
A Simple and Efficient
Parallel Laplacian Solver

Yibin Zhao
University of Toronto

Joint work with Sushant Sachdeva

Solving Linear Systems

Given find .

If A is a Laplacian, it’s called a Laplacian linear system

[Spielman-Teng ‘04] Laplacian linear systems can be solved in nearly linear time

[Peng-Spielman ‘13] Laplacian linear systems can be solved in parallel with
nearly linear work and polylog depth

Laplacians

Symmetric matrix, associated with a weighted, undirected graph

Quadratic form

Laplacians

Symmetric matrix, associated with a weighted, undirected graph

Quadratic form

 : Incident matrix for the (multi-)graph

Application of Laplacian Solvers

PDEs via Finite Element Methods [Str85, BHV08]

IPM for Optimization [KRS15, CMSV16]

Learning on graph [ZGL03, ZBLW04, BMN04]

Flow algorithms [DS08, CKMST11, KMP12, LS14, DGGLPSY22, LKLPGS22]

Graph sparsification [SS08, LKP12]

Related Works

Work Depth Technique

[Peng-Spielman ‘13] Repeated Squaring +
Expander

[Lee-Peng-Spielman ‘15,
Kyng-L-P-S-Sachdeva ‘16]

Block Cholesky factorization +
Sparsification + Expander

The work and depth are for constant approximation. An additional factor
for both work and depth is required for -approximate solution.

Related Works

Work Depth Technique

[Peng-Spielman ‘13] Repeated Squaring +
Expander

[Lee-Peng-Spielman ‘15,
Kyng-L-P-S-Sachdeva ‘16]

Block Cholesky factorization +
Sparsification + Expander

The work and depth are for constant approximation. An additional factor
for both work and depth is required for -approximate solution.

Related Works

Work Depth Technique

[Peng-Spielman ‘13] Repeated Squaring +
Expander

[Lee-Peng-Spielman ‘15,
Kyng-L-P-S-Sachdeva ‘16]

Block Cholesky factorization +
Sparsification + Expander

[Kyng-Sachdeva ‘16] Sparse Cholesky factorization

The work and depth are for constant approximation. An additional factor
for both work and depth is required for -approximate solution.

Related Works

Work Depth Technique

[Peng-Spielman ‘13] Repeated Squaring +
Expander

[Lee-Peng-Spielman ‘15,
Kyng-L-P-S-Sachdeva ‘16]

Block Cholesky factorization +
Sparsification + Expander

[Kyng-Sachdeva ‘16] Sparse Cholesky factorization

[Sachdeva-Z ‘22] Sparse block Cholesky
factorization

The work and depth are for constant approximation. An additional factor
for both work and depth is required for -approximate solution.

Background

Positive Semi-Definite (PSD) Matrices

 is PSD if is symmetric and for all ,

Laplacians are PSD

Define a natural norm

Approximately Solving a System

A -approximate solution to is s.t.

Recall

This suffices for most applications

Parallel Model

Work: The running time on a single node

Depth: The running time given unlimited number node with shared memory

The “longest dependency” in the computation

Concurrent Read Exclusive Write (CREW) PRAM

Parallel Primitives

Linear Operator: One can apply a linear operator with nonzero entries to a
column vector of compatible dimension in work and depth

Weighted Sampling [HS19]: For items, there is an algorithm that takes
work and depth preprocessing and work and depth each query

Graph representation [BM10]: One can transform between an adjacency list
representation and edge list representation of a (multi-)graph in work
and depth

Our Result

[Sachdeva-Z ‘22] Can find an -approximate solution to a Laplacian system in

 work and

 depth

Approximating PSD Matrices

If is PSD, we write

This induces a partial order

 if

Spectral approximation

 if

Iterative Refinement

To solve approximately,

Find a preconditioner such that and easy to invert

Solve by

Block Cholesky Factorization

Block Cholesky Factorization

Schur Complement:

Block Cholesky Factorization

Schur Complement:

Block Cholesky Factorization

Schur Complement:

Fact: Schur Complement of a Laplacian is also Laplacian

Solving Laplacian System

Solving Laplacian System

Apply Iterative Refinement for iterations using this
factorization as preconditioner

Solving Laplacian System

1. can be inverted easily. Trivial if size is constant
2. Each can be inverted easily
3. Each is sparse

Apply Iterative Refinement for iterations using this
factorization as preconditioner

Solving Laplacian System

1. can be inverted easily. Trivial if size is constant
2. Each can be inverted easily
3. Each is sparse

Apply Iterative Refinement for iterations using this
factorization as preconditioner

Our Algorithm

Strongly Diagonally Dominant Blocks

A matrix is said to be -Diagonally Dominant (DD) if

Strongly Diagonally Dominant Blocks

A matrix is said to be -Diagonally Dominant (DD) if

[LPS ‘15, KLPSS ‘16] Can find a O(1)-DD subblock with 1/O(1) fraction size of a
multi-graph in work and depth w.h.p.

[LPS ‘15, KLPSS ‘16] A system of O(1)-DD matrix can be solved -approximately
in iterations using iterative refinement

For simplicity, we pick the smallest possible: 5-DD

Our Algorithm

Sparse Block Cholesky Factorization

Iterate until the remaining matrix has vertices

Find a 5-DD subblock F to eliminate

Sample the Schur complement estimation created by eliminating F

Solving Laplacian System

1. can be inverted easily. Trivial if size is constant
2. Each can be inverted easily
3. Each is sparse

Apply Iterative Refinement for iterations using this
factorization as preconditioner

Problem of (Block) Cholesky Factorization

Fill-in phenomenon

Problem of (Block) Cholesky Factorization

Fill-in phenomenon

Schur Complement Approximation

Approach: Random Walk Sampling

[SZ ‘22] There is an unbiased estimation of multi-graph Schur Complement using
“Terminal Random Walk” on the multi-graph.

Schur Complement Approximation

Approach: Random Walk Sampling

[SZ ‘22] There is an unbiased estimation of multi-graph Schur Complement using
“Terminal Random Walk” on the multi-graph.

Schur Complement Approximation

Approach: Random Walk Sampling

[SZ ‘22] There is an unbiased estimation of multi-graph Schur Complement using
“Terminal Random Walk” on the multi-graph.

Schur Complement Approximation

Approach: Random Walk Sampling

[SZ ‘22] There is an unbiased estimation of multi-graph Schur Complement using
“Terminal Random Walk” on the multi-graph.

Schur Complement Approximation

Approach: Random Walk Sampling

[SZ ‘22] There is an unbiased estimation of multi-graph Schur Complement using
“Terminal Random Walk” on the multi-graph.

1. If eliminating a 5-DD block, each RW has length and total length of
all RWs is O(m) w.h.p.

2. The number of multi-edges in Schur is at most that of the multi-graph
3. RW samples can be carried out independently in parallel

Simple Matrix Concentration: Bernstein’s inequality

For independent random symmetric matrices s.t.

and

Let total variance be

For all

Simple Matrix Concentration: Bernstein’s inequality

For independent random symmetric matrices s.t.

and

Let total variance be

For all

Effective Resistance

The effective resistance of two distinct vertices u,v in a graph with Laplacian … is

[Klein-Randić ‘93] Effective Resistance is a distance. For any vertices x,y,z,

For any distinct

 -boundedness w.r.t. Laplacians

A multi-edge is -bounded w.r.t. a Laplacian if

 -boundedness w.r.t. Laplacians

A multi-edge is -bounded w.r.t. a Laplacian if

If all multi-edges in a graph is -bounded w.r.t. its Laplacian , then for each
sampled multi-edge

A multi-edge is -bounded w.r.t. a Laplacian if

If all multi-edges in a graph is -bounded w.r.t. its Laplacian , then for each
sampled multi-edge

 -boundedness is (almost) preserved!

 -boundedness w.r.t. Laplacians

 -boundedness w.r.t. Laplacians

A multi-edge is -bounded w.r.t. a Laplacian if

To achieve -boundedness initially: split each edge to 1/ copies of multi-edges
with times its original weight

Recall we want roughly

Matrix Concentration

Suffices for to achieve

Aside: Matrix Martingale

Recall: sampling procedure is unbiased.

Additive view of Block Cholesky Factorization, generalized from [KS ‘16]

Suffices to set

Summing Up

Sparse Block Cholesky Factorization

Iterate until the remaining matrix has vertices

Find a 5-DD subblock F to eliminate

Sample the Schur complement estimation created by eliminating F

Summing Up

Sparse Block Cholesky Factorization

#multi-edges =

Iterate until the remaining matrix has vertices

Find a 5-DD subblock F to eliminate

Sample the Schur complement estimation created by eliminating F

each O(#multi-edges) work, O(log(#multi-edges)) depth w.h.p.

Total: work and depth

Further Results

Generalizes to a wider range of matrices:

SDD, Magnetic Laplacian, HDD, Connection Laplacian, bDD

Direct Applications (all in parallel):

1. Approximate Schur Complement of any fixed subset
2. Spectral sparsification, leverage score estimation

Future Directions

 depth?

Intermediate: construction, apply?

Directed Laplacian in polylog depth?

Simple algorithm in CONGEST?

Intermediate: EREW PRAM

Flow algorithms in parallel?

Thanks!

