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Solving Linear Systems

Given          find     . 

If A is a Laplacian, it’s called a Laplacian linear system

[Spielman-Teng ‘04] Laplacian linear systems can be solved in nearly linear time

[Peng-Spielman ‘13] Laplacian linear systems can be solved in parallel with 
nearly linear work and polylog depth



Laplacians

Symmetric              matrix, associated with a weighted, undirected graph 

Quadratic form



Laplacians

Symmetric              matrix, associated with a weighted, undirected graph 

Quadratic form

                             : Incident matrix for the (multi-)graph



Application of Laplacian Solvers

PDEs via Finite Element Methods [Str85, BHV08]

IPM for Optimization [KRS15, CMSV16]

Learning on graph [ZGL03, ZBLW04, BMN04]

Flow algorithms [DS08, CKMST11, KMP12, LS14, DGGLPSY22, LKLPGS22]

Graph sparsification [SS08, LKP12]



Related Works

Work Depth Technique

[Peng-Spielman ‘13] Repeated Squaring + 
Expander

[Lee-Peng-Spielman ‘15,
Kyng-L-P-S-Sachdeva ‘16]

Block Cholesky factorization + 
Sparsification + Expander

The work and depth are for constant approximation. An additional                   factor 
for both work and depth is required for   -approximate solution.  
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Background



Positive Semi-Definite (PSD) Matrices

     is PSD if     is symmetric and for all    , 

 

Laplacians are PSD

Define a natural norm



Approximately Solving a System

A   -approximate solution to                  is      s.t.

   

Recall

This suffices for most applications



Parallel Model

Work: The running time on a single node

Depth: The running time given unlimited number node with shared memory

The “longest dependency” in the computation

Concurrent Read Exclusive Write (CREW) PRAM



Parallel Primitives

Linear Operator: One can apply a linear operator with      nonzero entries to a 
column vector of compatible dimension in            work and                   depth

Weighted Sampling [HS19]: For     items, there is an algorithm that takes      
work and                 depth preprocessing and          work and depth each query

      

Graph representation [BM10]: One can transform between an adjacency list 
representation and edge list representation of a (multi-)graph in            work      
and                  depth



Our Result

[Sachdeva-Z ‘22] Can find an    -approximate solution to a Laplacian system in 

                                                                          work and

                                                                          depth 



Approximating PSD Matrices

If     is PSD, we write

 

This induces a partial order

                                                        if

Spectral approximation

                                                        if 



Iterative Refinement

To solve                  approximately, 

Find a preconditioner      such that                       and easy to invert

Solve                                by 
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Block Cholesky Factorization

  

Schur Complement:

Fact: Schur Complement of a Laplacian is also Laplacian



Solving Laplacian System
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Strongly Diagonally Dominant Blocks

A matrix      is said to be    -Diagonally Dominant (DD) if



Strongly Diagonally Dominant Blocks

A matrix      is said to be    -Diagonally Dominant (DD) if

[LPS ‘15, KLPSS ‘16] Can find a O(1)-DD subblock with 1/O(1) fraction size of a 
multi-graph in            work and                 depth w.h.p.

[LPS ‘15, KLPSS ‘16] A system of O(1)-DD matrix can be solved   -approximately 
in                 iterations using iterative refinement

For simplicity, we pick the smallest possible: 5-DD



Our Algorithm

Sparse Block Cholesky Factorization

Iterate until the remaining matrix has            vertices

Find a 5-DD subblock F to eliminate

Sample the Schur complement estimation created by eliminating F



Solving Laplacian System

1.       can be inverted easily. Trivial if size is constant
2. Each      can be inverted easily
3. Each      is sparse

Apply Iterative Refinement for                  iterations using this 
factorization as preconditioner  
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Approach: Random Walk Sampling

[SZ ‘22] There is an unbiased estimation of multi-graph Schur Complement using 
“Terminal Random Walk” on the multi-graph. 
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Schur Complement Approximation

Approach: Random Walk Sampling

[SZ ‘22] There is an unbiased estimation of multi-graph Schur Complement using 
“Terminal Random Walk” on the multi-graph. 

1. If eliminating a 5-DD block, each RW has length                 and total length of 
all RWs is O(m) w.h.p.

2. The number of multi-edges in Schur is at most that of the multi-graph
3. RW samples can be carried out independently in parallel



Simple Matrix Concentration: Bernstein’s inequality

For independent random symmetric matrices                       s.t. 

and

Let total variance be

For all 
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Effective Resistance

The effective resistance of two distinct vertices u,v in a graph with Laplacian … is

[Klein-Randić ‘93] Effective Resistance is a distance. For any vertices x,y,z,

For any distinct  
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A multi-edge    is   -bounded w.r.t. a Laplacian     if

If all multi-edges in a graph is   -bounded w.r.t. its Laplacian    , then for each 
sampled multi-edge

    -boundedness is (almost) preserved! 
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    -boundedness w.r.t. Laplacians

A multi-edge    is   -bounded w.r.t. a Laplacian     if

To achieve   -boundedness initially: split each edge to 1/    copies of multi-edges 
with     times its original weight

Recall we want                               roughly 



Matrix Concentration

Suffices for                             to achieve



Aside: Matrix Martingale

Recall: sampling procedure is unbiased. 

Additive view of Block Cholesky Factorization, generalized from [KS ‘16]

Suffices to set



Summing Up

Sparse Block Cholesky Factorization
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Summing Up

Sparse Block Cholesky Factorization

#multi-edges = 

Iterate until the remaining matrix has            vertices

Find a 5-DD subblock F to eliminate

Sample the Schur complement estimation created by eliminating F

each O(#multi-edges) work, O(log(#multi-edges)) depth w.h.p.

Total:                          work and                    depth



Further Results

Generalizes to a wider range of matrices: 

SDD, Magnetic Laplacian, HDD, Connection Laplacian, bDD

Direct Applications (all in parallel):

1. Approximate Schur Complement of any fixed subset
2. Spectral sparsification, leverage score estimation



Future Directions

                  depth?

Intermediate:                   construction,                 apply?

Directed Laplacian in polylog depth?

Simple algorithm in CONGEST?

Intermediate: EREW PRAM

Flow algorithms in parallel?



Thanks!


