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Derandomizing Polynomial Identity Tests Means
Proving Circuit Lower Bounds
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Introduction

Theorem ([KI03])

PIT € P = per & Arth— P/poly or NEXP < P/poly
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Arithmetic circuits

Representation for polynomials

A Directed Acyclic Graph that computes a polynomial f over
F and set of variables xi, ..., X,

Vertices of in-degree 0 labeled with variable or field element

All other vertices(gates) labeled with 4+ or x
Edges labeled with field constants (1 by default)
Size: number of edges

For more details on Arithmetic circuits, check [SY10]
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Arithmetic circuits
Example

Figure: Circuit computing xy -+ 2y?
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Polynomial Identity Testing(PIT)

e Efficiently test whether an input polynomial as the circuit is
identically zero or not.

® For univariate, just check at degree + 1 points. Doesn't work
for multivariate.
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Randomized Solution

Lemma

(PIT Lemma)(Schwartz-Zippel[Sch80]) Let f € F[x1,...,xn] be a
non-zero polynomial of total degree d > 0. Let S be any finite
subset of F, and let a, ..., a, be elements selected independently,
uniformly and randomly from S. Then,

Pral,..-7an65n[f(a1, o ,an) = O] <
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Randomized Solution

Lemma

(PIT Lemma)(Schwartz-Zippel[Sch80]) Let f € F[x1,...,xn] be a
non-zero polynomial of total degree d > 0. Let S be any finite
subset of F, and let a1, ..., a, be elements selected independently,
uniformly and randomly from S. Then,

Pfal,...,angsn[f(al, . ,O{n) = 0] < —

® Thus PIT € coRP
® Open: Derandomizing PIT in poly(s)-time
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Pseudorandomness Generators(PRGs)

® Decrease the number of random bits required.

® For S: N — N, a 29")_computable function
G:{0,1}* - {0,1}* isan S — prg, if VI,
G :{0,1} = {0,1}°(), and V circuits C of size < S(/)3

|Preu[C(G(x)) = 1] — Precuq, [C(x) = 1]] < 0.1
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Pseudorandomness Generators(PRGs)

Decrease the number of random bits required.

For S:N—N, a 20(”)—computab|e function
G:{0,1}* - {0,1}* isan S — prg, if VI,
G:{0,1} = {0,1}°"), and V circuits C of size < S(/)3

|PreculC(G(x)) = 1] = Preeug, [C(x) = 1]] < 0.1

If a S-prg exists then V functions /
BP — TIME(S(I(n))) € DTIME(2'(" 5(1(n)))

e A 26’—prg — BPP=P



Introduction
00000000e00000

Hardness

® Worst-case Hardness For f : {0,1}* — {0,1}, Hys(f) is
the largest S(n) st. V circuit C, € size(S(n)),

Prycu,[Cn(x) = f(x)] < 1

® Average-case Hardness H, () is the largest S(n) st. V
circuit G, € size(S(n)),

1 1
Pry G =f -+ —
reenlCo) = F001 < 5+ g
® Can be shown that a worst-case hard function gives also an
average-case hard function.
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NW-Design

Theorem
If 3f € E with Hayg > S(n), then 35'(1)-prg, where
S'(1) = S(n)o01L.
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Arithmetic Complexity Classes

® VP(Arth-P/poly): Family of polynomials that can be
computed by poly(n) size circuits and poly(n) degree.

® Example det,(X) = 3 csym(n) 58N(7) [1iz1 Xi (i) is in VP
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Arithmetic Complexity Classes

VP(Arth-P/poly): Family of polynomials that can be
computed by poly(n) size circuits and poly(n) degree.
Example det,(X) = 3 csym(n) S80(7) [17=1 Xi x(i) is in VP
VNP: Arithmetic equivalent of NP. {f,}, in VNP if

fn(X) = Z gn+t(n)(X7 W)

we{0,1}t(")

Example per,(X) = > reSym(n) 1721 Xiz (i) is in
VNP.(Complete for VNP). Also, complete for #P.
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Polynomial Hierarchy

Yo:=P, ¥1:=NP, ¥5:= NP™,. ..

L € ¥ iff 3 poly time TM N st. V x, x € L iff
Iy N(x, y1,y2) =1

2 3 will be Jy;Vy»3ys, and so on

Similar exists with IM; with coNP

PH = U;%;

PH C PP (Toda's theorem)
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Interactive Protocols

Replace V with "For most"(M).

My N(y) =1iff Pr,[N(y) =1] > 3/4

MA[K] IysMya3ys ... N(x, y1, 2, ..., yk) =1

AM(1] = BPP, MA[1] = NP. MA usually refers to MA[2]
IP = UcsoAM[n€] = PSPACE
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Structure

® Preliminaries: Arithmetic circuits, PIT, PRGs

® Lemmal
PIT € P and per € Arth — P/poly —> PP¢" C NP.

® Lemma 2 EXP C P/poly = EXP = MA
® Lemma 3 NEXP € P/poly — NEXP = EXP.
® Proof of Theorem: Combining to get the main theorem.

® Conclusion: Implications and Future Scope
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Lemma 1l

Lemma
PIT € P and per € Arth— P/poly — PP¢" C NP.

Proof ldea

® "Guess" the small circuit for permanent and verify it using
PIT € P.

® pern(A) = X icin Ari-per(Aj;) where Aj; is the corresponding
minor.
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® Let C, be arithmetic circuit corresponding to the per,,.
® Protocol for obtaining the circuit.
1. Given C,_1, we guess the circuit for C, as follows:

Ca(A) =D Ay Coa(AL). ... (1)

i€[n]

2. Use PIT for verifying whether the above expression is correct
or not.
3. Repeat it for circuits C,_; which we used for minors and so on.

® Using this recursive guess and verify procedure, we can get a
circuit C,(A) = pern(A) by induction on n.
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Now we show PP¢" C NP

Let L € PPer,
Guess C, for per, using the recursive procedure.
Use this circuit C, for per, instead of the oracle

PIT € P, implies the entire verification is in P.

per € Arth — P/poly, implies the guess that our machine
need to do is poly-sized.

This gives L € NP — PP¢" C NP
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Lemma 2

Lemma
EXP C P/poly — EXP = MA
Proof ldea First show EXP C P/poly — EXP = ¥,.
e Consider L € EXP, with TM N. Encode steps of N Using the
circuit and 3V
e Compute j-th bit of i-th configuration of N(x) in exp-time
— 3 poly-size C(x, i, ) computing it.
* xel «— 3C,V(i,j)[C(x,i,j) = C(x,i+1,)) is a valid
step |.
® Thus, EXP =%,
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Lemma 2

Lemma
EXP C P/poly — EXP = MA

Proof Idea contd.

Y5> C PSPACE = IP C EXP = %5, i.e.

PSPACE = IP = EXP C P/poly.

We have a IP protocol for L. We convert it one round.
Prover in IP is a PSPACE machine, simulate using a poly-size
circuit family {Cp}pen

1-round protocol for checking x € L:
Prover: Send his circuit C,, for n = |x|.
Verifier: Simulate the IP protocol using C, as P.

Thus, EXP = MA
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Lemma 3

Lemma
NEXP C P/poly = NEXP = EXP

Proof ldea

e Assume 3L € NEXP \ EXP, st. 3¢ > 0 and machine R(x, y)
running in exp(|x|1%°)

xel < Jye{0,1}*PXIR(x,y) =1

® y is hard for EXP. What is its circuit complexity? We use it
to compute hard-function
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Lemma 3

Lemma
NEXP C P/poly = NEXP = EXP

Proof ldea contd.
Consider the machine Mp, VD > 0 as follows:

e construct tt of all circuits of size n1%9P with n¢ input.
e if 3C, R(x, tt) = 1 ACCEPT, else REJECT

Running Time: exp(n'%P 4 n'0¢)
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Lemma 3

Lemma
NEXP C P/poly = NEXP = EXP

Proof ldea contd.
e | ¢ EXP = Mp cannot solve L

® Therefore, for infinitely many x's, y is such that
ers(ﬂ/) > nlOOD'

e Using NW design we have a /P prg.
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Lemma 3

Lemma
NEXP C P/poly — NEXP = EXP
Proof Idea contd.
e EXP C NEXP C P/poly. So from lemma 2, we have an
EXP=MA
e Y/l € EXP, Prover tries to show that x € L by sending a short
proof to Verifier.
e Verifier verifies it, using a randomized algo in say n? steps.
e Using the /P prg, we can reduce the number of random bits
from nP to n for Verifier.
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Lemma 3

Lemma
NEXP C P/poly = NEXP = EXP
Proof Idea contd.

® |f we have n as the input length of some string which is
"hard" for the tt circuits, we can replace the Verifier by a
non-deterministic algorithm in poly(n?)2"" time that does not
toss any random coins by using the prg obtained before (the
2" factor is for calculating the n random bits
deterministically)

e This gives L € NTIME (2™) "infinitely often" with n-bit
advice. Thus, EXP C NTIME (2") "infinitely often" with
n-bit advice

o But NEXP C P/poly. Thus we have NTIME (27)

C SIZE(n<") for a constant ¢’. So EXP C SIZE(n®') infinitely
often.
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Lemma 3

Lemma
NEXP C P/poly — NEXP = EXP
Proof Idea contd.
® 7 ¢’ such that every language in EXP can be decided on
infinitely many inputs by a circuit family of size n+ n¢’. Yet
this can be ruled out using elementary diagonalization.

C/ . .
e Set of all circuits of size n€ has size 2" . Evaluate all circuits
in the set on all ;... apn n-bit strings.
® Assume majority circuits compute b; on «;. Remove all these
circuits. The set becomes empty at i < nc'+1
e Complement of by ... by is the truth table for the function
that cannot be computed by a circuit of size n<'.
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Proof of Theorem

Theorem
PIT € P = per & Arth— P/poly or NEXP < P /poly

® Suppose PIT € P, per € Arth — P/poly and
NEXP C P/poly.

® From lemmas 2 and 3,NEXP = EXP = MA C PH.

e Also, PH C PP¢" (Toda's theorem)

e So NEXP C prer

® Now as we have PIT € P and per € Arth — P/poly, using
lemma 1, we get PP¢" C NP

® Combining these two, we get NEXP C NP, which contradicts
the non-deterministic time hierarchy theorem. Thus, at least
one of the assumptions is false, which gives:

PIT € P = per & Arth— P/poly or NEXP ¢ P/poly
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Open Problems

® BPP =P, PIT € P, per ¢ Arth— P/poly and
NEXP < P/poly.(we believe all of these to be true)

® Does BPP=P imply circuit lower bounds for EXP (instead of
NEXP)?
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Questions

Questions?
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