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• Too hard to reason about what they can do.
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Input: Some input , say as a bitstring of  bits.

Output: .
x n

f(x)

We don’t know . We can make queries to .

“What is the 5th bit of ?”

x x
x

How many queries are needed in order to find out ?f(x)
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•  
With , 

deterministic, nondeterministic, randomized query complexities are .

f(x) := ��
i�� [n]

xi mod 2

n

•  
With , 

deterministic query complexity is , but nondeterministic is 1.

f(x) := ��
i�� [n]

xi

n

• With smallest prime factor of , 
deterministic and non-deterministic query complexity is .

f(x) := x
n



Query Complexity
But why?



Query Complexity
But why?

• Query complexities of functions don’t seem to reflect how hard the functions 
are to compute.



Query Complexity
But why?

• Query complexities of functions don’t seem to reflect how hard the functions 
are to compute.

• Can never get a query complexity larger than .n



Query Complexity
But why?

• Query complexities of functions don’t seem to reflect how hard the functions 
are to compute.

• Can never get a query complexity larger than .n

• Looking at input bits isn’t hard, why are you even counting that?



Query Complexity
But why?

• Query complexities of functions don’t seem to reflect how hard the functions 
are to compute.

• Can never get a query complexity larger than .n

• Looking at input bits isn’t hard, why are you even counting that?

• To sum it up, researching query complexity is useless.



Query Complexity
But why?

• Query complexities of functions don’t seem to reflect how hard the functions 
are to compute.

• Can never get a query complexity larger than .n

• Looking at input bits isn’t hard, why are you even counting that?

• To sum it up, researching query complexity is useless.

Thank you for your attention.

I am now open to questions.
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Oracle Separations

•  cannot “simulate” .P NP

• Any proof that  has to be subtle enough to not hold when there are 
oracles.

P = NP

• For instance, it cannot just be a diagonalization proof.

• Also holds for proving .P �� NP

• Similar results for many pairs of complexity classes.

• EXPTIME can simulate polytime quantum, but PH cannot.



Nonoracular
Still spectacular

• In the oracle separations, we created languages forcing the algorithm to stick 
to using the oracle.


• More generally, we can abstract out certain approaches to solving problems 
by forcing our algorithm to only use data relevant to the approach.
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Sort [100,23,13,141,2,20,15]

Desired approach: Don’t look at the numbers except to compare them.

Input: A sequence of numbers .


Output: The sorted sequence.

x1, …,xn

Not what we wanted. 

 queriesn

Input: A sequence of bits  with the promise that there 

exists  such that .


Output: The sequence  such that .

{ bi,j}
(i,j)�� (

[n]
2 )

x1, …,xn bi,j = 0 �� x i �� x j

i1, …, in xi1 �� xi2 �� … �� xin
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Factor 14017




101 mod 14017 = 10
102 mod 14017 = 100
103 mod 14017 = 1000
104 mod 14017 =10000
105 mod 14017 = 1881
106 mod 14017 = 4793
107 mod 14017 = 5879
108 mod 14017 = 2722

��

106890 mod 14017= 1

If we can find the period (6890 above), we can factor.

Input: A periodic sequence of numbers in the range  such that the 
elements in a period are all distinct.


Output: The period of the input sequence.

[N]

Ideal approach: Find the period only by computing elements of the sequence with no further 
involvement of 14017.

Requires 
 queries.

�� ( N)
But only 

 queries on a quantum computer.

O(log logN)
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Another example

Find parameters that minimize the loss.

loss: �� n �	 ��
Easy to compute .loss
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Making it a query problem

• Think of the input as { loss(x)} x�� �� n

• Easy to compute   Querying the input is doable.loss�


• But the popular algorithm for this is Gradient Descent.

• Finding  given query access to :�� f f

• Requires  queries.�� ( n)

• Or 1 query with a quantum computer.

• Finding  given access to the network for  is easy.�� f f

• Think of the input as { (loss(x), �� loss(x))} x�� �� n



First-Order Convex Optimization
Joint work with Ankit Garg, Robin Kothari and Praneeth Netrapalli.
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Doable with  queries.
(

1 +
1

�� )

n
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First-Order Convex Optimization

Input:  for a convex  with .         


Output: 

{ ( f(x), �� f(x))} x�� B f ���� f(x)�� �� 1

x�
 �� B such that f(x�
 ) �� min
x�� B

f(x) + ��

Doable with  queries.min
{

n log
(

1

�� )
,

1

��2 }



Theorem (Garg Kothari Netrapalli S `20)


The dimension-independent complexity of first-order convex 
optimization is  even for quantum algorithms.�� (1/��2)
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The Task

Given: a convex region B, �rst-order oracle access to a convex
function f : Rn ! R.

Find x0 2 B s.t. f (x 0) � min
x2B

f (x) + �.

g 2 rf (x) , f (x + v)  f (x) + hv, gi for all v

2
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Known Algorithms I

n-dimensional fn:
(Center of Gravity Method)

� log
�

Vol(B(1))
Vol(B(�))

�

= n log(1/�) steps.

3
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Center of Gravity Method

n log(1/�) steps.

Projected Subgradient Descent

1/� 2 steps.

x
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b

hg x , x �  x i  f (x)  f (x � )

kx�  x 0k2 � kx �  xk 2 + � 2  2�(f (x)  f (x � ))

With � = �, kx �  x 0k2 drops by � 2 when f (x) > f (x � ) + �. 4
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f (x) = max{x 1, x2, . . . , xn}.

Minimum =  1p
n
, at x =

�
 1p

n
, . . . ,  1p

n

�
.

If xi is a maximum, then ei is a subgradient.
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Function Class

z 2 {+1, 1} n

fz(x) = max{z 1x1, z2x2, . . . , znxn}.

Minimum =  1p
n
, at x =

�
 z1p

n
, . . . ,  znp

n

�
.

Set � = 0.9p
n
.

The behaviour of f

z1 z2 z3 z4 zn

0

x1 x2 x3 x4 xn

++  +

Requires �(n) = �(1/� 2) queries.
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Quantum Speedup

Belovs’ algorithm:
Given query access to ORs of z,

can �nd z in
p

n queries.
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Lower Bounds

A Sequential Lower Bound



Forcing Sequentiality: II

fv1,v2,...,v k (x) = max{hv 1, xi, hv2, xi, hv 3, xi2, · · · , hv k , xi(k 1)}

where {v 1, . . . , vk } form an orthonormal set in R n.
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Forcing Sequentiality: II

fv1,v2,...,v k (x) = max{hv 1, xi, hv2, xi, hv 3, xi2, · · · , hv k , xi(k 1)}

where {v 1, . . . , vk } form an orthonormal set in R n.

max{hv1, xi, hv2, xi, . . . , hvk , xi} takes a minimum value of
1
p

k
in the unit ball.

 � 1/k 3/2 , 
q

log n
n .

Want to say that each vector has to be learnt in order.
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The Hybrid Argument

Let A be an algorithm making k  1 queries.

A Run of A

Make query to
max{hv1, xi, hv 2, xi, · · · , hv k , xi(k 1)}.

Make query to
max{hv1, xi, hv 2, xi, · · · , hv k , xi(k 1)}.

...
Make query to

max{hv1, xi, hv 2, xi, · · · , hv k , xi(k 1)}.
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The Hybrid Argument

Let A be an algorithm making k  1 queries.

Once-Corrupted Run of A

Make query to
max{hv1, xi}.
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max{hv1, xi, hv 2, xi, · · · , hv k , xi(k 1)}.

...
Make query to

max{hv1, xi, hv 2, xi, · · · , hv k , xi(k 1)}.

Twice-Corrupted Run of A

Make query to
max{hv1, xi}.

Make query to
max{hv1, xi, hv 2, xi  }.

...
Make query to

max{hv1, xi, hv 2, xi, · · · , hv k , xi(k 1)}.
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The Hybrid Argument

Let A be an algorithm making k  1 queries.

k  1-times Corrupted Run of A

Make query to
max{hv1, xi}.

Make query to
max{hv1, xi, hv 2, xi  }.

...
Make query to

max{hv1, xi, hv 2, xi  , · · · , hv k1 , xi  (k  2)}.
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Quantum Algorithms

• Can make queries in superposition.

• The state of the algorithm is represented by a vector.

• All quantum operations are unitary.
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Quantum Algorithms

• Can make queries in superposition.

• The state of the algorithm is represented by a vector.

• All quantum operations are unitary.
Given two states  1 and  2 such that k 1   2k = c, then after
applying the same quantum operations on both, the resulting
states also have distance c.
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NB

• Actual function used is slightly modi�ed to account for queries
outside the unit ball.
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NB

• Actual function used is slightly modi�ed to account for queries
outside the unit ball.

• n can be as small as 1/� 6 for the above argument.

• Can bring n down to 1/� 4 using a clever trick from
“Complexity of Highly Parallel Non-Smooth Convex Optimization”
- Sébastien Bubeck, Qijia Jiang, Yin Tat Lee, Yuanzhi Li, Aaron Sidford
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Smooth Convex Optimization



Higher-Order Convex Optimization

• Promise: f is convex,
p-times differentiable with r pf being Lp-Lipschitz.

• Query access to Of : x 7! (f (x), rf (x), r 2f (x), . . . , r pf (x)).

The Setting The Upper Bound The Lower Bound

p = 1 O(
p

L1/�)
Det: �(

p
L1/�)

Rand: �(
p

L1/�)
Quant: -

p = 2 O( 7/2
p

L2/�)
Det: �( 7/2

p
L2/�)

Rand: �( 11/2
p

L2/�)
Quant: -

p O( (3p+1)/2
p

Lp/�)
Det: �( (3p+1)/2

p
Lp/�)

Rand: �( (5p+1)/2
p

Lp/�)
Quant: -

[Bubeck Jiang Lee Li Sidford ‘19]
[Gasnikov Dvurechensky Gorbunov Vorontsova Selikhanovych Uribe ‘19]

[Jiang Wang Zhang ‘19]
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Our Contribution

We show that neither randomized nor quantum algorithms can do any
better than deterministic algorithms.

8p 2 N, Q  e�(D).
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More about Query Complexity



Structure (for total Boolean functions f : {0, 1} n ! {0, 1})

Degree of a function f :

PARITY(x1, x2, x3) = 4x 1x2x3  2x 1x2  2x 1x3  2x 2x3 + x 1 + x 2 + x 3.

Easy to prove: Query complexity of f  degree of f .

Nisan Szegedy ‘92

Degree of f � query complexity of f . (degree of f ) 4.

Query complexity of f is large , Degree of f is large.

Also randomized query complexity, quantum query complexity,
approximate degree, certi�cate complexity, sensitivity.
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