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Abstract

Submodular maximization is a central problem in combinatorial optimization, generalizing
many important problems including Max Cut in directed/undirected graphs and in hypergraphs,
certain constraint satisfaction problems and maximum facility location problems. Unlike the
problem of minimizing submodular functions, the problem of maximizing submodular functions
is NP-hard.

In this paper, we design the first constant-factor approximation algorithms for maximiz-
ing nonnegative submodular functions. In particular, we give a deterministic local search 1

3
-

approximation and a randomized 2

5
-approximation algorithm for maximizing nonnegative sub-

modular functions. We also show that a uniformly random set gives a 1

4
-approximation. For

symmetric submodular functions, we show that a random set gives a 1

2
-approximation, which

can be also achieved by deterministic local search.
These algorithms work in the value oracle model where the submodular function is acces-

sible through a black box returning f(S) for a given set S. We show that in this model, our
1

2
-approximation for symmetric submodular functions is the best one can achieve with a subex-

ponential number of queries.
For the case that the submodular function is given explicitly (specifically, as a sum of poly-

nomially many nonnegative submodular functions, each on a constant number of elements) we
prove that for any fixed ε > 0, it is NP-hard to achieve a ( 5

6
+ ε)-approximation for sym-

metric nonnegative submodular functions, or a ( 3

4
+ ε)-approximation for general nonnegative

submodular functions.
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1 Introduction

We consider the problem of maximizing a nonnegative submodular function. This means, given a
submodular function f : 2X → R+, we want to find a subset S ⊆ X maximizing f(S).

Definition 1.1. A function f : 2X → R is submodular if for any S, T ⊆ X,

f(S ∪ T ) + f(S ∩ T ) ≤ f(S) + f(T ).

An alternative definition of submodularity is the property of decreasing marginal values: For any
A ⊆ B ⊆ X and x ∈ X \B, f(B ∪ {x})− f(B) ≤ f(A∪ {x})− f(A). This can be deduced from the
first definition by substituting S = A ∪ {x} and T = B; the reverse implication also holds.

We assume a value oracle access to the submodular function; i.e., for a given set S, an algorithm
can query an oracle to find its value f(S).

Background. Submodularity, a discrete analog of convexity, has played an essential role in combi-
natorial optimization [26]. It appears in many important settings including cuts in graphs [16, 32, 14],
rank function of matroids [8, 15], set covering problems [10], and plant location problems [5, 6]. In
many settings such as set covering or matroid optimization, the relevant submodular functions are
monotone, meaning that f(S) ≤ f(T ) whenever S ⊆ T . Here, we are more interested in the general
case where f(S) is not necessarily monotone. A canonical example of such a submodular function
is f(S) =

∑

e∈δ(S) w(e), where δ(S) is a cut in a graph (or hypergraph) induced by a set of vertices

S and w(e) is the weight of edge e. Cuts in undirected graphs and hypergraphs yield symmetric
submodular functions, satisfying f(S) = f(S̄) for all sets S. Symmetric submodular functions have
been considered widely in the litrature [13, 32]. It appears that symmetry allows better/simpler
approximation results, and thus deserves separate attention.

The problem of maximizing a submodular function is of central importance, with special cases
including Max Cut [16], Max Directed Cut [21], hypergraph cut problems, maximum facility loca-
tion [1, 5, 6], and certain restricted satisfiability problems [22, 9]. While the Min Cut problem in
graphs is a classical polynomial-time solvable problem, and more generally it has been shown that
any submodular function can be minimized in polynomial time [34, 14], maximization turns out to
be more difficult and indeed all the aforementioned special cases are NP-hard.

A related problem is Max-k-Cover, where the goal is to choose k sets whose union is as large
as possible. It is known that a greedy algorithm provides a (1 − 1/e)-approximation for Max-k-
Cover and this is optimal unless P = NP [10]. More generally, this problem can be viewed as
maximization of a monotone submodular function under a cardinality constraint. I.e., we have
0 ≤ f(S) ≤ f(T ) for any S ⊆ T and we seek a set S of size k maximizing f(S). Again, the
greedy algorithm provides a (1 − 1/e)-approximation for this problem [29]. A 1/2-approximation
has been developed for maximizing monotone submodular functions under a matroid constraint [30].
A (1 − 1/e)-approximation has been also obtained for a knapsack constraint [35], and for a special
class of submodular functions under a matroid constraint [3].

In contrast, here we consider the unconstrained maximization of a submodular function which
is not necessarily monotone. We only assume that the function is nonnegative.1 Typical examples
of such a problem are Max Cut and Max Directed Cut. Here, the best approximation factors
have been achieved using semidefinite programming: 0.878 for Max Cut [16] and 0.859 for Max
Di-Cut [9]. The approximation factor for Max Cut has been proved optimal, assuming the Unique
Games Conjecture [24, 28]. It should be noted that the best known combinatorial algorithms for

1For submodular functions without any restrictions, verifying whether the maximum of the function is greater than
zero or not is NP-hard. Thus, no approximation algorithm can be found for this problem unless P=NP. For a general
submodular function f with minimum value f∗, we can design an approximation algorithm to maximize a normalized

submodular function g where g(S) = f(S) − f∗.
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Max Cut and Max Di-Cut achieve only a 1/2-approximation, which is trivial for Max Cut but not
for Max Di-Cut [21].

More generally, submodular maximization encompasses such problems as Max Cut in hyper-
graphs and Max SAT with no mixed clauses (every clause contains only positive or only negative
literals). Tight results are known for Max Cut in k-uniform hypergraphs for any fixed k ≥ 4 [22, 19]
(and the same result for Max (k − 1)-SAT with no mixed clauses [19, 20]) where the optimal ap-
proximation factor (1 − 2−k+1) is achieved by a random solution. The lowest approximation factor
(7/8) is achieved for k = 4; for k < 4, better than random solutions can be found by semidefinite
programming.

Submodular maximization also appears in maximizing the difference of a monotone submodular
function and a modular function. An illustrative example of this type is the maximum facility
location problem in which we want to open a subset of facilities and maximize the total profit from
clients minus the openning cost of facilities. In a series of papers, approximation algorithms have
been developed for a variant of this problem which is a special case of maximizing nonnegative
submodular functions [5, 6, 1]. The best approximation factor known for this problem is 0.828 [1].

In the general case of non-monotone submodular functions, the maximization problem has been
studied in the operations research community. Many efforts have been focused on designing heuris-
tics for this problem, including data-correcting search methods [17, 18, 23], accelatered greedy al-
gorithms [31], and polyhedral algorithms [25]. Prior to our work, to the best of our knowledge, no
guaranteed approximation factor was known for maximizing non-monotone submodular functions.

Our results. We design several constant-factor approximation algorithms for maximization of
nonnegative submodular functions. We also prove negative results, in particular a query complexity
result matching our algorithmic result in the symmetric case.

Model Rnd.Set Non-adapt. Determ.Adapt. Rnd.Adapt. CC bound NP-hardness

Symmetric 1/2 1/2 1/2 1/2 1/2 5/6
Asymmetric 1/4 1/3 1/3 2/5 1/2 3/4

Figure 1: Summary of our results.

Non-adaptive algorithms. A non-adaptive algorithm is allowed to generate a (possibly random)
sequence of polynomially many sets, query their values and then produce a solution. In this model, we
show that a 1/4-approximation is achieved in expectation by a uniformly random set. For symmetric
submodular functions, this gives a 1/2-approximation. This coincides with the approximation factors
obtained by random sets for Max Di-Cut and Max Cut. We prove that these factors cannot be
improved, assuming that the algorithm returns one of the queried sets. However, we also design
a non-adaptive algorithm which performs a polynomial-time computation on the obtained values
and achieves a 1/3-approximation. In the symmetric case, we prove that the 1/2-approximation is
optimal even among adaptive algorithms (see below).
Adaptive algorithms. An adaptive algorithm is allowed to perform a polynomial time compu-
tation including a polynomial number of queries to a value oracle. In this (most natural) model,
we develop a local search 1/2-approximation in the symmetric case and a 1/3-approximation in the
general case. Then we improve this to a 2/5-approximation using a randomized “non-oblivious local
search”. This is perhaps the most noteworthy of our algorithms; it proceeds by locally optimiz-
ing a smoothed variant of f(S), obtained by biased sampling depending on S. Non-oblivious local
search has been used before to achieve a 2/5-approximation for the Max Di-Cut problem [2]; another
(simpler) 2/5-approximation algorithm for Max Di-Cut appears in [21]. However, these algorithms
do not generalize naturally to ours and the re-appearance of the same approximation factor seems
coincidental.
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Hardness results. We show that it is impossible to improve the 1/2-approximation algorithm for
maximizing symmetric nonnegative submodular functions, at least in the value oracle model. We
prove that for any fixed ε > 0, a (1/2+ε)-approximation algorithm would require exponentially many
queries. This settles the status of symmetric submodular maximization in the value oracle model.
Note that this query complexity lower bound does not assume any computational restrictions. In
particular, in the special case of Max Cut, polynomially many value queries suffice to infer all edge
weights in the graph, and thereafter an exponential time computation (involving no further queries)
would actually produce the optimal cut.

For explicitly represented submodular functions, known NP-hardness hardness of approximation
results for Max Cut in graphs and hypergraphs provide an obvious limitation to the best possible
approximation ratio. We prove stronger limitations. For any fixed ε > 0, it is NP-hard to achieve
an approximation factor of (3/4 + ε) (or 5/6 + ε) in the general (or symmetric) case, respectively.
These results are valid even when the submodular function is given as a sum of polynomially many
nonnegative submodular functions, each on a constant number of variables, which is the case for all
the aforementioned problems.

2 Non-adaptive algorithms

It is known that simply choosing a random cut is a good choice for Max Cut and Max DiCut, achiev-
ing an approximation factor of 1/2 and 1/4 respectively. We show the natural role of submodularity
here by presenting the same approximation factors in the case of general submodular functions.

The Random Set Algorithm: RS.

• Return R = X(1/2), a uniformly random subset of X .

Theorem 2.1. Let f : 2X → R+ be a submodular function, OPT = maxS⊆X f(S) and let R denote
a uniformly random subset R = X(1/2). Then E[f(R)] ≥ 1

4OPT. In addition, if f is symmetric
(f(S) = f(X \ S) for every S ⊆ X), then E[f(R)] ≥ 1

2OPT.

Before proving this result, we show a useful probabilistic property of submodular functions
(extending the considerations of [11, 12]). This property will be essential in the analysis of our more
involved randomized algorithms as well.

Lemma 2.2. Let g : 2X → R be submodular. Denote by A(p) a random subset of A where each
element appears with probability p. Then

E[g(A(p))] ≥ (1 − p) g(∅) + p g(A).

Proof. By induction on the size of A: For A = ∅, the lemma is trivial. So assume A = A′∪{x}, x /∈ A′.
We also write A′(p) = A(p) ∩ A′; then

E[g(A(p))] = E[g(A′(p))] + E[g(A(p)) − g(A(p) ∩ A′)]

≥ E[g(A′(p))] + E[g(A′ ∪ A(p)) − g(A′)]

using submodularity on A′ and A(p). The set A′ ∪A(p) is either equal to A (when x ∈ A(p), which
happens with probability p) or otherwise it’s equal to A′. Therefore we get

E[g(A(p))] ≥ E[g(A′(p)] + p(g(A) − g(A′))

and using the inductive hypothesis, E[g(A′(p))] ≥ (1 − p) g(∅) + p g(A′), we get the statement of
the lemma.

By a double application of Lemma 2.2, we obtain the following.
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Lemma 2.3. Let f : 2X → R be submodular, A, B ⊆ X two (not necessarily disjoint) sets and
A(p), B(q) their independently sampled subsets, where each element of A appears in A(p) with prob-
ability p and each element of B appears in B(q) with probability q. Then

E[f(A(p) ∪ B(q))] ≥ (1 − p)(1 − q) f(∅) + p(1 − q) f(A) + (1 − p)q f(B) + pq f(A ∪ B).

Proof. Condition on A(p) = A′ and define g(T ) = f(A′ ∪ T ). This is a submodular function as well
and Lemma 2.2 implies E[g(B(q))] ≥ (1 − q) f(A′) + q f(A′ ∪ B). Also, E[g(B(q))] = E[f(A(p) ∪
B(q)) | A(p) = A′], and by unconditioning: E[f(A(p)∪B(q))] ≥ E[(1− q) f(A(p))+ q f(A(p)∪B)].
Finally, we apply Lemma 2.2 once again: E[f(A(p))] ≥ (1 − p) f(∅) + p f(A), and by applying the
same to the submodular function h(S) = f(S ∪ B), E[f(A(p) ∪ B)] ≥ (1 − p) f(B) + p f(A ∪ B).
This implies the claim.

This lemma gives immediately the performance of Algorithm RS.

Proof. Denote the optimal set by S and its complement by S̄. We can write R = S(1/2) ∪ S̄(1/2).
Using Lemma 2.3, we get

E[f(R)] ≥
1

4
f(∅) +

1

4
f(S) +

1

4
f(S̄) +

1

4
f(X).

Every term is nonnegative and f(S) = OPT , so we get E[f(R)] ≥ 1
4OPT. In addition, if f is

symmetric, we also have f(S̄) = OPT and then E[f(R)] ≥ 1
2OPT.

We can show that the factor of 1/4 is optimal, assuming that an algorithm samples a poly-
nomial number of random sets and returns one of them. However, it is possible to design a 1/3-
approximation algorithm which samples random sets non-adaptively and then returns an answer
after a polynomial-time computation. Due to space constraints, we defer the details to Appendix A.
In the symmetric case, the factor of 1/2 turns out to be optimal even for adaptive algorithms in the
value oracle model, as we show in Section 4.2.

3 Adaptive algorithms

3.1 A deterministic local search algorithm

Our deterministic algorithm is based on a simple local search technique. We try to increase the
value of our solution S by either including a new element in S or discarding one of the elements of
S. We call S a local optimum if no such operation increases the value of S. Local optima have the
following property which was first observed in [4, 18].

Lemma 3.1. Given a submodular function f , if S is a local optimum of f , and I and J are two
sets such that I ⊆ S ⊆ J , then f(I) ≤ f(S) and f(J) ≤ f(S).

This property turns out to be very useful in proving that a local optimum is a good approximation
to the global optimum. However, it is known that finding a local optimum for the Max Cut problem
is PLS-complete [33]. Therefore, we relax our local search and find an approximate local optimal
solution.

Local Search Algorithm: LS.

1. Let S := {v} where f({v}) is the maximum over all singletons v ∈ X .

2. If there exists an element a ∈ X\S such that f(S∪{a}) > (1+ ε
n2 )f(S), then let S := S∪{a},

and go back to Step 2.
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3. If there exists an element a ∈ S such that f(S\{a}) > (1 + ε
n2 )f(S), then let S := S\{a}, and

go back to Step 2.

4. Return the maximum of f(S) and f(X\S).

It is easy to see that if the algorithm terminates, the set S is a (1 + ε
n2 )-approximate local

optimum, in the following sense.

Definition 3.2. Given f : 2X → R, a set S is called a (1 + α)-approximate local optimum, if
(1 + α)f(S) ≥ f(S \ {v}) for any v ∈ S, and (1 + α)f(S) ≥ f(S ∪ {v}) for any v /∈ S.

We prove the following analogue of Lemma 3.1.

Lemma 3.3. If S is an (1 + α)-approximate local optimum for a submodular function f , then for
any subsets such that I ⊆ S ⊆ J , f(I) ≤ (1 + nα)f(S) and f(J) ≤ (1 + nα)f(S).

Proof. Let I = T1 ⊆ T2 ⊆ . . . ⊆ Tk = S be a chain of sets where Ti\Ti−1 = {ai}. For each
2 ≤ i ≤ k, we know that f(Ti)−f(Ti−1) ≥ f(S)−f(S\{ai}) ≥ −αf(S) using the submodularity and
approximate local optimality of S. Summing up these inequalities, we get f(S) − f(I) ≥ −kαf(S).
Thus f(I) ≤ (1 + kα)f(S) ≤ (1 + nα)f(S). This completes the proof for set I. The proof for set J
is very similar.

Theorem 3.4. Algorithm LS is a
(

1
3 − ε

n

)

-approximation algorithm for maximizing nonnegative

submodular functions, and a
(

1
2 − ε

n

)

-approximation algorithm for maximizing nonnegative symmet-
ric submodular functions. The algorithm uses at most O(1

ε n3 log n) oracle calls.

Proof. Consider an optimal solution C and let α = ε
n2 . If the algorithm terminates, the set S

obtained at the end is a (1+α)-approximate local optimum. By Lemma 3.3, f(S∩C) ≤ (1+nα)f(S)
and f(S∪C) ≤ (1+nα)f(S). Using submodularity, f(S∪C)+f(X\S) ≥ f(C\S)+f(X) ≥ f(C\S),
and f(S ∩ C) + f(C\S) ≥ f(C) + f(∅) ≥ f(C). Using these inequalities, we get

2(1 + nα)f(S) + f(X\S) ≥ f(S ∩ C) + f(S ∪ C) + f(X\S) ≥ f(S ∩ C) + f(C\S) ≥ f(C).

For α = ε
n2 , this implies that either f(S) ≥ (1

3 − o(1))OPT or f(X\S) ≥ (1
3 − o(1))OPT .

For symmetric submodular functions, we get

2(1 + nα)f(S) ≥ f(S ∩ C) + f(S ∪ C̄) = f(S ∩ C) + f(S̄ ∩ C) ≥ OPT

and hence f(S) is a (1
2 − o(1))-approximation.

To bound the running time of the algorithm, let v be the element with the maximum f({a}) over
all elements of X . It is simple to see that OPT ≤ nf({a}). Since after each iteration, the value of
the function increases by a factor of at least (1 + ε

n2 ), if the number of iterations of the algorithm is
k, then (1 + ε

n2 )k ≤ n. Therefore, k = O(1
ε n2 log n) and the number of queries is O(1

ε n3 log n).

3.2 A randomized 2/5-approximation algorithm

Next, we present a randomized algorithm which improves the approximation ratio of 1/3. The main
idea behind this algorithm is to find a “smoothed” local optimum, where elements are sampled
randomly but with different probabilities, based on some underlying set A. The general approach
of local search, based on a function derived from the one we are interested in, has been referred to
as “non-oblivious local search” in the literature [2].

Definition 3.5. We say that a set is sampled with bias δ based on A, if elements in A are sampled
independently with probability p = (1 + δ)/2 and elements outside of A are sampled independently
with probability q = (1 − δ)/2. We denote this random set by R(A, δ).
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The Smooth Local Search algorithm: SLS.

1. Choose δ ∈ [0, 1] and start with A = ∅. Let n = |X | denote the total number of elements. In
the following, use an estimate for OPT , for example from Algorithm RS.

2. For each element x, estimate ωA,δ(x) = E[f(R(A, δ) ∪ {x})] − E[f(R(A, δ) \ {x})], within an
error of 1

n2 OPT . Call this estimate ω̃A,δ(x).

3. If there is an element x ∈ X \A such that ω̃A,δ(x) > 2
n2 OPT , include x in A and go to Step 2.

4. If there is x ∈ A such that ω̃A,δ(x) < − 2
n2 OPT , remove x from A and go to Step 2.

5. Choose δ′ ∈ [−1, 1] and return a random set from the distribution R(A, δ′).

In effect, we find an approximate local optimum of a derived function Φ(A) = E[f(R(A, δ))].
Then we return a set sampled according to R(A, δ′); possibly for δ′ 6= δ. One can run Algorithm SLS
with δ = δ′ and prove that the best approximation factor for such parameters is achieved by setting

δ = δ′ =
√

5−1
2 , the golden ratio. Then, we get an approximation factor of 3−

√
5

2 − o(1) ≥ 0.38.
Interestingly, we can improve this approximation factor to 0.4 by choosing two parameter pairs (δ, δ′)
and taking the maximum of the two solutions.

Theorem 3.6. Algorithm SLS runs in polynomial time. If we run SLS for two choices of parameters,
(δ = 1

3 , δ′ = 1
3 ) and (δ = 1

3 , δ′ = −1), the better of the two solutions has expected value at least
(2
5 − o(1))OPT .

Proof. Let Φ(A) = E[f(R(A, δ))]. Recall that in R(A, δ), elements from A are sampled with prob-
ability p = (1 + δ)/2, while elements from B are sampled with probability q = (1 − δ)/2. Consider
Step 3 where an element x is added to A. Also, let B′ = X \ (A ∪ {x}). The reason why x is added
to A is that ω̃A,δ(x) > 2

n2 OPT ; i.e. ωA,δ(x) > 1
n2 OPT . During this step, Φ(A) increases by

Φ(A ∪ {x}) − Φ(A) = E[f((A ∪ {x})(p) ∪ B′(q)] − E[f(A(p) ∪ (B′ ∪ {x})(q))]

= (p − q) E[f(A(p) ∪ B′(q) ∪ {x}) − f(A(p) ∪ B′(q))]

= δ E[f(R(A, δ) ∪ {x}) − f(R(A, δ) \ {x})] = δ ωA,δ(x) >
δ

n2
OPT.

Similarly, executing Step 4 increases Φ(A) by at least δ
n2 OPT . Since the value of Φ(A) is always

between 0 and OPT , the algorithm cannot iterate more than n2/δ times and thus it runs in poly-
nomial time. Also, note that finding a local maximum of Φ(A) is equivalent to finding a set A such
that its elements x ∈ A have ωA,δ(x) ≥ 0, while elements x /∈ A have ωA,δ(x) ≤ 0. Here, we find a
set satisfying this up to a certain error.

From now on, let A be the set at the end of the algorithm and B = X \ A. We also use
R = A(p)∪B(q) to denote a random set from the distribution R(A, δ). We denote by C the optimal
solution, while our algorithm returns either R (for δ′ = δ) or B (for δ′ = −1). When the algorithm
terminates, we have ωA,δ(x) ≥ − 3

n2 OPT for any x ∈ A, and ωA,δ(x) ≤ 3
n2 OPT for any x ∈ B.

Consequently, for any x ∈ B we have E[f(R ∪ {x})] − f(R)] = 1
2E[f(R ∪ {x}) − f(R \ {x})] =

1
2ω(x) ≤ 2

n2 OPT . Let’s order the elements of B ∩ C = {b1, . . . , b`} and write

f(R ∪ (B ∩ C)) = f(R) +
∑̀

j=1

(f(R ∪ {b1, . . . , bj}) − f(R ∪ {b1, . . . , bj−1})).

By the property of decreasing marginal values, we get f(R ∪ {b1, . . . , bj})− f(R∪ {b1, . . . , bj−1}) ≤
f(R ∪ {bj}) − f(R) and hence

E[f(R ∪ (B ∩ C))] ≤ E[f(R)] +
∑

x∈B∩C

E[f(R ∪ {x}) − f(R)] ≤ E[f(R)] +
2

n
OPT.
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Similarly, we can obtain E[f(R∩(B∪C))] ≤ E[f(R)]+ 2
nOPT. This means that instead of R, we can

analyze R∪ (B ∩C) and R∩ (B ∪C). In order to estimate E[f(R∪ (B∩C))] and E[f(R∩ (B∪C))],
we use a further extension of Lemma 2.3 which can be proved by another iteration of the same proof:

(∗) E[f(A1(p1) ∪ A2(p2) ∪ A3(p3))] ≥
∑

I⊆{1,2,3}

∏

i∈I

pi

∏

i/∈I

(1 − pi) f

(

⋃

i∈I

Ai

)

.

First, we deal with R∩ (B ∪C) = (A∩C)(p)∪ (B ∩C)(q)∪ (B \C)(q). We plug in δ = 1/3, i.e.
p = 2/3 and q = 1/3. Then (*) yields

E[f(R ∩ (B ∪ C))] ≥
8

27
f(A ∩ C) +

2

27
f(B ∪ C) +

2

27
f(B ∩ C) +

4

27
f(C) +

4

27
f(F ) +

1

27
f(B)

where we denote F = (A ∩ C) ∪ (B \ C) and we discarded the terms f(∅) ≥ 0 and f(B \ C) ≥ 0.
Similarly, we estimate E[f(R∪(B∩C))], applying (*) to a submodular function h(R) = f(R∪(B∩C))
and writing E[f(R ∪ (B ∩ C))] = E[h(R)] = E[h((A ∩ C)(p) ∪ (A \ C)(p) ∪ B(q))]:

E[f(R ∪ (B ∩ C))] ≥
8

27
f(A ∪ C) +

2

27
f(B ∪ C) +

2

27
f(B ∩ C) +

4

27
f(C) +

4

27
f(F̄ ) +

1

27
f(B).

Here, F̄ = (A \C)∪ (B ∩C). We use E[f(R)]+ 2
nOPT ≥ 1

2 (E[f(R∩ (B ∪C))]+E[f(R∪ (B ∩C))])
and combine the two estimates.

E[f(R)] +
2

n
OPT ≥

4

27
f(A ∩ C) +

4

27
f(A ∪ C) +

2

27
f(B ∩ C) +

2

27
f(B ∪ C)

+
4

27
f(C) +

2

27
f(F ) +

2

27
f(F̄ ) +

1

27
f(B).

Now we add 3
27f(B) on both sides and apply submodularity: f(B)+ f(F ) ≥ f(B∪C)+ f(B \C) ≥

f(B ∪ C) and f(B) + f(F̄ ) ≥ f(B ∪ (A \ C)) + f(B ∩ C) ≥ f(B ∩ C). This leads to

E[f(R)] +
1

9
f(B) +

2

n
OPT ≥

4

27
f(A ∩ C) +

4

27
f(A ∪ C) +

4

27
f(B ∩ C) +

4

27
f(B ∪ C) +

4

27
f(C)

and once again using submodularity, f(A∩C)+ f(B ∩C) ≥ f(C) and f(A∪C)+ f(B ∪C) ≥ f(C),
we get

E[f(R)] +
1

9
f(B) +

2

n
OPT ≥

12

27
f(C) =

4

9
OPT.

To conclude, either E[f(R)] or f(B) must be at least (2
5 −

2
n )OPT , otherwise we get a contradiction.

4 Inapproximability Results

In this section, we give hardness results for submodular maximization. Our results are of two flavors.
First, we consider submodular functions that have a succint representation on the input, in the form
of a sum of “building blocks” of constant size. Note that all the special cases such as Max Cut are
of this type. For algorithms in this model, we prove complexity-theoretic inapproximability results.
The strongest one is that in the general case, a (3/4 + ε)-approximation for any fixed ε > 0 would
imply P = NP .

In the value oracle model, we show a much tighter result. Namely, any algorithm achieving a
(1/2+ε)-approximation for a fixed ε > 0 would require an exponential number of queries to the value
oracle. This holds even in the case of symmetric submodular functions, i.e. our 1/2-approximation
algorithm is optimal in this model.
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4.1 NP-hardness results

Our reductions are based on H̊astad’s 3-bit and 4-bit PCP verifiers [22]. Some inapproximability
results can be obtained immediately from [22], by considering the known special cases of submodular
maximization. The strongest result along these lines is that the Max Cut problem in 4-uniform
hypergraphs is NP-hard to approximate within a factor better than 7/8. Therefore, we get the same
hardness result for submodular maximization.

We obtain stronger hardness results by reductions from systems of parity equations. The parity
function is not submodular, but we can obtain hardness results by a careful construction of a
“submodular gadget” for each equation.

Theorem 4.1. There is no polynomial-time (5/6 + ε)-approximation algorithm to maximize a non-
negative symmetric submodular function, unless P = NP .

Proof. Consider an instance of Max E4-Lin-2, a system of m parity equations, each on 4 boolean
variables. Let’s define two elements for each variable, Ti and Fi, corresponding to variable xi being
either true or false. For each equation e on variables (xi, xj , xk, x`), we define a function ge(S).
(This is our “submodular gadget”.) Let S′ = S ∩ {Ti, Fi, Tj, Fj , Tk, Fk, T`, F`}. We say that S′ is
valid quadruple, if it defines a boolean assignment, i.e. contains exactly one element from each pair
{Ti, Fi}. The function value is determined by S′, as follows:

• If |S′| < 4, let ge(S) = |S′|. If |S′| > 4, let ge(S) = 8 − |S′|.

• If S′ is a valid quadruple satisfying e, let ge(S) = 4 (a true quadruple).

• If S′ is a valid quadruple not satisfying e, let ge(S) = 8/3 (a false quadruple).

• If |S′| = 4 but S′ is not a valid quadruple, let ge(S) = 10/3 (an invalid quadruple).

It can be verified that this is a submodular function, using the structure of the parity constraint.
We define f(S) =

∑

e∈E ge(S) by taking a sum over all equations. This is again a nonnegative
submodular function. Observe that for each equation, it is more profitable to choose an invalid
assignment than a valid assignment which does not satisfy the equation. Nevertheless, we claim
that WLOG the maximum is obtained by selecting exactly one of Ti, Fi for each variable: Consider
a set S and call a variable undecided, if S contains both or neither of Ti, Fi. For each equation with
an undecided variable, we get value at most 10/3. Now, modify S by randomly selecting exactly
one of Ti, Fi for each undecided variable. The new set S′ induces a valid assignment to all variables.
For equations which had a valid assignment already in S, the value does not change. Each equation
which had an undecided varible is satisfied by S′ with probability 1/2. Therefore, the expected value
for each such equation is (8/3 + 4)/2 = 10/3, at least as before, and E[f(S′)] ≥ f(S). Hence there
must exist a set S′ such that f(S′) ≥ f(S) and S′ induces a valid assignment. Consequently, we
have OPT = max f(S) = (8/3)m+(4/3)#SAT where #SAT is the maximum number of satisfiable
equations. Since it is NP-hard to distinguish whether #SAT ≥ (1− ε)m or #SAT ≤ (1/2 + ε)m, it
is also NP-hard to distinguish between OPT ≥ (4 − ε)m and OPT ≤ (10/3 + ε)m.

In the case of general nonnegative submodular functions, we improve the hardness threshold to
3/4. This hardness result is slightly more involved. It requires certain properties of H̊astad’s 3-bit
verifier, implying that Max E3-Lin-2 is NP-hard to approximate even for linear systems of a special
structure. We formalize this in the following lemma, which is needed to prove Theorem 4.3.

Lemma 4.2. Fix any ε > 0 and consider systems of weighted linear equations (of total weight 1) over
boolean variables, partitioned into X and Y, so that each equation contains 1 variable xi ∈ X and 2
variables yj , yk ∈ Y. Define a matrix P ∈ [0, 1]Y×Y where Pjk is the weight of all equations where the
first variable from Y is yj and the second variable is yk. Then it’s NP-hard to decide whether there
is a solution satisfying equations of weight at least 1 − ε or whether any solution satisfies equations
of weight at most 1/2 + ε, even in the special case where P is positive semidefinite.
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Theorem 4.3. There is no polynomial-time (3/4 + ε)-approximation algorithm to maximize a non-
negative submodular function, representable as a sum of functions on a constant number of elements,
unless P = NP .

We defer the proofs to Appendix B.

4.2 Query complexity results

Finally, we prove that our 1/2-approximation for symmetric submodular functions is optimal in the
value oracle model. First, we present a similar result for the “random set” model, which illustrates
some of the ideas needed for the more general result.

Proposition 4.4. For any δ > 0, there is ε > 0 such that for any (random) sequence of queries
Q ⊆ 2X , |Q| ≤ 2εn, there is a nonnegative submodular function f such that (with high probability)
for all queries Q ∈ Q,

f(Q) ≤

(

1

4
+ δ

)

OPT.

Proof. Let ε = δ2/32 and fix a sequence Q ⊆ 2X of 2εn queries. We prove the existence of f by
the probabilistic method. Consider functions corresponding to cuts in a complete bipartite directed
graph on (C, D), fC(S) = |S ∩C| · |S̄ ∩D|. We choose a uniformly random C ⊆ X and D = X \C.
The idea is that for any query, a typical C bisects both Q and its complement, which means that
fC(Q) is roughly 1

4OPT . We call a query Q ∈ Q “successful”, if fC(Q) > (1
4 + δ)OPT . Our goal is

to prove that with high probability, C avoids any successful query.
We use Chernoff’s bound: For any set A ⊆ X of size a,

Pr[|A ∩ C| >
1

2
(1 + δ)|A|] = Pr[|A ∩ C| <

1

2
(1 − δ)|A|] < e−δ2a/2.

With probability at least 1− 2e−2δ2n, the size of C is in [(1
2 − δ)n, (1

2 + δ)n], so we can assume this
is the case. We have OPT ≥ (1

4 − δ2)n2 ≥ 1
4n2/(1 + δ) (for small δ > 0). No query can achieve

fC(Q) > (1
4 +δ)OPT ≥ 1

16n2 unless |Q| ∈ [ 1
16n, 15

16n], so we can assume this is the case for all queries.

By Chernoff’s bound, Pr[|Q∩C| > 1
2 (1+δ)|Q|] < e−δ2n/32 and Pr[|Q̄∩D| > 1

2 (1+δ)|Q̄|] < e−δ2n/32.
If neither of these events occurs, the query is not successful, since fC(Q) = |Q ∩ C| · |Q̄ ∩ D| <
1
4 (1 + δ)2|Q| · |Q̄| ≤ 1

16 (1 + δ)2n2 ≤ 1
4 (1 + δ)3OPT ≤ (1

4 + δ)OPT.
For now, fix a sequence of queries. By the union bound, we get that the probability that any

query is successful is at most 2εn2e−δ2n/32 = 2(2/e)εn. Thus with high probability, there is no
successful query for C. Even for a random sequence, the probabilistic bound still holds by averaging
over all possible sequences of queries. We can fix any C for which the bound is valid, and then the
claim of the lemma holds for the submodular function fC .

This means that in the model where an algorithm only samples a sequence of polynomially many
sets and returns the one of maximal value, we cannot improve our 1/4-approximation (Section 2).
Surprisingly, this example can be modified for the model of adaptive algorithms with value queries,
to show that our 1/2-approximation for symmetric submodular functions is optimal, even among
adaptive algorithms!

Theorem 4.5. For any ε > 0, there are instances of nonnegative symmetric submodular maximiza-
tion, such that there is no (adaptive, possibly randomized) algorithm using less than eε2n/16 queries
that always finds a solution of expected value at least (1/2 + ε)OPT .

Proof. We construct a nonnegative symmetric submodular function on [n] = C∪D, |C| = |D| = n/2,
which has the following properties:
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• f(S) depends only on k = |S ∩C| and ` = |S ∩D|. Henceforth, we write f(k, `) to denote the
value of any such set.

• When |k − `| ≤ εn, the function has the form

f(k, `) = (k + `)(n − k − `) = |S|(n − |S|);

i.e., it is equal to the cut function of a complete graph. The value depends only on the size of
S, and the maximum attained by such sets is 1

4n2.

• When |k − `| > εn, the function has the form

f(k, `) = k(n − 2`) + (n − 2k)` − O(εn2),

close to the cut function of a complete bipartite graph on (C, D) with edge weights 2. The
maximum in this range is OPT = 1

2n2(1 − O(ε)), attained for k = n/2, ` = 0 (or vice versa).

If we construct such a function, we can argue as follows. Consider any algorithm, for now
deterministic. (For a randomized algorithm, let’s condition on its random bits.) Let the partition
(C, D) be random and unknown to the algorithm. The algorithm issues some queries Q to the
value oracle. Call Q “unbalanced”, if |Q ∩ C| differs from |Q ∩ D| by more than εn. For any query

Q, the probability that Q is unbalanced is at most e−ε2n/8, by standard bounds. Therefore, for
any fixed sequence of eε2n/16 queries, the probability that any query is unbalanced is still at most
eε2n/16 · e−ε2n/8 = e−ε2n/16. As long as queries are balanced, the algorithm gets the same answer
regardless of (C, D). Hence, it follows the same path of computation and issues the same queries.

With probability at least 1 − e−ε2n/16, all its queries will be balanced and it will never find out
any information about the partition (C, D). For a randomized algorithm, we can now average over

its random choices; still, with probability at least 1 − e−ε2n/16 the algorithm will never query any
unbalanced set.

Alternatively, consider a function g(S) which is defined by g(S) = |S|(n − |S|) for all sets S.
We proved that with high probability, the algorithm will never query a set where f(S) 6= g(S)
and hence cannot distinguish between the two instances. However, maxS f(S) = 1

2n2(1 − −O(ε)),
while maxS g(S) = 1

4n2. This means that there is no (1/2 + ε)-approximation algorithm with a
subexponential number of queries, for any ε > 0.

It remains to construct the function f(k, `) and prove its submodularity. For convenience, assume
that εn is an integer. In the range where |k− `| ≤ εn, we already defined f(k, `) = (k + `)(n−k− `).
In the range where |k − `| ≥ εn, let us define

f(k, `) = k(n − 2`) + (n − 2k)` + ε2n2 − 2εn|k − `|.

The O(εn2) terms are chosen so that f(k, `) is a smooth function on the boundary of the two
regions. E.g., for k− ` = εn, we get f(k, `) = (2k− εn)(n− 2k+ εn) for both expressions. Moreover,
the marginal values also extend smoothly. Consider an element i ∈ C (for i ∈ D the situation is
symmetric). The marginal value of i added to a set S is f(S + i)− f(S) = f(k + 1, `)− f(k, `). We
split into three cases:

• If k − ` < −εn, we have f(k + 1, `) − f(k, `) = (n − 2`) + (−2`) + 2εn = (1 + 2ε)n − 4`.

• If −εn ≤ k−` < εn, we have f(k+1, `)−f(k, `) = (k+1+`)(n−k−1−`)−(k+`)(n−k−`) =
(n − k − 1 − `) − (k + 1 + `) = n − 2k − 2` − 2. In this range, this is between (1 ± 2ε) − 4`.

• If k − ` ≥ εn, we have f(k + 1, `) − f(k, `) = (n − 2`) + (−2`)− 2εn = (1 − 2ε)n − 4`.

Now it’s easy to see that the marginal value is decreasing in both k and `, in each range and also
across ranges.

Acknowledgements. The second author thanks Maxim Sviridenko for pointing out some related
work.
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A A randomized non-adaptive 1/3-approximation

We present a non-adaptive algorithm which achieves an approximation factor of 1/3 for any non-
negative submodular function. The intuition behind the algorithm comes from the Max Di-Cut
problem: When does a random cut achieve only 1/4 of the optimum? This is if and only if the opti-
mum contains all the directed edges of the graph, i.e. the vertices can be partitioned into V = A∪B
so that all edges of the graph are directed from A to B. However, in this case it’s easy to find the
optimal solution, by a local test on the in-degree and out-degree of each vertex. In the language of
submodular function maximization, this means that elements can be easily partitioned into those
whose inclusion in S always increases the value of f(S), and those which always decrease f(S). Our
generalization of this local test is the following.

Definition A.1. Let R = X(1/2) denote a uniformly random subset of X. For each element x,
define

ω(x) = E[f(R ∪ {x}) − f(R \ {x})].

Note that these values can be estimated by random sampling, up to an error polynomially small
relative to maxR,x |f(R ∪ {x}) − f(R \ {x})| ≤ OPT . This is sufficient for our purposes; in the
following, we assume that we have estimates ω̃(x) such that |ω(x) − ω̃(x)| ≤ OPT/n2.

The Non-Adaptive Algorithm: NA.

• Use random sampling to find ω̃(x) for each x ∈ X .

• Independently, sample a random set R = X(1/2).

• With prob. 8/9, return R.

• With prob. 1/9, return
A = {x ∈ X : ω̃(x) > 0}.

Theorem A.2. For any nonnegative submodular function, Algorithm NA achieves expected value
at least (1/3 − o(1)) OPT .

Proof. Let A = {x ∈ X : ω̃(x) > 0} and B = X \ A = {x ∈ X : ω̃(x) ≤ 0}. Therefore we have
ω(x) ≥ −OPT/n2 for any x ∈ A and ω(x) ≤ OPT/n2 for any x ∈ B. We shall keep in mind that
(A, B) is a partition of all the elements, and so we have (A ∩ T ) ∪ (B ∩ T ) = T for any set T , etc.

Denote by C the optimal set, f(C) = OPT . Let f(A) = α, f(B ∩ C) = β and f(B ∪ C) = γ.
By submodularity, we have

α + β = f(A) + f(B ∩ C) ≥ f(∅) + f(A ∪ (B ∩ C)) ≥ f(A ∪ C)

and
α + β + γ ≥ f(A ∪ C) + f(B ∪ C) ≥ f(X) + f(C) ≥ OPT.

Therefore, either α, the value of A, is at least OPT/3, or else one of β and γ is at least OPT/3; we
prove that then E[f(R)] ≥ OPT/3 as well.

Let’s start with β = f(B ∩ C). Instead of E[f(R)], we show that it’s enough to estimate
E[f(R∪(B∩C))]. Recall that for any x ∈ B, we have ω(x) = E[f(R∪{x})−f(R\{x})] ≤ OPT/n2.
Consequently, we also have E[f(R ∪ {x}) − f(R)] = 1

2ω(x) ≤ OPT/(2n2). Let’s order the elements
of B ∩ C = {b1, . . . , b`} and write

f(R ∪ (B ∩ C)) = f(R) +
∑̀

j=1

(f(R ∪ {b1, . . . , bj}) − f(R ∪ {b1, . . . , bj−1})).
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By the property of decreasing marginal values, we get

f(R ∪ (B ∩ C)) ≤ f(R) +
∑̀

j=1

(f(R ∪ {bj}) − f(R)) = f(R) +
∑

x∈B∩C

(f(R ∪ {x}) − f(R))

and therefore

E[f(R ∪ (B ∩ C))] ≤ E[f(R)] +
∑

x∈B∩C

E[f(R ∪ {x}) − f(R)]

≤ E[f(R)] + |B ∩ C|
OPT

2n2
≤ E[f(R)] +

OPT

2n
.

So it’s enough to lower-bound E[f(R∪(B∩C))]. We do this by defining a new submodular function,
g(R) = f(R ∪ (B ∩ C)), and applying Lemma 2.3 to E[g(R)] = E[g(C(1/2) ∪ C̄(1/2))]. The lemma
implies that

E[f(R ∪ (B ∩ C))] ≥
1

4
g(∅) +

1

4
g(C) +

1

4
g(C̄) +

1

4
g(X)

≥
1

4
g(∅) +

1

4
g(C) =

1

4
f(B ∩ C) +

1

4
f(C)

=
β

4
+

OPT

4
.

Note that β ≥ OPT/3 implies E[f(R ∪ (B ∩ C))] ≥ OPT/3. Symmetrically, we show a similar
analysis for E[f(R ∩ (B ∪ C))]. Now we use the fact that for any x ∈ A, E[f(R) − f(R \ {x})] =
1
2ω(x) ≥ −OPT/(2n2). Let A \ C = {a1, a2, . . . , ak} and write

f(R) = f(R \ (A \ C)) +

k
∑

j=1

(f(R \ {aj+1, . . . , ak}) − f(R \ {aj, . . . , ak}))

≥ f(R \ (A \ C)) +

k
∑

j=1

(f(R) − f(R \ {aj})

using the condition of decreasing marginal values. Note that R \ (A \ C) = R ∩ (B ∪ C). By taking
the expectation,

E[f(R)] ≥ E[f(R ∩ (B ∪ C))] +
k
∑

j=1

E[f(R) − f(R \ {aj})]

= E[f(R ∩ (B ∪ C))] − |A \ C|
OPT

2n2
≥ E[f(R ∩ (B ∪ C))] −

OPT

2n
.

Again, we estimate E[f(R ∩ (B ∪ C))] = E[f(C(1/2) ∪ (B \ C)(1/2))] using Lemma 2.3. We get

E[f(R ∩ (B ∪ C))] ≥
1

4
f(∅) +

1

4
f(C) +

1

4
f(B \ C) +

1

4
f(B ∪ C)

≥
OPT

4
+

γ

4
.

Now we combine our estimates for E[f(R)]:

E[f(R)] +
OPT

2n
≥

1

2
E[f(R ∪ (B ∩ C))] +

1

2
E[f(R ∩ (B ∪ C))] ≥

OPT

4
+

β

8
+

γ

8
.

Finally, the expected value obtained by the algorithm is

8

9
E[f(R)] +

1

9
f(A) ≥

2

9
OPT −

4

9n
OPT +

β

9
+

γ

9
+

α

9
≥

(

1

3
−

4

9n

)

OPT

since α + β + γ ≥ OPT .
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B NP-hardness of (3/4 + ε)-approximation

Here, we show the missing details of Section 4.1, namely the proof that it is NP-hard to achieve a
(3/4 + ε)-approximation.

Proof of Lemma 4.2. We show that the system of equations arising from H̊astad’s 3-bit verifier
(see [22], pages 24-25) in fact satisfies the properties that we need. In his notation, the equations
are generated by choosing f ∈ FU and g1, g2 ∈ FW where U, W , U ⊂ W , are randomly chosen and
FU ,FW are the spaces of all ±1 functions on {−1, +1}U and {−1, +1}W , respectively. The equation
corresponds to a 3-bit test on f, g1, g2 and its weight is the probability that the verifier performs
this particular test. One variable is associated with f ∈ FU , indexing a bit in the Long Code of the
first prover, and two variables are associated with g1, g2 ∈ FW , indexing bits in the Long Code of
the second prover. This defines a natural partition of variables into X and Y.

The actual variables appearing in the equations are determined by the folding convention; for
the second prover, let’s denote them by yj = φ(g1), yk = φ(g2). The particular convention will
not matter to us, as long as it is the same for both g1 and g2 (which is the case in [22]). Let
Pjk be the probability that the selected variables corresponding to the second prover are yj and

yk. Let PU,W
jk be the same probability, conditioned on a particular choice of U, W . Since P is a

positive linear combination of PU,W , it suffices to prove that each PU,W is positive semidefinite.
The way that g1, g2 are generated (for given U, W ) is that g1 : {−1, +1}W → {−1, +1} is uniformly
random and g2(y) = g1(y)f(y|U )µ(y), where f : {−1, +1}U → {−1, +1} uniformly random and
µ : {−1, +1}W → {−1, +1} is a “random noise”, where µ(x) = 1 with probability 1− ε and −1 with
probability ε. The value of ε will be very small, certainly ε < 1/2.

Let’s choose an arbitrary function A : Y → R and analyze
∑

jk

PU,W
jk A(yj)A(yk) = Eg1,g2

[A(φ(g1))A(φ(g2))] = Eg1,f,µ[A(φ(g1))A(φ(g1fµ))]

where g1, f, µ are sampled as described above. If we prove that this quantity is always nonnega-
tive, then PU,W is positive semidefinite. Let B : FW → R, B = A ◦ φ; i.e., we want to prove
E[B(g1)B(g1fµ)] ≥ 0. We can expand B using its Fourier transform,

B(g) =
∑

α⊆{−1,+1}W

B̂(α)χα(g).

Here, χα(g) =
∏

x∈α g(x) are the Fourier basis functions. We obtain

E[B(g1)B(g1fµ)] =
∑

α,β⊆{−1,+1}W

E[B̂(α)χα(g1)B̂(β)χβ(g1fµ)]

=
∑

α,β⊆{−1,+1}W

B̂(α)B̂(β)
∏

x∈α∆β

Eg1
[g1(x)]Ef [

∏

y∈β

f(y|U )]
∏

z∈β

Eµ[µ(z)].

The terms for α 6= β are zero, since then Eg1
[g1(x)] = 0 for each x ∈ α∆β. Therefore,

E[B(g1)B(g1fµ)] =
∑

β⊆{−1,+1}W

B̂2(β) Ef [
∏

y∈β

f(y|U )]
∏

z∈β

Eµ[µ(z)].

Now all the factors are nonnegative, since Eµ[µ(z)] = 1−2ε > 0 for every z and Ef [
∏

y∈β f(y|U )] = 1

or 0, depending on whether every string in {−1, +1}U is the projection of an even number of strings
in β (in which case the product is 1) or not (in which case the expectation gives 0 by symmetry).
To conclude,

∑

j,k

PU,W
jk A(yj)A(yk) = E[B(g1)B(g1fµ)] ≥ 0

for any A : Y → R, which means that each PU,W and consequently P is positive semidefinite. �
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Proof of Theorem 4.3. We use a reduction from a system of linear equations as in Lemma 4.2.
For each variable xi ∈ X , we have two elements Ti, Fi and for each variable yj ∈ Y, we have two

elements T̃j , F̃j . Denote the set of equations by E . Each equation e contains one variable from X
and two variables from Y. For each e ∈ E , we define a submodular function ge(S) tailored to this
structure. Assume that S ⊆ {Ti, Fi, T̃j, F̃j , T̃k, F̃k}, the elements corresponding to this equation; ge

does not depend on other than these 6 elements. We say that S is a valid triple, if it contains exactly
one of each {Ti, Fi}.

• The value of each singleton Ti, Fi corresponding to a variable in X is 1.

• The value of each singleton T̃j , F̃j corresponding to a variable in Y is 1/2.

• For |S| < 3, ge(S) is the sum of its singletons, except ge({Ti, Fi}) = 1 (a weak pair).

• For |S| > 3, ge(S) = ge(S̄).

• If S is a valid triple satisfying e, let ge(S) = 2 (true triple).

• If S is a valid triple not satisfying e, let ge(S) = 1 (false triple).

• If S is an invalid triple containing exactly one of {Ti, Fi} then ge(S) = 2 (type I).

• If S is an invalid triple containing both/neither of {Ti, Fi} then ge(S) = 3/2 (type II).

The analysis of this gadget is more involved. We first emphasize the important points. A true
triple gives value 2, while a false triple gives value 1. For invalid assignments of value 3/2, we can
argue as before that a random valid assignment achieves expected value 3/2 as well, so we might as
well choose a valid assignment. However, in this gadget we also have invalid triples of value 2 (type
I). (We cannot avoid this due to submodularity.) Still, we prove that the optimum is attained for
a valid boolean assignment. The main argument is, roughly, that if there are many invalid triples
of type I, there must be also many equations where we get value only 1 (a weak pair). For this, we
use the positive semidefinite property from Lemma 4.2.

Verifying that ge(S) is submodular is somewhat tedious. We have to check marginal values for
two types of elements. First, consider Ti (or equivalently Fi), associated with a variable in X . The
marginal value gA(Ti) is equal to 1 if A does not contain Fi and contains at most two elements for
variables in Y, except when these elements would form a false triple with Ti; then gA(Ti) = 0. Also,
gA(Ti) = 0 if A does not contain Fi and contains at least three elements for Y, or if A contains Fi

and at most two elements for Y, except when these elements would form a true triple with Ti; then
gA(Ti) = −1. Finally, gA(Ti) = −1 if A contains Fi and at least three elements for Y. Hence, the
marginal value depends in a monotone way on the subset A.

For an element like T̃j, associated with a variable in Y, we have gA(T̃j) = 1/2 if A does not
contain any element for X and contains at most two elements for Y, or A contains one element for
X and at most one element for Y (but not forming a false triple with T̃j), or A is a false triple, or A

contains both elements for X and no other element for Y. In all other cases, gA(T̃j) = −1/2. Here,

the only way submodularity could be violated is that gA(T̃j) < fB(T̃j) for A ⊂ B where A forms a

false triple with T̃j and B is a false triple - but then B = A ∪ {T̃j}, contradiction.
We define f(S) =

∑

e∈E w(e)ge(S) where w(e) is the weight of equation e. We claim that
max f(S) = 1 + maxwSAT , where wSAT is the weight of satisfied equations. First, for a given
boolean assignment, the corresponding set S selecting Ti or Fi for each variable achieves value
f(S) = wSAT · 2 + (1 − wSAT ) · 1 = 1 + wSAT . The non-trivial part is proving that the optimum
f(S) is attained for a set inducing a valid boolean assignment.

Consider any set S and define V : E → {−1, 0, +1} where V (e) = +1 if S induces a satisfying
assignment to equation e, V (e) = −1 if S induces a non-satisfying assignment to e and V (e) = 0 if S
induces an invalid assignment to e. Also, define A : Y → {−1, 0, +1}, where A(yj) = |S∩{T̃j , F̃j}|−1,
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i.e. A(yj) = 0 if S induces a valid assignment to yj, and A(yj) = ±1 if S contains both/neither of

T̃j, F̃j . Observe that for an equation e whose Y-variables are yj, yk, only one of V (e) and A(yj)A(yk)
can be nonzero. The gadget ge(S) is designed in such a way that

ge(S) ≤
1

2
(3 − A(yj)A(yk) + V (e)).

This can be checked case by case: for valid assignments, A(yj)A(yk) = 0 and we get value 2 or 1
depending on V (e) = ±1. For invalid assignments, V (e) = 0; if at least one of the variables yj, yk has
a valid assignment, then A(yj)A(yk) = 0 and we can get at most 3/2 (an invalid triple of type II). If
both yj , yk are invalid and A(yj)A(yk) = 1, then we can get only 1 (a weak pair or its complement)
and if A(yj)A(yk) = −1, we can get 2 (an invalid triple of type I). The total value is

f(S) =
∑

e∈E
w(e)ge(S) ≤

∑

j,k

∑

e=(xi,yj ,yk)

w(e) ·
1

2
(3 − A(yj)A(yk) + V (e)).

Now we use the positive semidefinite property of our linear system, which means that
∑

j,k

∑

e=(x,yj ,yk)

w(e)A(yj)A(yk) =
∑

j,k PjkA(yj)A(yk) ≥ 0 for any function A. Hence, f(S) ≤ 1
2

∑

e∈E w(e)(3 +
V (e)). Now, modify S into a valid boolean assignment by choosing randomly one of Ti, Fi for all
variables such that S contains both/neither of Ti, Fi. Denote the new set by S′ and the equations
containing any randomly chosen variable by R. We satisfy each equation in R with probability 1/2,
which gives expected value 3/2 for each such equation, while the value for other equations remains
unchanged.

E[f(S′)] =
3

2

∑

e∈R
w(e) +

1

2

∑

e∈E\R
w(e)(3 + V (e)) =

1

2

∑

e∈E
w(e)(3 + V (e)) ≥ f(S).

This means that there is a set S′ of optimal value, inducing a valid boolean assignment. �
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