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Abstract

These are notes for an introductory talk on proof complexity given at the University of Toronto
Theory Student Seminar Seminar on November 18th, 2020. The study of proof complexity was
initiated by Cook and Reckhow in the 1970s as a possible way to resolve the P versus NP problem.
The notes will introduce the proof complexity program, the Resolution proof system, and a proof
due to Haken that the pigeonhole principle requires exponential length refutations in Resolution.

1 Introduction

The proof complexity program was introduced by Cook and Reckhow in [CR79] as a proposed way to
resolve the famous P versus NP problem.

Definition 1. Given a language L ⊆ {0, 1}∗, a proof system for L is a polynomial time algorithm V
such that for all x ∈ {0, 1}∗, x ∈ L if and only if there is some string p ∈ {0, 1}∗ such that V accepts the
pair (x, p).

Definition 2. A proof system for L is p-bounded if it is proof system where for all x ∈ L the string p
certifying its membership can be chosen to have length |p| bounded by some polynomial in |x|.

By definition, the languages with p-bounded proof systems are exactly the languages in NP. Now
recall that UNSAT, the set of unsatisfiable formulas, is coNP-complete by the Cook-Levin theorem.
Putting these together, we get the following fundamental observation.

Theorem 1. There is a polynomially bounded proof system for UNSAT if and only if NP = coNP.

Recall that NP 6= coNP implies that P 6= NP. Therefore, one of the ideas in [CR79] is that showing
that specific proof systems are not polynomially bounded would make progress towards the P versus NP
problem, and hopefully progress towards the general case can be made as stronger and stronger proof
systems are investigated.

2 Resolution Proofs

One of the simplest proof systems is the resolution proof system. It is used widely in practice in SAT
solving. Before introducing it we will recall some basic definitions.

Definition 3. A Boolean formula F is a CNF formula if F is an AND of clauses F = C1 ∧ · · · ∧ Cm,
where each clause Ci is an OR of literals (variables xi or their negation xi.)

A simple example of an unsatisfiable CNF is the formula F = x1 ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x3)

Definition 4. The resolution rule takes two clauses C1 = A ∨ x and C2 = B ∨ x sharing a common
variable, and derives the new clause C ′ = A ∨B from them.

The resolution rule is sound. We have that if C1, C2 are true, then C ′ must be true as well.

Definition 5. Given a CNF formula F = C1 ∧ · · · ∧ Cm, a resolution refutation is a sequence of
clauses D1, . . . , Ds where

1. Di = Ci for all 1 ≤ i ≤ m,

2. Dj for j > m is derived from clauses Dk, Dl with k, l < j using the resolution rule, and
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Figure 1: A resolution refutation for F = x1 ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x3), illustrated graphically

3. The final clause Ds is the empty clause ∅. We say that s is the size of the refutation.

Every unsatisfiable CNF F has a resolution refutation (although it is possibly of exponential size in
the number of variables). One way to see this is that any decision tree that queries the variables of F
to find a clause that is falsified by a particular truth assignment to the variables can be turned into a
tree-like resolution proof. For details, consult notes available at [Pit19].

3 The Resolution Lower Bound for the Pigeonhole Principle

Now we will prove that the smallest resolution refutation for some unsatisfiable CNFs must have expo-
nential size.

Definition 6. The pigeonhole principle PHPnn−1 is the CNF formula over variables xij with 1 ≤ i ≤
n, 1 ≤ j ≤ n− 1 with the following clauses:

• Pigeon axioms: Pj = ∨n−1j=1 xij for i = 1, . . . , n. These clauses encode that the requirement that
every pigeon hole belong to some hole.

• Hole axioms: xi1j ∨ xi2j for i1 6= i2 and j = 1, . . . , n − 1. These clauses encode the requirement
that no two pigeons occupy the same hole.

It is clear that PHPnn−1 is not satisfiable, since there cannot be any injective function [n]→ [n− 1].

Theorem 2 ([Hak85]). There is a constant c > 1 such that any resolution refutation of PHPnn−1 requires
size cn.

We will present a simplification of Haken’s original argument due to Beame and Pitassi in [BP96],
also presented in [Juk12]. The argument has two parts. First we will show that any resolution proof of
PHPnn−1 must contain a wide clause (a clause with many variables). Next, we will show that if the size
of the proof is too small, then it is possible to “kill” all of the wide clauses with a suitable restriction.
Thus, the width lower bound implies that the size must be large.

3.1 The Width Lower Bound

Firstly, we will need the notion of a critical assignment.

Definition 7. A truth assignment α is i-critical if it falsifies only the pigeon axiom Pi in PHPnn−1. A
truth assignment is critical if it is i-critical for some 1 ≤ i ≤ n.

In other words, a critical truth assignment encodes a matching between the pigeons and the holes
where exactly one pigeon has been left out. For example, encoding the truth assignment as an n×n− 1

matrix, we have that

1 0
0 0
0 1

 is a 2-critical assignment for PHP 3
2 . We will refer to truth assignments as

matrices whenever it is convenient by arranging the variables appropriately. Given a truth assignment
α and clause C, we will use C(α) to denote the truth value of C evaluated at α.
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Lemma 1. Let C be any clause and C+ be the clause C with any negated variable xij in C replaced by
the subclause Xij =

∨
i′ 6=i xi′j . For any critical truth assignment α, C+(α) = C(α).

Proof. If xij(α) = 1, then xij(α) = Xij(α) = 0 since no other pigeon has been matched to hole j in α.
Otherwise, if xij(α) = 0, then xij(α) = Xij(α) = 1 since some other pigeon must be matched to hole
j.

Lemma 2. Every resolution refutation of PHPnn−1 must contain a clause C where the width of C+

satisfies w(C+) ≥ 2n2

9 .

Proof. Given a clause C let Pigeon(C) ⊆ [n] be the set of pigeons where there is some i-critical assign-
ment α for which C(α) = 0. Let µ(C) = |Pigeon(C)|. We can observe that

• µ(Pi) = 1 for each pigeon axiom Pi.

• µ(∅) = n since every assignment falsifies ∅.

• If clause C was derived from clauses A,B using the resolution rule then µ(C) ≤ µ(A) +µ(B). This
is because every assignment falsifying C must have falsified either A or B.

Therefore, we can conclude from the conditions above that if R was a resolution refutation of PHPnn−1
there is some clause C in R where n

3 < µ(C) ≤ 2n
3 . Now we want to argue that for that clause C, we

have w(C+) ≥ 2n2

9 .
Fix i ∈ Pigeon(C) and some j /∈ Pigeon(C) so that α is an i-critical assignment that falsifies C. Let

α′ be the truth assignment created from α by exchanging row i and j. Now α′ is j-critical by definition.
Furthermore, C(α) = C+(α) = 0 and C(α′) = C+(α′) = 1 by construction and the previous lemma.
Therefore, since C+ contains positive literals only and there was exactly one variable xik whose truth
value was switched from 0 to 1 from α to α′, we conclude that C+ must contain xik.

Repeating this argument for all pairs (i, j) for i ∈ Pigeon(C) and j /∈ Pigeon(C) since all pairs
must yield a distinct variable in C+, we can conclude that the width of C+ is at least s(n − s) where
s = |Pigeon(C)|. By assumption that n

3 < |Pigeon(C)| ≤ 2n
3 , we get the width lower bound that

w(C+) ≥ s(n− s) ≥ 2n2

9 .

3.2 The Restriction Step

Now we will use the width lower bound to get the size lower bound. We let R be a resolution refutation
of PHPnn−1 and let R+ be the positive version where each clause C ∈ R is replaced by its positive version
C+. Let ε > 0 be a constant whose exact value we will choose later.

Definition 8. A clause in R+ is ε-wide if its width satisfies w(C+) ≥ εn2.

Let S be the number of wide clauses in R+. We can conclude that there is some variable xij appearing
in at least εS wide clauses in R+ by counting the number of variables in the wide clauses. Therefore,
we can define a restriction of the variables by matching pigeon i to hole j, that is we set xij = 1, xi′j =
0, xij′ = 0 for all i′ 6= i, j′ 6= j.

Notice that once we apply this restriction to R (and hence R+), R is now a resolution refutation of
PHPn−1n−2 and there are now at most (1− ε)S wide clauses in R+. Therefore, we can inductively apply k

restrictions for k = lnS
ε so that we get a proof of PHPn−kn−1−k where the positive version R+ contains no

wide clauses since there are at most S(1− ε)k wide clauses and S(1− ε)k < Se−kε ≤ 1 by the choice of
ε and k.

However, from the previous lemma, we know that in any proof of PHPn−kn−k−1 there is some clause C

where w(C+) ≥ 2(n−k)2
9 but on the other hand, we have produced a proof of PHPn−kn−k−1 with no wide

clauses by restricting the proof of PHPnn−1. Therefore, the inequality

2(n− k)2

9
=

2(n− lnS
ε )2

9
≤ w(C+) < εn2

must be satisfied. After some algebra , we can conclude that lnS ≥ εn − ε
√

9ε
2 n, so picking ε = 8

81

to maximize the bound means that the resolution proof of PHPnn−1 must contain at least

S ≥ exp(
8n

243
) ≥ 1.033n

wide clauses, which completes the proof.
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4 Other Proof Systems and Problems

We have now proved an exponential lower bound on the pigeonhole principle in the resolution proof
system. A natural question to ask is what other lower bounds are known for the pigeonhole principle,
which we will summarize below.

• Exponential lower bounds are known in AC0-Frege systems using a switching lemma argument.
[BIK+92]

• For algebraic proof systems, Razborov proved Ω(n) degree lower bounds for the polynomial calculus
[Raz98].

• For semi-algebraic proof systems, an Ω(n) degree lower bound is known for the Sherali-Adams
proof system based on linear programming [GM08].

In contrast, efficient (polynomial size) proofs are known for PHPnn−1 are known for the following
proof systems: Cutting Planes [Juk12], Sum of Squares [FKP+19], and Frege [Bus87].

For a recent overview of other interesting problems in proof complexity, see Prof. Paul Beame’s talk
titled “Proof Complexity 2020” available at [Bea20].
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