 to mean 
that  P produces next message Yi+i given 
current message stream si#xi+l. The 
exchange of a single pair of messages is 
called a round. 

For a given input w and random 
sequence r we say 

(V*P)(w,r) accepts 

if there exists a message stream 
$ = # X  1 ~ Y  I # " " " #X l  # Y l  such that  
V(w,r,s) = accept, and for each i < I, 
V(w,r,si) =xi+ 1 and P(si#xi+ 1) =Yi+l. 

Let us assume for simplicity that there 
is a function l such that for inputs w of 
length n, V will only accept if the length of r 
is l(n). Then we write 

Pr[(V*P)(w) accepts] 

to mean Pr[(V*P)(w,r) accepts] for r chosen 
randomly from Zt([zl). 
Further we let 

Pr[V(w) accepts] 

denote max Pr[(V*P)(w) accepts]. 
P 

Let the language of the verifier, L(V)= 
{w: Pr[V(w) accepts] >1/2} 

Say V has error probability e if for all 
w ~ * :  
1) i fw(L(V) ,  Pr[V(w) accepts] _> 1 - e  
2) if w~'L(V), Pr[V(w) accepts] -< e 
For W C~*, we say W(IP if there is a polyno- 
mial time verifier V with error probability 

1/3 accepting W. As we shall see later, the 
class IP is unaffected if we substitute e for 
1/3, where 2 -p°ly(n) ~- e -~ 1/2 - 2 -poly(n) 
Definition: An Interactive proof protocol with 
public coin is defined as above with the fol- 
lowing difference. The random input r is con- 
sidered to be the concatenation of l strings 
r = r l r 2 . . . r  t where l is the number of 
rounds and V is restricted to produce ri as it's 
i th message, i.e., for i-<l, V(w,r,si)=r i or 
accept  or reject. 

This notion is essentially identical to 
that  of the Arthur-Merlin game defined by 
Bahai in [B]. Following his terminology we 
say that  for W CZ*, WEAM(poly) if W(IP as 
above and the interactive proof protocol uses 
a public coin. We refer to an Arthur-Merlin 
game as an A-M protocol. 

For polynomial Q, say W(IP[Q(n)] if 
WEIP with a verifier which never sends 
more than Q(n) messages for inputs of length 
n. Similarly define AM[Q(n)]. 

4. The equ iva lence  of public vs. pr ivate  
coins 

4.1. Approx imate  lower  bound  l emma  
This lemma, an application of Carter- 

Wegman universal hashing [CW], due to 
Sipser [Si], plays a key role in our proof of 
equivalence. Its application to approximate 
lower bounds was first given by Stockmeyer 
[St]. Its application in Arthur-Merlin proto- 
cols first appears in Babai [B]. 

Definition: Let D be a k × b Boolean matrix. 
The linear function hv:~k--~ b is given by 
hD(x) =x.D using ordinary matrix multiplica- 
tion modulo 2. A random linear function is 
obtained by selecting the matrix D at ran- 
dom. If H={hl ,  . . . .  hl} is a collection of 
functions, CC~ k, and DC~ b then H(C) 
denotes Uhi(C), and H-I(D) denotes 
Uhi-l(D). Let [C] denote the cardinality of 
C. 
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L e m m a :  Given b,k,I>O, 
CC_~ k. Randomly select l 
H={h  1 . . . .  ,hi}, hi:~lt--'>~ b 
Z={z l ,  . . . .  zl~}CE b. Then 

1. If b =2+[loglC[] then 

. 

l >max(b,8), and 
linear functions 
and l 2 strings 

a) Pr[IH(C)I  -> ICl / l ]  -> 1 - 2  - l  
b) Pr[H(C)NZ ~ ~ ]  -> 1 - 2  -t/s 

a) IH(C)I -< l lcl  
b) If for d>0 ,  ICl <- 2b/d then: 

Pr[H(C)NZ ~O]  -< 13/d 
Proof  la:  Since 2b-->4[C] the following chain 
of statements are easily verified. Let (hi(x)) j 
denote the jth bit of the string hi(x). Fix 
x ,y(E k, x ~ y ,  i j  >0, except where quantified. 
Pr[(hi(x))J = (hi(y))J] = 1/2 
Pr[ hi( x ) = hi(y)] = 2 - b 
Pr[3 y ( C  (x ~y&hi(x)  =hi(y))]-< ]C I .2-b _< 1/4 
Pr[Vi -<I 3 y~C (x ~y&hi(x)  =hi(y))] <-4 - l  
P r [ 3 x ( C  Vi-<l 3yEC (x~y&hi(x)=hi(y))]  

_<IC] .4-l_<2 - l  
Therefore Pr[]H(C) I -> [CI/l]-~ 1 - 2 -t  
Proof  lb: Since [C1>--2b/8, if [H(C)Im[CI/I 
then 

IH(C)[ _> ! 
Ixbl 81 

Thus it is likely that  one of the 12 strings in 
Z will be in H(C). 
Pr[H(C) NZ = Q] -< (1 - 1/8/) Z2 + 2 - t  < 2 -t/s 
Proof  2a: Obvious. 
Proof  2b: Since 

In(C)!  < l lcl  = ± 
zb dlCl d 

The probability that  each z/ is in H(C) is at 
most l id.  Thus the probability that  any of 
the 12 strings in Z is in H(C) is at most 13/d. 
II 

We use this lemma to obtain Arthur- 
Merlin protocols for showing an approximate 
lower bound on the size of sets. Let C be a 

set in which Arthur can verify membership, 
possibly with Merlin's help. Then let Arthur 
picks random H and Z and Merlin attempt to 
respond with x ( C  such that  some x~H- l ( z ) .  
If C is large then he will likely succeed and if 
C is small he will likely fail. 

4 .2 .  M a i n  T h e o r e m  

Theorem:  IP[Q(n)]=AM[Q(n)+2] for any 
polynomial Q(n) 
An  informal proof sketch: Let's focus on 1- 
round protocols. Assume V has an exponen- 
tially small error probability e, sends only 
messages of length m, and uses random 
sequences of length I. For each x ~  m let 
fl=={r: V(r ,w,#)=x} .  For every y ( ~ =  let 
axy -~ {r: r(fl= & V(r ,w,#x#y)  =accept}.  
Clearly, for each x, the optimal prover will 
select a Yx maximizing [axy [. Let ax=axy ,. 
Let a 0 = U a x .  Then Pr[V(w) accepts] = 

la01/2L 
We next present the protocol by which A 

and M simulate V and P. M tries to con- 
vince A that  la0] > e'2 l because this implies 
tha t  Pr[V(w) accepts] > e and hence ~1.  He 
does this by showing that  there are "many" 
ax's which are "large", where 
"many" ×"large" > e '2 z. The tradeoff between 
"many" and "large" is governed by a parame- 
ter b sent by M to A. 

More precisely, M first sends b to A. 
Then two approximate lower bound protocols 
ensue. The first convinces A that  
I{x: lax]-->2b/(e'21)}l --> 2 b. M produces an x 
in that  set as per the approximate lower 
bound lemma. The second convinces A tha t  x 
really is in that  set as claimed, i.e., tha t  
lax[ -~ 2b/(e.2l). 

For g-round protocols iterate the first 
approximate lower bound protocol to obtain 
a o D a l D . . . _ D a g  where there are "many/" 
ways to extend ai_ 1 to ai and ag is "large". 
Require that  (H"manyi)"×"large"  ~- e'2 l. 
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Full proof: Let W(IP[Q(n)]. We may 
assume, wi thout  loss of general i ty ,  tha t  on 
inputs  w of length n there  are  exactly 
g(n)=Q(n)/2 pairs of messages sent  between 
V and P, these messages are exactly m(n) 
long and the r andom input  r to V is l(n) long. 
Let e(n) bound the  error probability. 
Amplification Lemma: Let p(n) be a polyno- 
mial. Let V be a verifier which on inputs  of 
length n a total of at  most g(n) messages,  
each of length re(n), using l(n) random bits, 
and with error probability at most 1/3. Then 
there  is a V' such tha t  L(V)=L(V ' ) ,  with a 
total of at  most g(n) messages, each of length 
O(p(n)m(n)), using O(p(n)l(n)) r andom bits 
and with an error probabili ty of at  most 
2 -p(n) 

proof: V' performs O(p(n)) independent  
paral lel  s imulat ions of V and takes  the 
majority vote of the  outcomes. Detai ls  left to 
the reader. • 
By this l emma we may assume: 

e(n) <-- l(n) -1292(n) 

Fur ther  we may  assume tha t  
I(n)>max(g(n),m(n),80). We wri te  g,m,e,l 
for g(n), re(n), e(n) and l(n) where  n is 
understood. 

We now describe the functions A and M, 
s imula t ing  V and P, informally as two par- 
ties exchanging messages. The var iables  x i 
and Yi represent  messages sent  by V and P 
respectively. In essence, the idea is for A to 
use the random hash  functions to force M to 
produce a generic run  of the V,P protocol and 
then  finally to prove tha t  this  run  would 
l ikely cause V to accept. The numbers  bi 
t ha t  M produces roughly  correspond to the 
log of the number  of possible generic mes- 
sages tha t  V can make  at  round i. 

A r t h u r ' s  p ro toco l  
R o u n d  0: 

A ini t ia l ly  makes  a nul l  move and 
receives number  bl from M. Go to round 1. 

R o u n d  i (1-~i-<g): 
So far A has  received bl . . . .  ,bi, and 

str ings xl, . .  • ,x i- l ,Yl  . . . .  ,Yi-1 from M. 
Now A randomly  selects I l inear  functions 
H={h  1 . . . .  ,hi}, hi:~lm-*E b+l and 12 str ings 
Z = { z l , . . .  ,zt2}CE b+l and them sends to M . 
A then expects to receive s tr ings x i and Yi 
and number  bi+l from M. A checks t ha t  
x i (H- l (Z ) .  If not then A immedia te ly  
rejects. Then A performs round i + 1. 
Final r o u n d  g + 1: 

Let s i = x l # y l # . .  . #xi#y i. A randomly  
selects I l inear  functions H = { h l , . . .  ,ht} , 
hi:~l'-"~ bg+l and 12 s t r ings Z C ~  bg÷l. It then  
expects to receive a s t r ing r ( ~  t from M and 
checks tha t  r ( H - I ( Z ) .  A accepts if for each 
i-<g V(w,r,s i)=xi+l, V(w,r ,sg)=accept  and 
~ b i  -> l - g l o g / .  

Can Merlin convince Arthur? 
Now we show tha t  Pr[V(w) 

> e(n) iff Pr[A(w) accepts] -> 2/3. 
accepts] 

(-~) Mer l i n ' s  p ro toco l  w h e n  w EW 
Firs t  some notation. For r ~  l and  

s = v l # v 2 #  " ' '  #vk a s t ream of messages we 
say 

(V*P)(w,r) accepts via s 

if the first k messages sent  by V and P agree 
with s and (V*P)(w,r) accepts. 

Suppose Pr[V(w) accepts] >- 2/3. Fix 
any P such tha t  Pr[(V*P)(w) accepts] -> 2/3. 
We now exhibit  a protocol for M such tha t  
Pr[(A*M)(w) accepts] -> 2/3. 
R o u n d  0: 

Let i = 1. Proceed with  "obtain bl". 
Obtain bi (i <-g): Let 
s i _ l = # x l # y l # ' " # x i _ l # y i _ l  be the mes- 
sage s t ream for the V-P protocol produced so 
far. For each x ~  m let ax={r :  (V*P)(w,r) 
accepts via si- l#x} .  Group these a 's  into l 
classes ¥1 . . . . .  7l where  TTd contains a 's  of 
size > 2  d-1 and -<2 d. Choose the class Ymax 
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whose union UYm~L~ = U{ax: axEYmax} is 
largest. Send bi=2+[logly=~l]. 
Round  i: 

M receives hi ,  . . . .  h l from A and 
strings z i , . . .  ,zt2. If there is an x E H - I ( z )  
such that axEym~, call it x i. Then, M 
responds with the pair xi,Yi where 
y i=P(s i_ i#x i ) .  Otherwise M responds with 
"failure". In the later analysis we refer to 
the set ax, as ai. Set i ~ i + l .  Goto "obtain 
bi". 
Obta in  bg+i: M produces the value bg+i as 
follows: Let sg = sg_ i #xg #yg be the message 
stream that  has been selected. So 
ag={r:(V*P)(w,r) accepts via sg} .  Send 
bg+i =2+[loglagl|. 
Round  g + l :  

M receives hi,  . . . .  h l and strings 
z i . . . .  ,zl~(~ bg÷~. If there is an 
r E a g A H - i ( z ) ,  then M responds with r. Oth- 
erwise M responds with "failure". (Note that  
r ( a g  implies that  V(w,r,sg) = accept) 
End of Protocol.  

We now show that  Pr[(A*M)(w) accepts] 
-> 2/3. Let ao={r: (V*P)(w,r) = accept}. 

Since Pr[V accepts w| is high, la01->(2/3)2 t. 
By the definition of M, A will accept provided 
M never responds "failure" and 
~ b i - > l - g l o g l .  By the approximate lower 
bound lemma the probability that  M responds 
failure at any round is -<2 -l/s. Hence, the 
probability that  M ever responds failure is 
-<g2 -~/s << 1/3. 

The following two claims show that  
~ b i  -> l - g log l. 
Claim 1: For each O_<i<g 

la,- l la,I-> 12 b~ 

Proof: Consider round i and the sets a x 
defined in "obtain b~". By definition the az's 
partition ai-1  and hence U a = = a i _ l .  Hence 

X 
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lai--1 I 
IU = I -> l 

Since all members of ¥max differ in size by at 
most a factor of 2 and since ai E'Ym~ we have 

IU m=l la,I--> 21Ymd 

and since bi=2+[loglymax]] we have 

2 b'+l -> 21 m=l 
Thus 

IU = I 
[all--> 2b i --> 12b, 

Claim 2: ~ b i  -> l - g log l 
Proof:  By Claim 1 we have: 

l a d  • iagi-> lg " H 2b' 
i~g 

Since laol >-(213)2 t and taking logs 

log[ag  I -> ( / - 1 )  - ( g l o g l  + ~ b i )  
i~g 

Since bg+i > l + l o g  lag[ 

bi > l - g log l 
i~g+l 

(<--) Merl in 's  impotence  when  w q W  
Show that  if  Pr[V(w) accepts] -< e, 

then Pr[A(w)accepts] -~ 1/3. 
For every i > 0 and 

S i = X l # Y l # " '  " #x i#y  i let a ( s i ) = m a x  P 
Pr[(V*P)(w) accepts via si]. For each xEZ  m 
let Yx be any yEZ m maximizing a(si#x#y) .  

The following three claims show that  
a(si+i) is likely to be much smaller than 
a(si). 
Claim 3: a(si) = ~ a ( s i # x # y x )  • 

X 

Fix O ~ i < g  and s i. For every c > 0  let 
Xc ={x: a(si#x#yx)->a(si) /c} 



Claim 4: Ixcl • 
Fix b,d>0. Choose l random linear 

functions H={h l ,  . . . .  ht}, hi:~m-->~ b and l 2 
random strings ZC_~ b. Pick any xEH-I(z)  
and any yEZ ~. Let Si+l=Si#x#y .  

We now describe a collection of events 
corresponding to exceptional luck on Merlin's 
part. 
Call the following event Ei+l: 

a(Si) 
a(si+ 1) --> - -  2b/d 

Claim 5: Pr[Ei]-<13/d 
Proof: Let c=[d/2bJ. Then IXcl-<2b/d by 
claim 4. Since a(si#x#yx)->a(si+ 1) by the 
definition of Yx, if a(si+l)->a(si)/(2b/d) then 
xEX C. Since xEH-I(Z),  

[ a(si) ] 
Prla(si + z ) -> 2~/d [ 

= Pr[xEX cf ' lH- l ( z )  ] 

= Pr[H(Xc) NZ ~c 0] 

_< 13/d 

by the approximate lower bound lemma part 
2b. • 

Fix s e. Choose l random linear functions 
H = { h z , . . .  ,hz}, hi:~l---~ bg+l and 12 random 
strings ZC~ bg+l. Pick any rEH-z(Z). Call 
the following event Eg+ 1: 

2ta(sg)-<2b/d and (V*P)(w,r) accepts via s e 

Claim 6: 

Pr[Eg+l] -< 13/d 
Proof: By the approximate lower bound 
lemma part 2b, since I{r: (V*P)(w,r) accepts 
via sg}l = 2la(sg). • 

In any run of A and M, event El may 
occur during round i, where b=bi for 
i -<g + l .  The probability that each occurs is 

at most 131d and therefore the probability 
that  any occurs is at most (g + 1)13/d. Choose 

d=3(g+ l)l 3 
Then Pr[3 iEi occurs] -< 1/3. 

Assume no Ei occurs. Then we show 
that  A will reject, provided that Pr[V(w) 
accepts] <- e. 
Since Vi -< g, ~Ei, we have: 

a(so) 
n (2b,/d) --> a(sg) 
i~g 

Since -~Eg+l: 

Or 

(V*P)(w,r) ~ accept  

2/a (sg) _> 2bs+l/d 

Thus if (V*P)(w,r) accepts, combining the 
above: 

21a(so ) -> H (2b~/d) 
l ~ i ~ g + l  

so, since l -> g + 1, taking logs: 

/+ log  a(so) 
-> ~ b i - ( g +  l)logd 
->  bi-(g+l) 

-> ~bi  - 10glog/ 

but 

SO 

Thus 

a(so) = Pr[V(w) accepts] -< e -< l -z2e 

1-12g21ogl -> ~ b i -  lOglogl 

~bi  -< l -2g log l  < l - g l o g l  

Recall that Arthur only accepts if 
(V*P)(w,r) accepts and ~ b  i -> l - glog/. 
Therefore if V i -< g-t-l, E i occurs and 
Pr[V(w) accepts] -< e, then Arthur will 
reject. Hence Pr[A(w) accepts] -< 1/3. • 
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5. Probabilistic,  nondeterminist ic  T u r i n g  
m a c h i n e s  

We can define a new type of Tur ing  
machine  which accepts precisely those 
languages  in IP. This gives an  au tomata  
theoretic character izat ion of this class. 
Def in i t ion:  A Probabilistic, nondeterministic, 
Turing machine, N, is defined convent ional ly  
except tha t  it has two kinds  of nondeterminis-  
tic states: random states denoted ( ~  and 
guess states, denoted ~ . 

L P~ 

Given a configuration, c of such a machine  we 
assign it a probabili ty p(c) of accepting as fol- 
lows: if c is an  accept configuration then  
p ( c ) = l ,  if c is a reject configuration then  
p ( c ) = 0 ,  if c is a determinis t ic  configurat ion 
then  p(c) =p(c') where  c'  is the successor of c, 
if  c is a random configuration, then  p(c) is 
the average  ofp(c ' ) ,  and if c is a guess state 
then  p(c) is the m a x i m u m  of p(c') for c' a 
successor. We say tha t  Pr[N(w) accepts] = 
P(Cstar t) where Cstan is the starting 
configuration for N on input w. One way to 
think of computations on these machines is 
that at every random state, a coin is flipped 
to determine the successor and at every guess 
state the successor with highest probability of 
eventually accepting is selected. 

Definition: Say WEBPNP if there is a proba- 
bilistic, nondeterministic, polynomial time 
Turing machine N such that for all wEZ*: 

1) if wEW then Pr[N(w) accepts] > 2/3 
2) if w ~'W then Pr[N(w) accepts] < 1/3. 

Theorem: IP= AM(poly)--BPNP 

Proof: Immediate. These machines are just a 
reformulation of Arthur-Merlin games. 

6. O p e n  Ques t i ons  
1. Is IP[2] = IP, or perhaps  show an oracle F 
such tha t  IP F ~c I P[2]F? 

2. In [B] Babai states tha t  AM[2] = 
{W: WENP R, for almost  all  oracles R}. How- 
ever, an  oversight in his a r g u m e n t  leaves this  
equal i ty  an open question. 

3. Can our transformation of interactive proof 
systems with public coins into Arthur-Merlin 
games be modified to preserve "zero- 
knowledge" without assuming the existence 
of one-way functions? 

Acknowledgements 

We are grateful to Oded Goldreich and 
Johan Hastad for pointing out that our proof 
works for a polynomial number of interac- 
tions. Silvio Micali's comments have been 
inspiring, as always. Thanks again to Oded 
for a careful reading of this paper and exten- 
sive suggestions. Discussions with Laszlo 
Babai, Anne Condon, Jack Edmonds, and Eva 
Tardos were very helpful. Ed Bein, Danny 
Soroker, and Jeannine St.Jacques provided 
much appreciated last minute assistance. 

R e f e r e n c e s  
[B] L. Babai, Trading group theory for randomness, Prec. 

of 17th Symposium on the Theory of Computation, 
Providence, Rhode Island, 1985. 

[Be] M. Ben-Or, personal communication. 
[BH] R. Boppana, J. Hastad, I f  co-NP Has Interactive Proof 

Systems with a Constant Number of Interactions, then 
the Polynomial Time Hierarchy Collapses, In prep. 

[CKS] Chandra, Kozen, Stockmeyer, Alternation, JACM 
1981, p. 114. 

[Co] S. Cook, The Complexity of Theorem Proving Pro- 
cedures, 3rd STOC, 1971. 

[CW] J.L. Carter, and M.N. Wegman, Universal classes of 
hash functions, JCSS 18, no. 2, 1979, 143-154. 

[F] P. Feldman, The Prover in [P Need Not be More 
Powerful than PSPACE, personal communication. 

[FS] L. Fortnow, M. Sipser, personal communication. 
[H] J. Hastad, personal communication. 
[GMR] S. Goldwasser, S. Micali, C. Rackoff, The Knowledge 

complexity of interactive proofs, Prec. of 17th Sympo- 
sium on the Theory of Computation, Providence, 
Rhode Island, 1985. 
O. Goldreich, S. Micali, A. Wigderson, Proofs that 
Yield Nothing but the Validity of their Assertion, In 
preparation. 
C. Papadimitriou, Games against nature, 24th FOCS 
1983, 446-450, 
J. Reif, Games with imperfect information, JCSS 29, 
274-301, 1984. 
M. Sipser, A Complexity Theoretic Approach to Ran- 
domness, 15th STOC, 1983, 330-335. 
L. Steckmeyer, The complexity of approximate count- 
ing, Proc. of Symposium on the Theory of Computa- 
tion, 1984. 
S. Zachos, M. Furer, Probabilistic quantifiers us. dis- 
trustful adversaries, to appear. 

[GMW] 

[P] 

[R] 

[Si] 

[St] 

[ZF] 

68 


