
Suhail Sherif, TSS

Query Complexity
Simple, Structured and Significant

Turing Machines and Circuits
Nice, relevant models of computation, but…

Turing Machines and Circuits
Nice, relevant models of computation, but…

• Too hard to reason about what they can do.

The Query Model

The Query Model

Input: Some input , say as a bitstring of bits.

Output: .
x n

f(x)

The Query Model

Input: Some input , say as a bitstring of bits.

Output: .
x n

f(x)

We don’t know . We can make queries to .

“What is the 5th bit of ?”

x x
x

The Query Model

Input: Some input , say as a bitstring of bits.

Output: .
x n

f(x)

We don’t know . We can make queries to .

“What is the 5th bit of ?”

x x
x

How many queries are needed in order to find out ?f(x)

Query Complexity
Easier than TMs, Circuits

Query Complexity
Easier than TMs, Circuits

•  
With , 

deterministic, nondeterministic, randomized query complexities are .

f(x) := ��
i�� [n]

xi mod 2

n

Query Complexity
Easier than TMs, Circuits

•  
With , 

deterministic, nondeterministic, randomized query complexities are .

f(x) := ��
i�� [n]

xi mod 2

n

•  
With , 

deterministic query complexity is , but nondeterministic is 1.

f(x) := ��
i�� [n]

xi

n

Query Complexity
Easier than TMs, Circuits

•  
With , 

deterministic, nondeterministic, randomized query complexities are .

f(x) := ��
i�� [n]

xi mod 2

n

•  
With , 

deterministic query complexity is , but nondeterministic is 1.

f(x) := ��
i�� [n]

xi

n

• With smallest prime factor of , 
deterministic and non-deterministic query complexity is .

f(x) := x
n

Query Complexity
But why?

Query Complexity
But why?

• Query complexities of functions don’t seem to reflect how hard the functions
are to compute.

Query Complexity
But why?

• Query complexities of functions don’t seem to reflect how hard the functions
are to compute.

• Can never get a query complexity larger than .n

Query Complexity
But why?

• Query complexities of functions don’t seem to reflect how hard the functions
are to compute.

• Can never get a query complexity larger than .n

• Looking at input bits isn’t hard, why are you even counting that?

Query Complexity
But why?

• Query complexities of functions don’t seem to reflect how hard the functions
are to compute.

• Can never get a query complexity larger than .n

• Looking at input bits isn’t hard, why are you even counting that?

• To sum it up, researching query complexity is useless.

Query Complexity
But why?

• Query complexities of functions don’t seem to reflect how hard the functions
are to compute.

• Can never get a query complexity larger than .n

• Looking at input bits isn’t hard, why are you even counting that?

• To sum it up, researching query complexity is useless.

Thank you for your attention.

I am now open to questions.

Query Complexity
Relevance to TM Complexity

Solve an impossible task with the help of a cryptic oracle.

Query Complexity
Relevance to TM Complexity

Query Complexity
Relevance to TM Complexity

Elements of language L

000

0000

00000

0000000

��

Query Complexity
Relevance to TM Complexity

Elements of language L

000

0000

00000

0000000

Elements of language O

110

1001

10000

1011111

�� ��

Query Complexity
Relevance to TM Complexity

Elements of language L

000

0000

00000

0000000

Elements of language O

110

1001

10000

1011111

�� ��

0i �� L �� ��
x�� { 0,1} i

x �� O

Query Complexity
Relevance to TM Complexity

Elements of language L

000

0000

00000

0000000

Elements of language O

110

1001

10000

1011111

L �� NPO

�� ��

0i �� L �� ��
x�� { 0,1} i

x �� O

Query Complexity
Relevance to TM Complexity

Elements of language L

000

0000

00000

0000000

Elements of language O

110

1001

10000

1011111

L �� NPO L �� PO

�� ��

0i �� L �� ��
x�� { 0,1} i

x �� O

Oracle Separations

Oracle Separations

• cannot “simulate” .P NP

Oracle Separations

• cannot “simulate” .P NP

• Any proof that has to be subtle enough to not hold when there are
oracles.

P = NP

Oracle Separations

• cannot “simulate” .P NP

• Any proof that has to be subtle enough to not hold when there are
oracles.

P = NP

• For instance, it cannot just be a diagonalization proof.

Oracle Separations

• cannot “simulate” .P NP

• Any proof that has to be subtle enough to not hold when there are
oracles.

P = NP

• For instance, it cannot just be a diagonalization proof.

• Also holds for proving .P �� NP

Oracle Separations

• cannot “simulate” .P NP

• Any proof that has to be subtle enough to not hold when there are
oracles.

P = NP

• For instance, it cannot just be a diagonalization proof.

• Also holds for proving .P �� NP

• Similar results for many pairs of complexity classes.

Oracle Separations

• cannot “simulate” .P NP

• Any proof that has to be subtle enough to not hold when there are
oracles.

P = NP

• For instance, it cannot just be a diagonalization proof.

• Also holds for proving .P �� NP

• Similar results for many pairs of complexity classes.

• EXPTIME can simulate polytime quantum, but PH cannot.

Nonoracular
Still spectacular

• In the oracle separations, we created languages forcing the algorithm to stick
to using the oracle.

• More generally, we can abstract out certain approaches to solving problems
by forcing our algorithm to only use data relevant to the approach.

Sort [100,23,13,141,2,20,15]

Sort [100,23,13,141,2,20,15]

Desired approach: Don’t look at the numbers except to compare them.

Sort [100,23,13,141,2,20,15]

Desired approach: Don’t look at the numbers except to compare them.

Input: A sequence of numbers .

Output: The sorted sequence.

x1, …,xn

Sort [100,23,13,141,2,20,15]

Desired approach: Don’t look at the numbers except to compare them.

Input: A sequence of numbers .

Output: The sorted sequence.

x1, …,xn

Not what we wanted. 

 queriesn

Sort [100,23,13,141,2,20,15]

Desired approach: Don’t look at the numbers except to compare them.

Input: A sequence of numbers .

Output: The sorted sequence.

x1, …,xn

Not what we wanted. 

 queriesn

Input: A sequence of bits with the promise that there

exists such that .

Output: The sequence such that .

{ bi,j}
(i,j)�� (

[n]
2)

x1, …,xn bi,j = 0 �� x i �� x j

i1, …, in xi1 �� xi2 �� … �� xin

Factor 14017

Factor 14017

101 mod 14017 = 10
102 mod 14017 = 100
103 mod 14017 = 1000
104 mod 14017 =10000
105 mod 14017 = 1881
106 mod 14017 = 4793
107 mod 14017 = 5879
108 mod 14017 = 2722

��

106890 mod 14017= 1

Factor 14017

101 mod 14017 = 10
102 mod 14017 = 100
103 mod 14017 = 1000
104 mod 14017 =10000
105 mod 14017 = 1881
106 mod 14017 = 4793
107 mod 14017 = 5879
108 mod 14017 = 2722

��

106890 mod 14017= 1

If we can find the period (6890 above), we can factor.

Factor 14017

101 mod 14017 = 10
102 mod 14017 = 100
103 mod 14017 = 1000
104 mod 14017 =10000
105 mod 14017 = 1881
106 mod 14017 = 4793
107 mod 14017 = 5879
108 mod 14017 = 2722

��

106890 mod 14017= 1

If we can find the period (6890 above), we can factor.

Ideal approach: Find the period only by computing elements of the sequence with no further
involvement of 14017.

Factor 14017

101 mod 14017 = 10
102 mod 14017 = 100
103 mod 14017 = 1000
104 mod 14017 =10000
105 mod 14017 = 1881
106 mod 14017 = 4793
107 mod 14017 = 5879
108 mod 14017 = 2722

��

106890 mod 14017= 1

If we can find the period (6890 above), we can factor.

Ideal approach: Find the period only by computing elements of the sequence with no further
involvement of 14017.

Factor 14017

101 mod 14017 = 10
102 mod 14017 = 100
103 mod 14017 = 1000
104 mod 14017 =10000
105 mod 14017 = 1881
106 mod 14017 = 4793
107 mod 14017 = 5879
108 mod 14017 = 2722

��

106890 mod 14017= 1

If we can find the period (6890 above), we can factor.

Input: A sequence of numbers in the range with the promise that
the th element is . (and are unknown.)

Output: The period of the input sequence.

[M]
i ai mod N a N

Ideal approach: Find the period only by computing elements of the sequence with no further
involvement of 14017.

Factor 14017

101 mod 14017 = 10
102 mod 14017 = 100
103 mod 14017 = 1000
104 mod 14017 =10000
105 mod 14017 = 1881
106 mod 14017 = 4793
107 mod 14017 = 5879
108 mod 14017 = 2722

��

106890 mod 14017= 1

If we can find the period (6890 above), we can factor.

Input: A sequence of numbers in the range with the promise that
the th element is . (and are unknown.)

Output: The period of the input sequence.

[M]
i ai mod N a N

Ideal approach: Find the period only by computing elements of the sequence with no further
involvement of 14017.

Can still use a, .N

Factor 14017

101 mod 14017 = 10
102 mod 14017 = 100
103 mod 14017 = 1000
104 mod 14017 =10000
105 mod 14017 = 1881
106 mod 14017 = 4793
107 mod 14017 = 5879
108 mod 14017 = 2722

��

106890 mod 14017= 1

If we can find the period (6890 above), we can factor.

Ideal approach: Find the period only by computing elements of the sequence with no further
involvement of 14017.

Factor 14017

101 mod 14017 = 10
102 mod 14017 = 100
103 mod 14017 = 1000
104 mod 14017 =10000
105 mod 14017 = 1881
106 mod 14017 = 4793
107 mod 14017 = 5879
108 mod 14017 = 2722

��

106890 mod 14017= 1

If we can find the period (6890 above), we can factor.

Input: A periodic sequence of numbers in the range such that the
elements in a period are all distinct.

Output: The period of the input sequence.

[N]

Ideal approach: Find the period only by computing elements of the sequence with no further
involvement of 14017.

Factor 14017

101 mod 14017 = 10
102 mod 14017 = 100
103 mod 14017 = 1000
104 mod 14017 =10000
105 mod 14017 = 1881
106 mod 14017 = 4793
107 mod 14017 = 5879
108 mod 14017 = 2722

��

106890 mod 14017= 1

If we can find the period (6890 above), we can factor.

Input: A periodic sequence of numbers in the range such that the
elements in a period are all distinct.

Output: The period of the input sequence.

[N]

Ideal approach: Find the period only by computing elements of the sequence with no further
involvement of 14017.

Requires
 queries.

�� (N)

Factor 14017

101 mod 14017 = 10
102 mod 14017 = 100
103 mod 14017 = 1000
104 mod 14017 =10000
105 mod 14017 = 1881
106 mod 14017 = 4793
107 mod 14017 = 5879
108 mod 14017 = 2722

��

106890 mod 14017= 1

If we can find the period (6890 above), we can factor.

Input: A periodic sequence of numbers in the range such that the
elements in a period are all distinct.

Output: The period of the input sequence.

[N]

Ideal approach: Find the period only by computing elements of the sequence with no further
involvement of 14017.

Requires
 queries.

�� (N)
But only

 queries on a quantum computer.

O(log logN)

Another example

Another example

Another example

Find parameters that minimize the loss.

Another example

Find parameters that minimize the loss.

loss: �� n �	 ��

Another example

Find parameters that minimize the loss.

loss: �� n �	 ��
Easy to compute .loss

Making it a query problem

Making it a query problem

• Think of the input as { loss(x)} x�� �� n

Making it a query problem

• Think of the input as { loss(x)} x�� �� n

• Easy to compute Querying the input is doable.loss�

Making it a query problem

• Think of the input as { loss(x)} x�� �� n

• Easy to compute Querying the input is doable.loss�

• But the popular algorithm for this is Gradient Descent.

Making it a query problem

• Think of the input as { loss(x)} x�� �� n

• Easy to compute Querying the input is doable.loss�

• But the popular algorithm for this is Gradient Descent.

• Finding given query access to :�� f f

Making it a query problem

• Think of the input as { loss(x)} x�� �� n

• Easy to compute Querying the input is doable.loss�

• But the popular algorithm for this is Gradient Descent.

• Finding given query access to :�� f f

• Requires queries.�� (n)

Making it a query problem

• Think of the input as { loss(x)} x�� �� n

• Easy to compute Querying the input is doable.loss�

• But the popular algorithm for this is Gradient Descent.

• Finding given query access to :�� f f

• Requires queries.�� (n)

• Or 1 query with a quantum computer.

Making it a query problem

• Think of the input as { loss(x)} x�� �� n

• Easy to compute Querying the input is doable.loss�

• But the popular algorithm for this is Gradient Descent.

• Finding given query access to :�� f f

• Requires queries.�� (n)

• Or 1 query with a quantum computer.

• Finding given access to the network for is easy.�� f f

Making it a query problem

• Think of the input as { loss(x)} x�� �� n

• Easy to compute Querying the input is doable.loss�

• But the popular algorithm for this is Gradient Descent.

• Finding given query access to :�� f f

• Requires queries.�� (n)

• Or 1 query with a quantum computer.

• Finding given access to the network for is easy.�� f f

• Think of the input as { (loss(x), �� loss(x))} x�� �� n

First-Order Convex Optimization
Joint work with Ankit Garg, Robin Kothari and Praneeth Netrapalli.

First-Order Optimization

First-Order Optimization

Input: for a continuous .

Output:

{ (f(x), �� f(x))} x���� n,��x���� 1 f

argmin
x�� B

f(x)

First-Order Optimization

Input: for a continuous .

Output:

{ (f(x), �� f(x))} x���� n,��x���� 1 f

argmin
x�� B

f(x)

Input: for a continuous .

Output:

{ (f(x), �� f(x))} x���� n,��x���� 1 f

x�
 �� B such that f(x�
) �� min
x�� B

f(x) + ��

First-Order Optimization

Input: for a continuous .

Output:

{ (f(x), �� f(x))} x���� n,��x���� 1 f

argmin
x�� B

f(x)

Input: for a continuous .

Output:

{ (f(x), �� f(x))} x���� n,��x���� 1 f

x�
 �� B such that f(x�
) �� min
x�� B

f(x) + ��

Input: for a continuous with .

Output:

{ (f(x), �� f(x))} x�� B f ���� f(x)�� �� 1

x�
 �� B such that f(x�
) �� min
x�� B

f(x) + ��

First-Order Optimization

Input: for a continuous .

Output:

{ (f(x), �� f(x))} x���� n,��x���� 1 f

argmin
x�� B

f(x)

Input: for a continuous .

Output:

{ (f(x), �� f(x))} x���� n,��x���� 1 f

x�
 �� B such that f(x�
) �� min
x�� B

f(x) + ��

Input: for a continuous with .

Output:

{ (f(x), �� f(x))} x�� B f ���� f(x)�� �� 1

x�
 �� B such that f(x�
) �� min
x�� B

f(x) + ��

Doable with queries.
(

1 +
1

��)

n

First-Order Convex Optimization

First-Order Convex Optimization

Input: for a convex with .

Output:

{ (f(x), �� f(x))} x�� B f ���� f(x)�� �� 1

x�
 �� B such that f(x�
) �� min
x�� B

f(x) + ��

First-Order Convex Optimization

Input: for a convex with .

Output:

{ (f(x), �� f(x))} x�� B f ���� f(x)�� �� 1

x�
 �� B such that f(x�
) �� min
x�� B

f(x) + ��

Doable with queries.min
{

n log
(

1

��)
,

1

��2 }

Theorem (Garg Kothari Netrapalli S `20)

The dimension-independent complexity of first-order convex
optimization is even for quantum algorithms.�� (1/��2)

The Task

Given: a convex region B, �rst-order oracle access to a convex
function f : Rn ! R.

Find x0 2 B s.t. f (x 0) � min
x2B

f (x) + �.

2

The Task

Given: a convex region B, �rst-order oracle access to a convex
function f : Rn ! R.

Find x0 2 B s.t. f (x 0) � min
x2B

f (x) + �.

2

The Task

Given: a convex region B, �rst-order oracle access to a convex
function f : Rn ! R.

Find x0 2 B s.t. f (x 0) � min
x2B

f (x) + �.

g 2 rf (x) , f (x + v) f (x) + hv, gi for all v

2

Known Algorithms I

1-dimensional fn:

3

Known Algorithms I

1-dimensional fn:

3

Known Algorithms I

1-dimensional fn:

3

Known Algorithms I

1-dimensional fn:

3

Known Algorithms I

1-dimensional fn:

3

Known Algorithms I

1-dimensional fn:

3

Known Algorithms I

1-dimensional fn:

log(1/�) steps.

3

Known Algorithms I

n-dimensional fn:

3

Known Algorithms I

n-dimensional fn:
(Center of Gravity Method)

3

Known Algorithms I

n-dimensional fn:
(Center of Gravity Method)

� log
�

Vol(B(1))
Vol(B(�))

�

= n log(1/�) steps.

3

Known Algorithms II

Center of Gravity Method

n log(1/�) steps. Projected Subgradient Descent

4

Known Algorithms II

Center of Gravity Method

n log(1/�) steps. Projected Subgradient Descent

x

x�

x0 = x �g x

4

Known Algorithms II

Center of Gravity Method

n log(1/�) steps. Projected Subgradient Descent

x

x�

x0 = x �g x

hg x , x � x i f (x) f (x �)

4

Known Algorithms II

Center of Gravity Method

n log(1/�) steps. Projected Subgradient Descent

x

x�

x0 = x �g x

a

c

b

hg x , x � x i f (x) f (x �)

4

Known Algorithms II

Center of Gravity Method

n log(1/�) steps. Projected Subgradient Descent

x

x�

x0 = x �g x

a2 = b 2 + c 2 2hb, ci

c

b

hg x , x � x i f (x) f (x �)

kx� x 0k2 � kx � xk 2 + � 2 2�(f (x) f (x �))

4

Known Algorithms II

Center of Gravity Method

n log(1/�) steps.

Projected Subgradient Descent

1/� 2 steps.

x

x�

x0 = x �g x

a2 = b 2 + c 2 2hb, ci

c

b

hg x , x � x i f (x) f (x �)

kx� x 0k2 � kx � xk 2 + � 2 2�(f (x) f (x �))

With � = �, kx � x 0k2 drops by � 2 when f (x) > f (x �) + �. 4

Known Algorithms II

Center of Gravity Method

n log(1/�) steps.

Projected Subgradient Descent

1/� 2 steps.

1/� 2 1/� 4
1

1/� 2

Projected Gradient Descent
� O(1/� 2)

Cen
te

r o
f G

ra
vit

y
M

et
ho

d

� O
(n

lo
g(

1/
�))

n

C
qu

an
tu

m
(n

,�
)

4

Known Algorithms II

Center of Gravity Method

n log(1/�) steps.

Projected Subgradient Descent

1/� 2 steps.

1/� 2 1/� 4
1

1/� 2

Projected Gradient Descent
� O(1/� 2)

Cen
te

r o
f G

ra
vit

y
M

et
ho

d

� O
(n

lo
g(

1/
�))

n

C
qu

an
tu

m
(n

,�
)

The dimension-independent complexity is at least 1/� [CCLW ‘19].

4

Known Algorithms II

Center of Gravity Method

n log(1/�) steps.

Projected Subgradient Descent

1/� 2 steps.

1/� 2 1/� 4
1

1/� 2

Projected Gradient Descent
� O(1/� 2)

Cen
te

r o
f G

ra
vit

y
M

et
ho

d

� O
(n

lo
g(

1/
�))

n

C
qu

an
tu

m
(n

,�
)

The dimension-independent complexity is at least 1/� 2 [GKNS ‘20].

4

Known Algorithms II

Center of Gravity Method

n log(1/�) steps.

Projected Subgradient Descent

1/� 2 steps.

1/� 2 1/� 4
1

1/� 2

Projected Gradient Descent
� O(1/� 2)

Cen
te

r o
f G

ra
vit

y
M

et
ho

d

� O
(n

lo
g(

1/
�))

n

C
qu

an
tu

m
(n

,�
)

1/� 2 is the correct complexity for n > 1/� 4 [GKNS ‘20].

4

Lower Bounds

The Base Function

f : Rn ! R

f (x) = max{x 1, x2, . . . , xn}.

6

The Base Function

f : Rn ! R

f (x) = max{x 1, x2, . . . , xn}.

Minimum = 1p
n
, at x =

�
 1p

n
, . . . , 1p

n

�
.

6

The Base Function

f : Rn ! R

f (x) = max{x 1, x2, . . . , xn}.

Minimum = 1p
n
, at x =

�
 1p

n
, . . . , 1p

n

�
.

If xi is a maximum, then ei is a subgradient.

6

Function Class

z 2 {+1, 1} n

fz(x) = max{z 1x1, z2x2, . . . , znxn}.

7

Function Class

z 2 {+1, 1} n

fz(x) = max{z 1x1, z2x2, . . . , znxn}.

Minimum = 1p
n
, at x =

�
 z1p

n
, . . . , znp

n

�
.

Set � = 0.9p
n
.

7

Function Class

z 2 {+1, 1} n

fz(x) = max{z 1x1, z2x2, . . . , znxn}.

Minimum = 1p
n
, at x =

�
 z1p

n
, . . . , znp

n

�
.

Set � = 0.9p
n
.

The behaviour of f

z1 z2 z3 z4 zn

0

x1 x2 x3 x4 xn

7

Function Class

z 2 {+1, 1} n

fz(x) = max{z 1x1, z2x2, . . . , znxn}.

Minimum = 1p
n
, at x =

�
 z1p

n
, . . . , znp

n

�
.

Set � = 0.9p
n
.

The behaviour of f

z1 z2 z3 z4 zn

0

x1 x2 x3 x4 xn

+

7

Function Class

z 2 {+1, 1} n

fz(x) = max{z 1x1, z2x2, . . . , znxn}.

Minimum = 1p
n
, at x =

�
 z1p

n
, . . . , znp

n

�
.

Set � = 0.9p
n
.

The behaviour of f

z1 z2 z3 z4 zn

0

x1 x2 x3 x4 xn

++

7

Function Class

z 2 {+1, 1} n

fz(x) = max{z 1x1, z2x2, . . . , znxn}.

Minimum = 1p
n
, at x =

�
 z1p

n
, . . . , znp

n

�
.

Set � = 0.9p
n
.

The behaviour of f

z1 z2 z3 z4 zn

0

x1 x2 x3 x4 xn

++

� 2 bits of z revealed per query.
7

Function Class

z 2 {+1, 1} n

fz(x) = max{z 1x1, z2x2, . . . , znxn}.

Minimum = 1p
n
, at x =

�
 z1p

n
, . . . , znp

n

�
.

Set � = 0.9p
n
.

The behaviour of f

z1 z2 z3 z4 zn

0

x1 x2 x3 x4 xn

++

7

Function Class

z 2 {+1, 1} n

fz(x) = max{z 1x1, z2x2, . . . , znxn}.

Minimum = 1p
n
, at x =

�
 z1p

n
, . . . , znp

n

�
.

Set � = 0.9p
n
.

The behaviour of f

z1 z2 z3 z4 zn

0

x1 x2 x3 x4 xn

++ +

7

Function Class

z 2 {+1, 1} n

fz(x) = max{z 1x1, z2x2, . . . , znxn}.

Minimum = 1p
n
, at x =

�
 z1p

n
, . . . , znp

n

�
.

Set � = 0.9p
n
.

The behaviour of f

z1 z2 z3 z4 zn

0

x1 x2 x3 x4 xn

++ +

Finding �-optimal point =) learning z.
7

Function Class

z 2 {+1, 1} n

fz(x) = max{z 1x1, z2x2, . . . , znxn}.

Minimum = 1p
n
, at x =

�
 z1p

n
, . . . , znp

n

�
.

Set � = 0.9p
n
.

The behaviour of f

z1 z2 z3 z4 zn

0

x1 x2 x3 x4 xn

++ +

Requires �(n) = �(1/� 2) queries.
7

Quantum Speedup

Belovs’ algorithm:
Given query access to ORs of z,

can �nd z in
p

n queries.

8

Lower Bounds

A Sequential Lower Bound

Forcing Sequentiality: II

fv1,v2,...,v k (x) = max{hv 1, xi, hv2, xi, hv 3, xi2, · · · , hv k , xi(k 1)}

where {v 1, . . . , vk } form an orthonormal set in R n.

10

Forcing Sequentiality: II

fv1,v2,...,v k (x) = max{hv 1, xi, hv2, xi, hv 3, xi2, · · · , hv k , xi(k 1)}

where {v 1, . . . , vk } form an orthonormal set in R n.

max{hv1, xi, hv2, xi, . . . , hvk , xi} takes a minimum value of
1
p

k
in the unit ball.

10

Forcing Sequentiality: II

fv1,v2,...,v k (x) = max{hv 1, xi, hv2, xi, hv 3, xi2, · · · , hv k , xi(k 1)}

where {v 1, . . . , vk } form an orthonormal set in R n.

max{hv1, xi, hv2, xi, . . . , hvk , xi} takes a minimum value of
1
p

k
in the unit ball.

 � 1/k 3/2 .

10

Forcing Sequentiality: II

fv1,v2,...,v k (x) = max{hv 1, xi, hv2, xi, hv 3, xi2, · · · , hv k , xi(k 1)}

where {v 1, . . . , vk } form an orthonormal set in R n.

max{hv1, xi, hv2, xi, . . . , hvk , xi} takes a minimum value of
1
p

k
in the unit ball.

 � 1/k 3/2 ,
q

log n
n .

10

Forcing Sequentiality: II

fv1,v2,...,v k (x) = max{hv 1, xi, hv2, xi, hv 3, xi2, · · · , hv k , xi(k 1)}

where {v 1, . . . , vk } form an orthonormal set in R n.

max{hv1, xi, hv2, xi, . . . , hvk , xi} takes a minimum value of
1
p

k
in the unit ball.

 � 1/k 3/2 ,
q

log n
n .

Want to say that each vector has to be learnt in order.

10

The Hybrid Argument

Let A be an algorithm making k 1 queries.

A Run of A

Make query to
max{hv1, xi, hv 2, xi, · · · , hv k , xi(k 1)}.

Make query to
max{hv1, xi, hv 2, xi, · · · , hv k , xi(k 1)}.

...
Make query to

max{hv1, xi, hv 2, xi, · · · , hv k , xi(k 1)}.

11

The Hybrid Argument

Let A be an algorithm making k 1 queries.

A Run of A

Make query to
max{hv1, xi, hv 2, xi, · · · , hv k , xi(k 1)}.

Make query to
max{hv1, xi, hv 2, xi, · · · , hv k , xi(k 1)}.

...
Make query to

max{hv1, xi, hv 2, xi, · · · , hv k , xi(k 1)}.

Once-Corrupted Run of A

Make query to
max{hv1, xi}.

Make query to
max{hv1, xi, hv 2, xi, · · · , hv k , xi(k 1)}.

...
Make query to

max{hv1, xi, hv 2, xi, · · · , hv k , xi(k 1)}.

11

The Hybrid Argument

Let A be an algorithm making k 1 queries.

Once-Corrupted Run of A

Make query to
max{hv1, xi}.

Make query to
max{hv1, xi, hv 2, xi, · · · , hv k , xi(k 1)}.

...
Make query to

max{hv1, xi, hv 2, xi, · · · , hv k , xi(k 1)}.

Twice-Corrupted Run of A

Make query to
max{hv1, xi}.

Make query to
max{hv1, xi, hv 2, xi }.

...
Make query to

max{hv1, xi, hv 2, xi, · · · , hv k , xi(k 1)}.

11

The Hybrid Argument

Let A be an algorithm making k 1 queries.

k 1-times Corrupted Run of A

Make query to
max{hv1, xi}.

Make query to
max{hv1, xi, hv 2, xi }.

...
Make query to

max{hv1, xi, hv 2, xi , · · · , hv k1 , xi (k 2)}.

11

Quantum Algorithms

• Can make queries in superposition.

• The state of the algorithm is represented by a vector.

• All quantum operations are unitary.

12

Quantum Algorithms

• Can make queries in superposition.

• The state of the algorithm is represented by a vector.

• All quantum operations are unitary.
Given two states 1 and 2 such that k 1 2k = c, then after
applying the same quantum operations on both, the resulting
states also have distance c.

12

NB

• Actual function used is slightly modi�ed to account for queries
outside the unit ball.

13

NB

• Actual function used is slightly modi�ed to account for queries
outside the unit ball.

• n can be as small as 1/� 6 for the above argument.

13

NB

• Actual function used is slightly modi�ed to account for queries
outside the unit ball.

• n can be as small as 1/� 6 for the above argument.

• Can bring n down to 1/� 4 using a clever trick from
“Complexity of Highly Parallel Non-Smooth Convex Optimization”
- Sébastien Bubeck, Qijia Jiang, Yin Tat Lee, Yuanzhi Li, Aaron Sidford

13

Smooth Convex Optimization

Higher-Order Convex Optimization

• Promise: f is convex,
p-times differentiable with r pf being Lp-Lipschitz.

• Query access to Of : x 7! (f (x), rf (x), r 2f (x), . . . , r pf (x)).

The Setting The Upper Bound The Lower Bound

p = 1 O(
p

L1/�)
Det: �(

p
L1/�)

Rand: �(
p

L1/�)
Quant: -

p = 2 O(7/2
p

L2/�)
Det: �(7/2

p
L2/�)

Rand: �(11/2
p

L2/�)
Quant: -

p O((3p+1)/2
p

Lp/�)
Det: �((3p+1)/2

p
Lp/�)

Rand: �((5p+1)/2
p

Lp/�)
Quant: -

[Bubeck Jiang Lee Li Sidford ‘19]
[Gasnikov Dvurechensky Gorbunov Vorontsova Selikhanovych Uribe ‘19]

[Jiang Wang Zhang ‘19]

9

Our Contribution

We show that neither randomized nor quantum algorithms can do any
better than deterministic algorithms.

8p 2 N, Q e�(D).

10

More about Query Complexity

Structure (for total Boolean functions f : {0, 1} n ! {0, 1})

Degree of a function f :

PARITY(x1, x2, x3) = 4x 1x2x3 2x 1x2 2x 1x3 2x 2x3 + x 1 + x 2 + x 3.

Easy to prove: Query complexity of f degree of f .

Nisan Szegedy ‘92

Degree of f � query complexity of f . (degree of f) 4.

Query complexity of f is large , Degree of f is large.

Also randomized query complexity, quantum query complexity,
approximate degree, certi�cate complexity, sensitivity.

12

