A Simple and Efficient Parallel Laplacian Solver

Yibin Zhao University of Toronto

Joint work with Sushant Sachdeva

Solving Linear Systems

$$Ax = b$$

Given A, b find x .

If A is a Laplacian, it's called a Laplacian linear system

[Spielman-Teng '04] Laplacian linear systems can be solved in nearly linear time

[Peng-Spielman '13] Laplacian linear systems can be solved in parallel with nearly linear work and polylog depth

Laplacians

Symmetric $n \times n$ matrix, associated with a weighted, undirected graph

$$G = (V, E, w) \qquad n = |V|, \quad m = |E|, \quad w : E \mapsto \mathbb{R}_+$$
$$L = D - A$$

Quadratic form

$$L = \sum_{(u,v)\in E} w_{uv} b_{uv} b_{uv}^T$$
$$b_{uv} = e_u - e_v$$

Laplacians

Symmetric $n \times n$ matrix, associated with a weighted, undirected graph

$$G = (V, E, w) \qquad n = |V|, \quad m = |E|, \quad w : E \mapsto \mathbb{R}_+$$
$$L = D - A$$

Quadratic form

$$L = BWB^T$$

B : Incident matrix for the (multi-)graph

Application of Laplacian Solvers

PDEs via Finite Element Methods [Str85, BHV08]

IPM for Optimization [KRS15, CMSV16]

Learning on graph [ZGL03, ZBLW04, BMN04]

Flow algorithms [DS08, CKMST11, KMP12, LS14, DGGLPSY22, LKLPGS22]

Graph sparsification [SS08, LKP12]

	Work	Depth	Technique
[Peng-Spielman '13]	$\widetilde{O}(m)$	$O(\log^c n)$	Repeated Squaring + Expander
[Lee-Peng-Spielman '15, Kyng-L-P-S-Sachdeva '16]	$\widetilde{O}(m)$	$O(\log^6 n \log^4 \log n)$	Block Cholesky factorization + Sparsification + Expander

	Work	Depth	Technique
[Peng-Spielman '13]	$\widetilde{O}(m)$	$O(\log^c n)$	Repeated Squaring + Expander
[Lee-Peng-Spielman '15, Kyng-L-P-S-Sachdeva '16]	$\widetilde{O}(m)$	$O(\log^6 n \log^4 \log n)$	Block Cholesky factorization + Sparsification + Expander

	Work	Depth	Technique
[Peng-Spielman '13]	$\widetilde{O}(m)$	$O(\log^c n)$	Repeated Squaring + Expander
[Lee-Peng-Spielman '15, Kyng-L-P-S-Sachdeva '16]	$\widetilde{O}(m)$	$O(\log^6 n \log^4 \log n)$	Block Cholesky factorization + Sparsification + Expander
[Kyng-Sachdeva '16]	$\widetilde{O}(m)$		Sparse Cholesky factorization

	Work	Depth	Technique
[Peng-Spielman '13]	$\widetilde{O}(m)$	$O(\log^c n)$	Repeated Squaring + Expander
[Lee-Peng-Spielman '15, Kyng-L-P-S-Sachdeva '16]	$\widetilde{O}(m)$	$O(\log^6 n \log^4 \log n)$	Block Cholesky factorization + Sparsification + Expander
[Kyng-Sachdeva '16]	$\widetilde{O}(m)$		Sparse Cholesky factorization
[Sachdeva-Z '22]	$\widetilde{O}(m)$	$O(\log^2 n \log \log n)$	Sparse block Cholesky factorization

Background

Positive Semi-Definite (PSD) Matrices

 $A \text{ is PSD if } A \text{ is symmetric and for all } \mathcal{X}\text{,}$

$$x^{\top}Ax \ge 0$$

Laplacians are PSD

Define a natural norm

$$\|x\|_A = \sqrt{x^\top A x}$$

Approximately Solving a System

A ϵ -approximate solution to Lx=b is \widetilde{x} s.t.

$$\|\widetilde{x} - x\|_L \le \epsilon \|x\|_L$$

Recall
$$||x||_A = \sqrt{x^\top A x}$$

This suffices for most applications

Parallel Model

Work: The running time on a single node

Depth: The running time given unlimited number node with shared memory

The "longest dependency" in the computation

Concurrent Read Exclusive Write (CREW) PRAM

Parallel Primitives

Linear Operator: One can apply a linear operator with m nonzero entries to a column vector of compatible dimension in O(m) work and $O(\log m)$ depth

Weighted Sampling [HS19]: For n items, there is an algorithm that takes O(n) work and $O(\log n)$ depth preprocessing and O(1) work and depth each query

Graph representation [BM10]: One can transform between an adjacency list representation and edge list representation of a (multi-)graph in O(m) work and $O(\log m)$ depth

Our Result

[Sachdeva-Z '22] Can find an ϵ -approximate solution to a Laplacian system in $O(m \log^3 n \log \log n \log(1/\epsilon))$ work and $O(\log^2 n \log \log n \log(1/\epsilon))$ depth

Approximating PSD Matrices

If $A \ensuremath{\mathsf{is}}\xspace \mathsf{PSD},$ we write

 $A \succcurlyeq 0$

This induces a partial order

$$A \succcurlyeq B$$
 if $A - B \succcurlyeq 0$

Spectral approximation

$$A \approx_{\epsilon} B$$
 if $e^{\epsilon}B \succcurlyeq A \succcurlyeq e^{-\epsilon}B$

Iterative Refinement

To solve Ax = b approximately,

Find a preconditioner B such that $A\approx_{O(1)}B$ and easy to invert Solve $B^{-1}Ax=B^{-1}b$ by

$$x^{(i+1)} \leftarrow x^{(i)} - \frac{1}{2}B^{-1}(Ax^{(i)} - b)$$

$$F \quad T$$
$$L = \begin{pmatrix} A & B \\ B^T & C \end{pmatrix} \quad T$$

$$V = F \cup T$$

$$F \quad T$$

$$L = \begin{pmatrix} A & B \\ B^T & C \end{pmatrix} \quad F$$

$$V = F \cup T$$

$$L = \begin{pmatrix} I & 0 \\ B^{\top} A^{-1} & I \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & SC(L,T) \end{pmatrix} \begin{pmatrix} I & A^{-1}B \\ 0 & I \end{pmatrix}$$

Schur Complement: $SC(L,T) = C - B^{\top}A^{-1}B$

$$F \quad T$$

$$L = \begin{pmatrix} A & B \\ B^T & C \end{pmatrix} \quad F$$

$$V = F \cup T$$

$$L^{+} = \begin{pmatrix} I & -A^{-1}B \\ 0 & I \end{pmatrix} \begin{pmatrix} A^{-1} & 0 \\ 0 & SC(L,T)^{+} \end{pmatrix} \begin{pmatrix} I & 0 \\ -B^{\top}A^{-1} & I \end{pmatrix}$$

Schur Complement: $SC(L,T) = C - B^{\top}A^{-1}B$

$$F \quad T$$

$$L = \begin{pmatrix} A & B \\ B^T & C \end{pmatrix} \quad F$$

$$V = F \cup T$$

$$L^{+} = \begin{pmatrix} I & -A^{-1}B \\ 0 & I \end{pmatrix} \begin{pmatrix} A^{-1} & 0 \\ 0 & SC(L,T)^{+} \end{pmatrix} \begin{pmatrix} I & 0 \\ -B & A^{-1} & I \end{pmatrix}$$

Schur Complement: $SC(L,T) = C - B^{\top}A^{-1}B$

Fact: Schur Complement of a Laplacian is also Laplacian

$$L = \begin{pmatrix} I & 0 \\ B^{\top}A^{-1} & I \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & SC(L,T) \end{pmatrix} \begin{pmatrix} I & A^{-1}B^{\top} \\ 0 & I \end{pmatrix}$$
$$\overset{\mathcal{U}}{L_2}$$
$$\vdots$$
$$\vdots$$
$$L_d$$

 $L \approx_{O(1)} U_1^\top U_2^\top \cdots U_d^\top L_d U_d \cdots U_2 U_1$

$$L = \begin{pmatrix} I & 0 \\ B^{\top}A^{-1} & I \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & SC(L,T) \end{pmatrix} \begin{pmatrix} I & A^{-1}B \\ 0 & I \end{pmatrix}$$
$$L \approx_{O(1)} U_1^{\top} U_2^{\top} \cdots U_d^{\top} L_d U_d \cdots U_2 U_1$$

Apply Iterative Refinement for $O(\log \epsilon^{-1})$ iterations using this factorization as preconditioner

$$L = \begin{pmatrix} I & 0 \\ B^{\top}A^{-1} & I \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & SC(L,T) \end{pmatrix} \begin{pmatrix} I & A^{-1}B \\ 0 & I \end{pmatrix}$$
$$L \approx_{O(1)} U_1^{\top} U_2^{\top} \cdots U_d^{\top} L_d U_d \cdots U_2 U_1$$

Apply Iterative Refinement for $O(\log e^{-1})$ iterations using this factorization as preconditioner

- 1. L_d can be inverted easily. Trivial if size is constant
- 2. Each A_i can be inverted easily
- 3. Each L_i is sparse

$$L = \begin{pmatrix} I & 0 \\ B^{\top}A^{-1} & I \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & SC(L,T) \end{pmatrix} \begin{pmatrix} I & A^{-1}B \\ 0 & I \end{pmatrix}$$
$$L \approx_{O(1)} U_1^{\top} U_2^{\top} \cdots U_d^{\top} L_d U_d \cdots U_2 U_1$$

Apply Iterative Refinement for $O(\log \epsilon^{-1})$ iterations using this factorization as preconditioner

 L_d can be inverted easily. Trivial if size is constant

- 2. Each A_i can be inverted easily
- 3. Each L_i is sparse

Our Algorithm

Strongly Diagonally Dominant Blocks

A matrix A is said to be $\,\alpha\mbox{-Diagonally Dominant (DD)}$ if

$$A_{ii} \ge \alpha \sum_{j \neq i} |A_{ij}|$$

Strongly Diagonally Dominant Blocks

A matrix A is said to be $\alpha\mbox{-Diagonally Dominant (DD) if}$

$$A_{ii} \ge \alpha \sum_{j \neq i} |A_{ij}|$$

[LPS '15, KLPSS '16] Can find a O(1)-DD subblock with 1/O(1) fraction size of a multi-graph in O(m) work and $O(\log m)$ depth w.h.p.

[LPS '15, KLPSS '16] A system of O(1)-DD matrix can be solved ϵ -approximately in $O(\log \epsilon^{-1})$ iterations using iterative refinement

For simplicity, we pick the smallest possible: 5-DD

Our Algorithm

Sparse Block Cholesky Factorization

Iterate until the remaining matrix has O(1) vertices

 $O(\log n)$

Find a 5-DD subblock F to eliminate

Sample the Schur complement estimation created by eliminating F

$$L = \begin{pmatrix} I & 0 \\ B^{\top}A^{-1} & I \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & SC(L,T) \end{pmatrix} \begin{pmatrix} I & A^{-1}B \\ 0 & I \end{pmatrix}$$
$$L \approx_{O(1)} U_1^{\top} U_2^{\top} \cdots U_d^{\top} L_d U_d \cdots U_2 U_1$$

Apply Iterative Refinement for $O(\log \epsilon^{-1})$ iterations using this factorization as preconditioner

 L_d can be inverted easily. Trivial if size is constant Each A_i can be inverted easily

3. Each L_i is sparse

Problem of (Block) Cholesky Factorization

Fill-in phenomenon

Problem of (Block) Cholesky Factorization

Fill-in phenomenon

Approach: Random Walk Sampling

Approach: Random Walk Sampling

Approach: Random Walk Sampling

Approach: Random Walk Sampling

Approach: Random Walk Sampling

- 1. If eliminating a 5-DD block, each RW has length $O(\log m)$ and total length of all RWs is O(m) w.h.p.
- 2. The number of multi-edges in Schur is at most that of the multi-graph
- 3. RW samples can be carried out independently in parallel

Simple Matrix Concentration: Bernstein's inequality

For independent random symmetric matrices $X_1, \ldots X_m$ s.t.

$$||X_i|| \le R$$
 and $\mathbf{E}(X_i) = 0$

Let total variance be $\sigma^2 = \|\sum_i \mathbf{E}(X_i^2)\|$ For all $t \ge 0$

$$\mathbf{P}\left[\|\sum_{i} X\| \ge t\right] \le n \cdot \exp\left(-\frac{t^2}{\sigma^2 + Rt/3}\right)$$

Simple Matrix Concentration: Bernstein's inequality

For independent random symmetric matrices $X_1, \ldots X_m$ s.t.

$$\|X_i\| \leq R \quad \text{and} \quad \mathbf{E}(X_i) = 0$$

Let total variance be $\sigma^2 = \|\sum_i \mathbf{E}(X_i^2)\|$
For all $t \geq 0$

$$\mathbf{P}\left[\|\sum_{i} X\| \ge t\right] \le n \cdot \exp\left(-\frac{t^2}{\sigma^2 + Rt/3}\right)$$

Effective Resistance

The effective resistance of two distinct vertices u,v in a graph with Laplacian ... is

$$b_{uv}^{\top}L^+b_{uv}$$

[Klein-Randić '93] Effective Resistance is a distance. For any vertices x,y,z,

$$b_{xy}^{\top}L^{+}b_{xy} \le b_{xz}^{\top}L^{+}b_{xz} + b_{yz}^{\top}L^{+}b_{yz}$$

For any distinct $u, v \in T$

$$b_{uv}^{\top}SC(L,T)^{+}b_{uv} = b_{uv}^{\top}L^{+}b_{uv}$$

A multi-edge e is α -bounded w.r.t. a Laplacian L if

$$w_e b_e^\top L^+ b_e \le \alpha$$

A multi-edge e is α -bounded w.r.t. a Laplacian L if

$$w_e b_e^\top L^+ b_e \le \alpha$$

If all multi-edges in a graph is α -bounded w.r.t. its Laplacian L , then for each sampled multi-edge

$$b_f^{\top} SC(L,T)^+ b_f = b_f^{\top} L^+ b_f \le \sum_{l \in W(e)} \frac{w_l b_l^{\top} L^+ b_l}{w_l} \le \alpha \sum_{l \in W(e)} \frac{1}{w_l}$$

A multi-edge e is α -bounded w.r.t. a Laplacian L if

$$w_e b_e^\top L^+ b_e \le \alpha$$

If all multi-edges in a graph is α -bounded w.r.t. its Laplacian L, then for each sampled multi-edge

$$b_f^{\top} SC(L,T)^+ b_f = b_f^{\top} L^+ b_f \le \sum_{l \in W(e)} \frac{w_l b_l^{\top} L^+ b_l}{w_l} \le \alpha \sum_{l \in W(e)} \frac{1}{w_l}$$

a-boundedness is (almost) preserved!
$$w_f = \frac{1}{\sum_{l \in W(e)} 1/w_l}$$

 α -boundedness is (almost) preserved!

A multi-edge e is α -bounded w.r.t. a Laplacian L if

 $w_e b_e^\top L^+ b_e \le \alpha$

To achieve α -boundedness **initially**: split each edge to $1/\alpha$ copies of multi-edges with α times its original weight

Recall we want $||X_i|| \le R$ roughly $R \approx \alpha$

Matrix Concentration

Suffices for $1/\alpha = O(\log^3 n)$ to achieve

$$L \approx_{O(1)} U_1^\top U_2^\top \cdots U_d^\top L_d U_d \cdots U_2 U_1$$

Aside: Matrix Martingale

Recall: sampling procedure is **unbiased**.

Additive view of Block Cholesky Factorization, generalized from [KS '16]

Suffices to set
$$1/lpha = O(\log^2 n)$$

Summing Up

Sparse Block Cholesky Factorization

Iterate until the remaining matrix has O(1) vertices

 $O(\log n)$

Find a 5-DD subblock F to eliminate

Sample the Schur complement estimation created by eliminating F

Summing Up

Sparse Block Cholesky Factorization

#multi-edges = $O(m \log^2 n)$

Iterate until the remaining matrix has O(1) vertices

Find a 5-DD subblock F to eliminate

Sample the Schur complement estimation created by eliminating F

each O(#multi-edges) work, O(log(#multi-edges)) depth w.h.p.

Total: $O(m \log^3 n)$ work and $O(\log^2 n)$ depth

Further Results

Generalizes to a wider range of matrices:

SDD, Magnetic Laplacian, HDD, Connection Laplacian, bDD

Direct Applications (all in parallel):

- 1. Approximate Schur Complement of any fixed subset
- 2. Spectral sparsification, leverage score estimation

Future Directions

 $\widetilde{O}(\log n)$ depth? Intermediate: $O(\log^2 n)$ construction, $\widetilde{O}(\log n)$ apply?

Directed Laplacian in polylog depth?

Simple algorithm in CONGEST?

Intermediate: EREW PRAM

Flow algorithms in parallel?

Thanks!