Query Complexity

Simple, Structured and Significant

Suhail Sherif, TSS

ts

Ircul

Turing Machines and C

Nice, relevant models of computation, but...

B7

B5

B4

B1

D0

out

Total system state -
complete configuration (aka

"instantaneous description”)

TAPE & TABLE & HEAD

-

1
11
[—

11111

[——

1
=
-
-

1
-
-

O] O] v O] O] Ol *| v *| | O] v| |

1TH11111

<oO<omM<OMmMMOMMN<O
DR i oI R - -
bl 2 ol i =
L =R o
-
[~ K
- @
i
m o mH I
A &) [3) o
\ i
L (o) im @ (0] [O@@mm
i | |
! o< _A _A < <
! [—
hofi i [
(i 8
i
| emm time -->
| L8
|)=
Y o[o[o[o[o[o[o[o[o[o[o]o[o]o[o
W?w\o” EEEEEEEEEEEEEEE
i ! EEEEEEEE R EEE
i 4 1 EEEPEEEEEEEEEEEEE
R R Slolo|oooolo I~~~ =]~ |<
H [=] [=] L [=] [«] [«] [=] Ll Ll Bl Bl Ll Bl Bl Rl
® @0,0_04_1_0,0_0_1.1_1_1_0_1_1_1.
% =l = E G G S I E EGE EE
> Sl EIEIE G EE G E E E EEEE E
o FREEREGEEREEEREEE
o EEEEEEEEEEEEEEE
m EEEEEEEEEEEEEEE
s EEEEEEEEEEEEEEE
o) FEEREEREEEREEEEEEREEEE
m <CO<COM<CONMMONMMON<COTI
AWN. ~fNOYTOLON~N0 TN

Progress of the computation (state-trajectory) of a 3-state busy beaver

Turing Machines and Circuits

Nice, relevant models of computation, but...

* Too hard to reason about what they can do.

3 \ | Total system state
3-state busy beaver:;s‘an o_e P 1/pR iom‘pleteconﬁguaﬁm(ale
G I L e A "instantaneous description”)
Sequence Instruction Head Instruction: A B C H | TAPE&TABLE & HEAD
0/0/0]0]0[0]OfO[O[O 0] 0{ 0] 0] O
1 A 0] 0] 0] 0] 0 0] O O O] Of 0] 0] 0] 0] 0| E AQ
2 B 0000000%1000000 El B01
3 A 0] 0]0{ 0] 0] 0] 1] 1| 0[0] 0] 0] 0| Of O E 1A1
4 (o 0[0[0] o[0] 1{ 1] 0| 0[0] 0] 0| 0| O 0| a 11C0
5 B 0] 0|0f0| 1] 1] 1] 0] 0[0] 0] 0] 0| Of O B 11781
6 A [oo[o[11[11[q[q[o[0[o[o[olo] 5 [A 1111A0
7 B 0| 0| 0f o 1| 1] 1] 1{1{0] 0] 0| 0| Of O [} B 111B11
8 B |[o[o[o[o[o[1]1[1[[1[o[o[o[o[o] ¥ B 11B111
9 B 0/0|0] 0| ofof 1| 1{ 1| 1] 1] 0] 0| 0] 0| E 1B1111
10 B 0{0]ol o[o]of 0] 4] 1{1] 1] 1{0] 0] O B B11111
1 B 0/0|0] 0| 0fof of Of 1{ 1| 1] 1| 1| 0] 0| B B011114
12 A 0/0|0] 0| ofof1|1{1]1]1]1]0]|0] 0| |A 1.A11 111
13 Cc 0/0|0] 0| 0f1]1{1{1{1]1]0]0]0] 0| E 11C1111 1T
14 H 0/0|0] 0| of0[1|1{1]1]1]1]0]|0] 0| E 1H141 111
Progress of the computation (state-trajectory) of a 3-state busy beaver g
out

The Query Model

The Query Model

Input: Some input x, say as a bitstring of 11 bits.
Output: T(X).

The Query Model

Input: Some input x, say as a bitstring of 11 bits.
Output: T(X).

We don’t know x. We can make queries to x.
“What is the 5th bit of x?”

The Query Model

Input: Some input x, say as a bitstring of 11 bits.
Output: T(X).

We don’t know x. We can make queries to x.
“What is the 5th bit of x?”

How many queries are needed in order to find out f(X)?

Query Complexity

Easier than TMs, Circuits

Query Complexity

Easier than TMs, Circuits

with f(X) := X mod 2,

i [n]
deterministic, nondeterministic, randomized query complexities are I1.

Query Complexity

Easier than TMs, Circuits

with f(X) := X mod 2,

i [n]
deterministic, nondeterministic, randomized query complexities are I1.

With f(X) := X,

i [n]
deterministic query complexity is 11, but nondeterministic is 1.

Query Complexity

Easier than TMs, Circuits

with f(X) := X mod 2,

i [n]
deterministic, nondeterministic, randomized query complexities are I1.

With f(X) := X,
I [n]
deterministic query complexity is 11, but nondeterministic is 1.

« With f(X) := smallest prime factor of x,
deterministic and non-deterministic query complexity is I1.

Query Complexity

But why?

Query Complexity

But why?

* Query complexities of functions don’t seem to reflect how hard the functions
are to compute.

Query Complexity

But why?

* Query complexities of functions don’t seem to reflect how hard the functions
are to compute.

« Can never get a query complexity larger than 1.1.

Query Complexity

But why?

* Query complexities of functions don’t seem to reflect how hard the functions
are to compute.

« Can never get a query complexity larger than 1.1.

* Looking at input bits isn’t hard, why are you even counting that?

Query Complexity

But why?

Query complexities of functions don’t seem to reflect how hard the functions
are to compute.

Can never get a query complexity larger than 1.

Looking at input bits isn’t hard, why are you even counting that?

To sum it up, researching query complexity is useless.

Query Complexity

But why?

Query complexities of functions don’t seem to reflect how hard the functions
are to compute.

Can never get a query complexity larger than 1.

Looking at input bits isn’t hard, why are you even counting that?

To sum it up, researching query complexity is useless.

Thank you for your attention.

| am now open to questions.

Query Complexity

Relevance to TM Complexity

Solve an impossible task with the help of a cryptic oracle.

Query Complexity

Relevance to TM Complexity

Query Complexity

Relevance to TM Complexity

Elements of language L

000

0000

00000

0000000

Query Complexity

Relevance to TM Complexity

Elements of language L

Elements of language O

000 110
0000 1001
00000 10000

0000000

1011111

Query Complexity

Relevance to TM Complexity

0 L

Elements of language L

Elements of language O

000 110
0000 1001
00000 10000

0000000

1011111

x {0,1}

Query Complexity

Relevance to TM Complexity

L NP°

0 L

Elements of language L

Elements of language O

000 110
0000 1001
00000 10000

0000000

1011111

x {0,1}

Query Complexity

Relevance to TM Complexity

L NP°

Elements of language L

Elements of language O

000 110
0000 1001
00000 10000

0000000

1011111

Oracle Separations

Oracle Separations

e P cannot “simulate” NF.

Oracle Separations

e P cannot “simulate” NF.

« Any proof that P = NF has to be subtle enough to not hold when there are
oracles.

Oracle Separations

e P cannot “simulate” NF.

« Any proof that P = NF has to be subtle enough to not hold when there are
oracles.

* For instance, it cannot just be a diagonalization proof.

Oracle Separations

e P cannot “simulate” NF.

« Any proof that P = NF has to be subtle enough to not hold when there are
oracles.

* For instance, it cannot just be a diagonalization proof.

 Also holds for proving P NF.

Oracle Separations

e P cannot “simulate” NF.

« Any proof that P = NF has to be subtle enough to not hold when there are
oracles.

* For instance, it cannot just be a diagonalization proof.

 Also holds for proving P NF.

« Similar results for many pairs of complexity classes.

Oracle Separations

e P cannot “simulate” NF.

« Any proof that P = NF has to be subtle enough to not hold when there are
oracles.

* For instance, it cannot just be a diagonalization proof.

 Also holds for proving P NF.
« Similar results for many pairs of complexity classes.

« EXPTIME can simulate polytime quantum, but PH cannot.

Nonoracular

Still spectacular
* In the oracle separations, we created languages forcing the algorithm to stick
to using the oracle.

* More generally, we can abstract out certain approaches to solving problems
by forcing our algorithm to only use data relevant to the approach.

Sort [100,23,13,141,2,20,15]

Sort [100,23,13,141,2,20,15]

Desired approach: Don’t look at the numbers except to compare them.

Sort [100,23,13,141,2,20,15]

Desired approach: Don’t look at the numbers except to compare them.

Input: A sequence of numbers X4, ..., X,

Output: The sorted sequence.

Sort [100,23,13,141,2,20,15]

Desired approach: Don’t look at the numbers except to compare them.

Input: A sequence of numbers Xq, ..., X,

Not what we \Named.

Output: The sorted sequence. " Q}Jef‘es

Sort [100,23,13,141,2,20,15]

Desired approach: Don’t look at the numbers except to compare them.

Input: A sequence of bits bl’j }
RN) S

exists X, ..., X, suchthatbh; = 0 X ; X;

with the promise that there

Output: The sequence Iy, ..., I, suchthat x % ... X.

Il

Factor 14017

Factor 14017

10t
107
10°
104
10°
10°
10’
108

1c6890

mod 14017 =10
mod 14017 = 100
mod 14017 = 1000
mod 14017 =1000(
mod 14017 = 1881
mod 14017 = 4793
mod 14017 = 5879
mod 14017 = 2722

mod 1401 =

Factor 14017

10 mod 14017 = 10
10° mod 14017 = 100
10®° mod 14017 = 1000
10 mod 14017 =1000(
10° mod 14017 = 1881
10° mod 14017 = 4793
10" mod 14017 = 5879
108 mod 14017 = 2722

1C5890 mod 14017 =

If we can find the period (6890 above), we can factor.

Factor 14017

10 mod 14017 = 10
10° mod 14017 = 100
10®° mod 14017 = 1000
10 mod 14017 =1000(
10° mod 14017 = 1881
10° mod 14017 = 4793
10" mod 14017 = 5879
108 mod 14017 = 2722

1€%8%° mog 14017 =
If we can find the period (6890 above), we can factor.

|deal approach: Find the period only by computing elements of the sequence with no further
involvement of 14017.

Factor 14017

10" mod 14017 = 10
10 mod 14017 = 100
10° mod 14017 = 1000
10* mod 14017 =1000(
10° mod 14017 = 1881
10° mod 14017 = 4793
10’ mod 14017 = 5879
10° mod 14017 = 2722

10%8%0 moc 1401° = 1

If we can find the period (6890 above), we can factor.

|deal approach: Find the period only by computing elements of the sequence with no further
involvement of 14017.

Factor 14017

10" mod 14017 = 10
10 mod 14017 = 100
10° mod 14017 = 1000
10* mod 14017 =1000(
10° mod 14017 = 1881
10° mod 14017 = 4793
10’ mod 14017 = 5879
10° mod 14017 = 2722

10%8%0 moc 1401° = 1

If we can find the period (6890 above), we can factor.

|deal approach: Find the period only by computing elements of the sequence with no further
involvement of 14017.

Input: A sequence of numbers in the range | M| with the promise that
the Ith element is @' mMoc N. (a and N are unknown.)

Output: The period of the input sequence.

Factor 14017

10" mod 14017 = 10
10 mod 14017 = 100
10° mod 14017 = 1000
10* mod 14017 =1000(
10° mod 14017 = 1881
10° mod 14017 = 4793
10’ mod 14017 = 5879
10° mod 14017 = 2722

10%8%0 moc 1401° = 1

If we can find the period (6890 above), we can factor.

|deal approach: Find the period only by computing elements of the sequence with no further
involvement of 14017.

Input: A sequence of numbers in the range | M| with the promise that
the Ith element is @' MoC N. (a and N are unknown.)

ea,™ Output: The period of the input sequence.

Gaﬂ St\\\ uS
=

Factor 14017

10" mod 14017 = 10
10 mod 14017 = 100
10° mod 14017 = 1000
10* mod 14017 =1000(
10° mod 14017 = 1881
10° mod 14017 = 4793
10’ mod 14017 = 5879
10° mod 14017 = 2722

10%8%0 moc 1401° = 1

If we can find the period (6890 above), we can factor.

|deal approach: Find the period only by computing elements of the sequence with no further
involvement of 14017.

Factor 14017

10" mod 14017 = 10
10 mod 14017 = 100
10° mod 14017 = 1000
10* mod 14017 =1000(
10° mod 14017 = 1881
10° mod 14017 = 4793
10’ mod 14017 = 5879
10° mod 14017 = 2722

10%8%0 moc 1401° = 1

If we can find the period (6890 above), we can factor.

|deal approach: Find the period only by computing elements of the sequence with no further
involvement of 14017.

Input: A periodic sequence of numbers in the range |N| such that the
elements in a period are all distinct.

Output: The period of the input sequence.

Factor 14017

10" mod 14017 = 10
10 mod 14017 = 100
10° mod 14017 = 1000
10* mod 14017 =1000(
10° mod 14017 = 1881
10° mod 14017 = 4793
10’ mod 14017 = 5879
10° mod 14017 = 2722

10%8%0 moc 1401° = 1

If we can find the period (6890 above), we can factor.

|deal approach: Find the period only by computing elements of the sequence with no further
involvement of 14017.

Input: A periodic sequence of numbers in the range |N| such that the
elements in a period are all distinct.
(W e
I

Reauire® Output: The period of the input sequence.

Factor 14017

10t
107
10°
10
10°
10°
10
108

mod 14017 = 10
mod 14017 = 100
mod 14017 = 1000
mod 14017 =1000(
mod 14017 = 1881
mod 14017 = 4793
mod 14017 = 5879
mod 14017 = 2722

10%8%0 moc 1401° = 1

If we can find the period (6890 above), we can factor.

|deal approach: Find the period only by computing elements of the sequence with no further

P\equ\res

involvement of 14017.

Input: A periodic sequence of numbers in the range |N| such that the

(\/T“\ queries
|

elements in a period are all distinct.

Output: The period of the input sequence.

Another example

Another example

DDDDDDDDDDDD

Another example

INPUT HIDDEN OUTPUT

Find parameters that minimize the loss.

Another example

INPUT HIDDEN OUTPUT

Find parameters that minimize the loss.

loss; "

Another example

INPUT HIDDEN OUTPUT

Find parameters that minimize the loss.
loss . "

Easy to compute 0S¢,

Making it a query problem

Making it a query problem

e Think of the input as {10S$(X)},

Making it a query problem

e Think of the input as {10S$(X)},

 Easy to compute |0Ss Querying the input is doable.

Making it a query problem

e Think of the input as {10S$(X)},

 Easy to compute |0Ss Querying the input is doable.

» But the popular algorithm for this is Gradient Descent.

Making it a query problem

e Think of the input as {10S$(X)},

 Easy to compute |0Ss Querying the input is doable.

» But the popular algorithm for this is Gradient Descent.

« Finding T given query access to T:

Making it a query problem

e Think of the input as {10S$(X)},

 Easy to compute |0Ss Querying the input is doable.

» But the popular algorithm for this is Gradient Descent.

« Finding T given query access to T:

« Requires (\/ﬁ) queries.

Making it a query problem

e Think of the input as {10S$(X)},

 Easy to compute |0Ss Querying the input is doable.

» But the popular algorithm for this is Gradient Descent.
« Finding T given query access to T:

« Requires (ﬁ) queries.

» Or 1 query with a quantum computer.

Making it a query problem

e Think of the input as {10S$(X)},

 Easy to compute |0Ss Querying the input is doable.

» But the popular algorithm for this is Gradient Descent.
« Finding T given query access to T:
« Requires (ﬁ) queries.
» Or 1 query with a quantum computer.

« Finding T given access to the network for f is easy.

Making it a query problem

e Think of the input as {10S$(X)},
 Easy to compute |0Ss Querying the input is doable.
» But the popular algorithm for this is Gradient Descent.
« Finding T given query access to f:
« Requires (ﬁ) queries.
» Or 1 query with a quantum computer.
« Finding T given access to the network for f is easy.

« Think of the input as { (l0S¢(X), [0Ss(X))},

First-Order Convex Optimization
Joint work with Ankit Garg, Robin Kothari and Praneeth Netrapalli.

First-Order Optimization

First-Order Optimization

Input: { (T(X), T(X))}x n x 1foracontinuoust.

Output: arg minf(x)

x B

First-Order Optimization

Input: { (T(X), T(X))}x n x 1foracontinuoust.

Output: X B suchthatf(x) minf(x) +

x B

First-Order Optimization

Input: { (T(X), f(X))}, gforacontinuous f with f(X) 1.

Output: x Bsuchthatf(x) minf(x)+
X B

First-Order Optimization

Input: { (T(X), f(X))}, gforacontinuous f with f(X)

Output: x Bsuchthatf(x) minf(x)+
X B

I

Doable with , 1 + —) queries.

First-Order Convex Optimization

First-Order Convex Optimization

Input: { (T(X), f(X))}, gforaconvexfwith f(X) 1.

Output: x Bsuchthatf(x) minf(x)+
X B

First-Order Convex Optimization

Input: { (T(X), f(X))}, gforaconvexfwith f(X)

Output: x Bsuchthatf(x) minf(x)+
X B

. 1 1
Doable with mlnr nlog —

[()

queries.

%

Theorem (Garg Kothari Netrapalli S 20)

The dimension-independent complexity of first-order convex
optimization is (1/ 2) even for quantum algorithms.

The Task

Given: a convex region B, rst-order oracle access to a convex
functionf : R" I R.

Find x°2 B s.t. f(x 9 min f(x)+ .
X

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

The Task

Given: a convex region B, rst-order oracle access to a convex
functionf : R" I R.

Find x°2B s.t. f(x% min f(x)+ .
x2B

3.0
2.5 A
2.0 A
1.5 A
1.0 A
0.5

0.0

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

The Task

Given: a convex region B, rst-order oracle access to a convex
functionf : R" I R.

Find x°2 B s.t. f(x 9 min f(x)+ .
X

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

g2rf(x),f(x+v) f(x)+hv, gi for all v

Known Algorithms |

1-dimensional fn:

Known Algorithms |

1-dimensional fn:

3.0 q
2.5 1
2.0 A
1.5 A
1.0 A

0.5 4

.0 T T T T T T T d
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Known Algorithms |

1-dimensional fn:

3.0 q
2.5 1
2.0 A
1.5 A
1.0 A

0.5 4

.0 T T T T T T T d
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Known Algorithms |

1-dimensional fn:

3.0 q
2.5 1
2.0 A
1.5 A

1.0 -

0.5 4

.0 T T T T T T T d
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Known Algorithms |

1-dimensional fn:

3.0 q
2.5 1
2.0 A
1.5 A

-
1.0 1 -

0.5 4

.0 T T T T T T T d
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Known Algorithms |

1-dimensional fn:

3.0 -
2.5
2.0 4
1.5
1.0 1 L 2

0.5 4

.0 T T T T T T T d
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Known Algorithms |

1-dimensional fn:

log(1/) steps.

Known Algorithms |

n-dimensional fn:

Known Algorithms |

n-dimensional fn:
(Center of Gravity Method)

Known Algorithms |

n-dimensional fn:
(Center of Gravity Method)

Vol (B(1))
Vol(B())

log

=nlog(1l/) steps.

Known Algorithms Il

Center of Gravity Method

nlog(1/) steps. Projected Subgradient Descent

Known Algorithms Il

Center of Gravity Method

nlog(1/) steps. Projected Subgradient Descent

® X

X®—ox%=x g

Known Algorithms Il

Center of Gravity Method

nlog(1/) steps. Projected Subgradient Descent

®X

X.\OXO:X g «

hgy,x xi f(x) f(x)

Known Algorithms Il

Center of Gravity Method

nlog(1/) steps. Projected Subgradient Descent

hgy,x xi f(x) f(x)

Known Algorithms Il

Center of Gravity Method

nlog(1/) steps. Projected Subgradient Descent

hgy,x xi f(x) f(x)

kx x %® kx xk 2+ 2 2(f(x) f(x)

Known Algorithms Il

Center of Gravity Method Projected Subgradient Descent
nlog(1/) steps. 1/ 2 steps.

hgy,x xi f(x) f(x)

kx x %® kx xk 2+ 2 2(f(x) f(x)

With = ,kx x %®drops by 2whenf(x)>f(x)+ . 4

Known Algorithms Il

Center of Gravity Method Projected Subgradient Descent
nlog(1/) steps. 1/ 2 steps.
Q>

©

E

GRS
—~ Lo
c ®
s o Projected Gradient Descent
E ol 32
5 1/ 2
OU
1 - -
1/ 2 1/ 4

Known Algorithms Il

Center of Gravity Method Projected Subgradient Descent
nlog(1/) steps. 1/ 2 steps.
Q>

©
E
S
&\

~ & ©
c &

s o Projected Gradient Descent
E ol 32
5 1/ 2
OU

1

1/ 2 1/ 4

The dimension-independent complexity is at least 1/ [CCLW ‘19].

Known Algorithms Il

Center of Gravity Method Projected Subgradient Descent
nlog(1/) steps. 1/ 2 steps.
Q>

©
E
S
&\

~ & ©
c &

s o Projected Gradient Descent
E ol 32
5 1/ 2
OU

1

1/ 2 1/ 4

The dimension-independent complexity is at least 1/ 2 [GKNS ‘20].

Known Algorithms Il

Center of Gravity Method Projected Subgradient Descent
nlog(1/) steps. 1/ 2 steps.
Q>

©
E
S
&\

~ & ©
c &

s o Projected Gradient Descent
E ol 32
5 1/ 2
OU

1

1/ 2 1/ 4

1/ 2 is the correct complexity for n > 1/ 4 [GKN

20].

Lower Bounds

The Base Function

f:R"IR

f(X) = max{x 1, X2, ..., Xn}.

The Base Function

f:R"IR
f(X) = max{x 1, X2, ..., Xn}.
Minimum = pl—ﬁ,atx: pl—ﬁ pl—ﬁ

The Base Function

f:R"IR
f(X) = max{x 1, X2, ..., Xn}.
Minimum = pl—ﬁ,atx: pl—ﬁ pl—ﬁ

If Xj iIs @ maximum, then g; is a subgradient.

Function Class

z2{+1, 1} "

f,(x) = max{z 1X1,ZoXo,...,ZnXn}.

Function Class

z2{+1,1} "
f,(x) = max{z 1X1,ZoXo,...,ZnXn}.
Minimum = pl—ﬁ,atx: B, .., B

Function Class

z2{+1, 1} "
f,(x) = max{z 1X1,ZoXo, ..., ZnXn}.
Minimum = pl—ﬁ,atx: B, ., P
Set = B2.

The behaviour of f

Function Class

z2{+1, 1} "
f,(x) = max{z 1X1,ZoXo, ..., ZnXn}.
Minimum = pl—ﬁ,atx: B, ., P
Set = B2.

The behaviour of f

Function Class

z2{+1, 1} "
f,(x) = max{z 1X1,ZoXo, ..., ZnXn}.
Minimum = pl—ﬁ,atx: B, ., P
Set = B2.

The behaviour of f

Function Class

z2{+1,1} "
f,(x) = max{z 1X1,ZoXo,...,ZnXn}.
Minimum = e, atx = #&,..., # .
Set = B2.

The behaviour of f

2 bits of z revealed per query.

Function Class

z2{+1, 1} "
f,(x) = max{z 1X1,ZoXo, ..., ZnXn}.
Minimum = pl—ﬁ,atx: B, ., P
Set = B2.

The behaviour of f

Function Class

z2{+1, 1} "
f,(x) = max{z 1X1,ZoXo, ..., ZnXn}.
Minimum = pl—ﬁ,atx: B, ., P
Set = B2.

The behaviour of f

Function Class

z2{+1,1} "
f,(x) = max{z 1X1,ZoXo,...,ZnXn}.
Minimum = e, atx = #&,..., # .
Set = B2.

The behaviour of f

Finding -optimal point 5 learning z.

Function Class

z2{+1,1} "
f,(x) = max{z 1X1,ZoXo,...,ZnXn}.
Minimum = e, atx = #&,..., # .
Set = B2.

The behaviour of f

Requires (n) = (1/ ?) queries.

Quantum Speedup

Belovs’ algorithm:
Given query access to ORs of z,
can nd z in * n queries.

Lower Bounds

A Sequential Lower Bound

Forcing Sequentiality:

fviv,...v . (X) = max{hvy, xi,hva, xi ,hv 3,x12,--- ,hv ,xi(k 1)}

where {v1,...,Vg} form an orthonormal setin R".

10

Forcing Sequentiality:

fu,vy...v, (X) = max{hvq, xi,hvy,xi ,hv 3, xi2,--- , hv ,xi(k 1)}
where {v 1, ..., V} form an orthonormal setin R".
max{hvy, Xi, hvy, Xi, ..., hvy, Xi} takes a minimum value of pl—E in the unit ball.

10

Forcing Sequentiality:

fviv,...v . (X) = max{hvy, Xi,hvo, xi ,hv 3,xi2,--- hv y,xi(k 1)}

where {v1,...,Vg} form an orthonormal setin R".

max{hvy, xi, hvy, Xi, .. ., hvy, xi} takes a minimum value of pl—E in the unit ball.
1/k 32,

10

Forcing Sequentiality:

fvyv,...v . (X) = max{hvy, xi,hva, xi ,hv 3, x12,--- ,hv ,xi(k 1)}

where {v 1, ..., Vg} form an orthonormal setin R".

max{hvy, Xi, hvy, Xi, ..., hvy, Xi} takes a minimum value of pl—E in the unit ball.
1k 32 MET

) n "

10

Forcing Sequentiality:

fviv,...v . (X) = max{hvy, xi,hva, xi ,hv 3,xi12,--- hv ,xi(k 1)}

where {v 4, ..., vk} form an orthonormal setin R".

max{hvy, xi, hvy, Xi, .. ., hvy, xi} takes a minimum value of pl—E in the unit ball.
1k 3 g n

b) n .
Want to say that each vector has to be learnt in order.

10

The Hybrid Argument

Let A be an algorithm making k 1 queries.

A Run of A

Make query to
max{hvq, xi,hv o, xi ,--- hv ,xi(k 1) }.
Make query to

max{hvq, xi,hv o, xi ,--- ,hv ., xi(k 1) }.

Make query to

max{hvq, xi,hv o, xi ,--- ,hv ., xi(k 1) }.

11

The Hybrid Argument

Let A be an algorithm making k 1 queries.

A Run of A

Make query to

max{hv, xi,hv o, xi ,--- hv ,xi(k 1) }.

Make query to

max{hvq, xi,hv o, xi ,---,hv ., xi(k 1) }.

Make query to

max{hvq, xi,hv o, xi ,--- ,hv ., xi(k 1) }.

Once-Corrupted Run of A

Make query to
max{hv 1, xi}.
Make query to

max{hv, xi,hv o, xi ,--- hv ., xi(k 1) }.

Make query to

max{hv, xi,hv o, xi ,--- ;hv ., xi(k 1) }.

11

The Hybrid Argument

Let A be an algorithm making k 1 queries.

Once-Corrupted Run of A Twice-Corrupted Run of A
Make query to Make query to
max{hv 1, xi}. max{hv, xi}.
Make query to Make query to
max{hv, xi,hv o, xi ,--- ,hv ,xi(k 1) }. max{hv, xi, hv », xi }.
Make query to Make query to
max{hv, xi,hv o, xi ,--- ,hv ,xi(k 1) }. max{hv, xi,hv o, xi ,--- ,hv ,xi(k 1) }.

11

The Hybrid Argument

Let A be an algorithm making k 1 queries.

k 1-times Corrupted Run of A

Make query to
max{hv 1, Xi}.
Make guery to

max{hv, xi, hv », xi }.

Make guery to

max{hvi,xi,hvo,xi ,--- ,hv 1 ,xi (k 2)}

11

Quantum Algorithms

« Can make queries in superposition.
* The state of the algorithm is represented by a vector.

« All quantum operations are unitary.

12

Quantum Algorithms

« Can make queries in superposition.
* The state of the algorithm is represented by a vector.

« All quantum operations are unitary.
Given two states 1 and > suchthatk 4 -k = c, then after
applying the same quantum operations on both, the resulting
states also have distance c.

12

» Actual function used is slightly modi ed to account for queries
outside the unit ball.

13

» Actual function used is slightly modi ed to account for queries
outside the unit ball.

 n can be as small as 1/ ° for the above argument.

13

» Actual function used is slightly modi ed to account for queries
outside the unit ball.

 n can be as small as 1/ ° for the above argument.

 Can bring n down to 1/ 4 using a clever trick from
“Complexity of Highly Parallel Non-Smooth Convex Optimization”
- Sébastien Bubeck, Qijia Jiang, Yin Tat Lee, Yuanzhi Li, Aaron Sidford

13

Smooth Convex Optimization

Higher-Order Convex Optimization

 Promise: f is convex,
p-times differentiable with r Pf being L,-Lipschitz.
« Query access to O; : x 7! (f(x), rf(x),r 2f(X),...,r Pf(x)).

The Setting The Upper Bound The Lower Bound
5 Det: (Li/)
p=1 O(Li/) Rand: (Li/)
Quant: -
Det: (7 L,/)
p=2 O(® L,/) Rand: (“* Ly/)
Quant: -
Det: (@2 L,/)
p O((3p+l)/2p m Rand: ((5p+1)/ m
Quant: -

[Bubeck Jiang Lee Li Sidford ‘19]
[Gasnikov Dvurechensky Gorbunov Vorontsova Selikhanovych Uribe ‘19]

[Jiang Wang Zhang ‘19]

Our Contribution

We show that neither randomized nor quantum algorithms can do any
better than deterministic algorithms.

8p2N,Q €D).

10

More about Query Complexity

Structure (for total Boolean functions f : {0, 1} "1{0,1})

Degree of a function f:
PARITY (X1, X2, X3) = 4X 1XoX3 2X 1X2 2X 1X3 2X X3+ X1+ X +X3.

Easy to prove: Query complexity of f degree of f.

Nisan Szegedy ‘92
Degree of f query complexity of f . (degree of f) 4.

Query complexity of f is large , Degree of f is large.

Also randomized query complexity, quantum query complexity,
approximate degree, certi cate complexity, sensitivity.

12

