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Solving Linear Systems

Ax = b
Given A, b find .
If Ais a Laplacian, it’s called a Laplacian linear system

[Spielman-Teng ‘04] Laplacian linear systems can be solved in nearly linear time

[Peng-Spielman ‘13] Laplacian linear systems can be solved in parallel with
nearly linear work and polylog depth



Laplacians

Symmetric 77 X 71 matrix, associated with a weighted, undirected graph

G=(V,B,w) n=|V|, m=|E, w: E— R,
L=D—A

Quadratic form



Laplacians

Symmetric 77 X 71 matrix, associated with a weighted, undirected graph

G=V,E,w) n=|V|, m=|E|, w: E— R,
L=D-—A

Quadratic form

L = BWB?'

B : Incident matrix for the (multi-)graph



Application of Laplacian Solvers

PDEs via Finite Element Methods [Str85, BHV08]
IPM for Optimization [KRS15, CMSV16]
Learning on graph [ZGL03, ZBLW04, BMN04]

Flow algorithms [DS08, CKMST11, KMP12, LS14, DGGLPSY22, LKLPGS22]
Graph sparsification [SS08, LKP12]



Related Works

Work Depth Technique
[Peng-Spielman ‘13] ~ c Repeated Squaring +
O(m) O<10g n> Expander

[Lee-Peng-Spielman ‘15, O(m)

Block Cholesky factorization +
Kyng-L-P-S-Sachdeva ‘16]

Sparsification + Expander

O(log® nlog”logn)

The work and depth are for constant approximation. An additional O(log 1/¢)factor
for both work and depth is required for €-approximate solution.
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Related Works

Work Depth Technique
[Peng-Spielman ‘13] 6(m) O<10gc n) Repeated Squaring +
Expander
[Lee-Peng-Spielman ‘15, 6 m 6 4 Block Cholesky factorization +
Kyng-L-P-S-Sachdeva ‘16] ( ) O(log n log log n) Sparsification + Expander
[Kyng-Sachdeva ‘16] O (m) Sparse Cholesky factorization
[Sachdeva-Z ‘22] 5(772) O(log2 n log log n) Sparse block Cholesky

factorization

The work and depth are for constant approximation. An additional O(log 1/¢)factor
for both work and depth is required for €-approximate solution.



Background



Positive Semi-Definite (PSD) Matrices

A is PSD if A is symmetric and for all Z,

v Ax >0

Laplacians are PSD

Define a natural norm

|zlla = Vo' Az



Approximately Solving a System
A €-approximate solution to Lxr =bis ¥ st

17—zl < el

Recall ||z||a = V2T Ax

This suffices for most applications



Parallel Model

Work: The running time on a single node
Depth: The running time given unlimited number node with shared memory

The “longest dependency” in the computation

Concurrent Read Exclusive Write (CREW) PRAM



Parallel Primitives

Linear Operator: One can apply a linear operator with m nonzero entries to a
column vector of compatible dimension in O(m) work and O(log m) depth

Weighted Sampling [HS19]: For n items, there is an algorithm that takes O(n)
work and O (log n) depth preprocessing and O(1)work and depth each query

Graph representation [BM10]: One can transform between an adjacency list
representation and edge list representation of a (multi-)graph in O(m) work
and O(log m)depth



Our Result

[Sachdeva-Z ‘22] Can find an € -approximate solution to a Laplacian system in
O(mlog® nloglognlog(1/€)) work and
O(log”nloglognlog(1l/e))  depth



Approximating PSD Matrices

If A is PSD, we write

A=0
This induces a partial order
Az=DB it
Spectral approximation
A~. B if



lterative Refinement

To solve A1 = | approximately,

Find a preconditioner B such that A ~0(1) B and easy to invert

Solve B~ 1Ay — B~ 1p by

g () %B_l(Aa:(i) — b)



Block Cholesky Factorization
F T

A B\ F B
L:(BT C) a V=FUT



Block Cholesky Factorization

F T
A B\ F B
L:(BT 0) a V=FUT

L= (BTill ?) <§ S(J(OL,T)) (é A_Jl B)

Schur Complement:  SC(L,T)=C —B'A™'B



Block Cholesky Factorization

F T
A B\ F B
L:(BT 0) a V=FUT

Lo (1 —ATBY (AT 0 I 0
“\o I 0 SC(L,T)*)\-BTA' I

Schur Complement:  SC(L,T)=C —B'A™'B



Block Cholesky Factorization

F T
A B\ F B
L:(BT 0) a V=FUT

Lo (T HATBY (A 0 I
“\o T 0 |scw, 7)) \-BAa~!

Schur Complement:  SC(L,T)=C —B'A™'B

Fact: Schur Complement of a Laplacian is also Laplacian



Solving Laplacian System

L= (BT{AH ?) <§ SC(OL,T)> (é A_}BT>

R
Ly

Ly

L~ U'Uj - U LU, - Uy Uy



Solving Laplacian System
L 1 0y (A 0 I A'B
—\BTA ' 1)\0 sc,1))\o I
L%OO) UFU;UJLdUdUQ U1

Apply lterative Refinement for O(log ¢ ™) iterations using this
factorization as preconditioner
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1. L4 can be inverted easily. Trivial if size is constant
2. Each A; can be inverted easily
3. Each [, is sparse
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Our Algorithm



Strongly Diagonally Dominant Blocks

A matrix A is said to be a-Diagonally Dominant (DD) if

Ay >« Z | A

J7Fi



Strongly Diagonally Dominant Blocks

A matrix A is said to be a-Diagonally Dominant (DD) if

Ay >« Z | A

JF#1
[LPS ‘15, KLPSS ‘16] Can find a O(1)-DD subblock with 1/0(1) fraction size of a
multi-graph in O(m) work and O(log m) depth w.h.p.

[LPS ‘15, KLPSS ‘16] A system of O(1)-DD matrix can be solved €-approximately
in O(log ') iterations using iterative refinement

For simplicity, we pick the smallest possible: 5-DD



Our Algorithm

Sparse Block Cholesky Factorization

Iterate until the remaining matrix has O(l) vertices O(lOg TL)
Find a 5-DD subblock F to eliminate

Sample the Schur complement estimation created by eliminating F



Solving Laplacian System

L= (BT{41 ?) <§ SC(%,T)) (é A_Jl B)
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Problem of (Block) Cholesky Factorization

Fill-in phenomenon
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Schur Complement Approximation

Approach: Random Walk Sampling

[SZ ‘22] There is an unbiased estimation of multi-graph Schur Complement using
“Terminal Random Walk” on the multi-graph.
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Schur Complement Approximation

Approach: Random Walk Sampling

[SZ ‘22] There is an unbiased estimation of multi-graph Schur Complement using
“Terminal Random Walk” on the multi-graph.

O

Wr =
’ ZlEW(e) 1/w,




Schur Complement Approximation

Approach: Random Walk Sampling

[SZ ‘22] There is an unbiased estimation of multi-graph Schur Complement using
“Terminal Random Walk” on the multi-graph.

1. If eliminating a 5-DD block, each RW has length O(log m ) and total length of
all RWs is O(m) w.h.p.

2. The number of multi-edges in Schur is at most that of the multi-graph

3. RW samples can be carried out independently in parallel



Simple Matrix Concentration: Bernstein’s inequality

For independent random symmetric matrices X1, ... X,, s.t.

IX[| <R and  E(X,) =0

Let total variance be 0~ = ||Z E(X7)|]
Forall £ > 0 i

t2
X||>tl <n- —
SN P

P




Simple Matrix Concentration: Bernstein’s inequality

For independent random symmetric matrices X1, ... X,, s.t.
|Xi| <R and EO@/— 0

Let total variance be 0~ = ||Z E(X7)|]

Forall t > () :

t2
X |zt <n- -
X0 <o ()

P




Effective Resistance

The effective resistance of two distinct vertices u,v in a graph with Laplacian ... is
T 75+
b Ltby,

[Klein-Randi¢ ‘93] Effective Resistance is a distance. For any vertices X,y,z,
T 7+ T 74+ T 7+
by LTy, < bl LVb,, +b) LTh,,

For any distinct u,v € I’
b, SC(L,T) by, = b, Lby,



«v-boundedness w.r.t. Laplacians

A multi-edge e is orbounded w.r.t. a Laplacian [, if
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A multi-edge e is orbounded w.r.t. a Laplacian [, if
wesz+be < «

If all multi-edges in a graph is a-bounded w.r.t. its Laplacian [, then for each
sampled multi-edge

by L+
b; SC(L,T) by =bf LThy < Y =< E:
[EW (e) lEW(e

1
- . ' w —
a-boundedness is (almost) preserved! f ZleW(e) 1/wl




«v-boundedness w.r.t. Laplacians

A multi-edge e is orbounded w.r.t. a Laplacian [, if

wesz+be < «

To achieve a-boundedness initially: split each edge to 1/ox copies of multi-edges
with & times its original weight

Recall we want || X;|| < R roughly R ~ «



Matrix Concentration

Suffices for 1 /a = O(log® n)to achieve

L ~,, UTUT UL, Uy -+ Uy Uy



Aside: Matrix Martingale

Recall: sampling procedure is unbiased.
Additive view of Block Cholesky Factorization, generalized from [KS ‘16]

Suffices to set 1/a = O(log2 n)



Summing Up

Sparse Block Cholesky Factorization

Iterate until the remaining matrix has O(l) vertices O(lOg TL)
Find a 5-DD subblock F to eliminate

Sample the Schur complement estimation created by eliminating F



Summing Up

Sparse Block Cholesky Factorization
#multi-edges = O(mlog” n)
lterate until the remaining matrix has O(l) vertices O(log n)
Find a 5-DD subblock F to eliminate
Sample the Schur complement estimation created by eliminating F
each O(#multi-edges) work, O(log(#multi-edges)) depth w.h.p.
Total: O(mlog®n) work and O(log” n) depth



Further Results

Generalizes to a wider range of matrices:

SDD, Magnetic Laplacian, HDD, Connection Laplacian, bDD

Direct Applications (all in parallel):

1. Approximate Schur Complement of any fixed subset
2. Spectral sparsification, leverage score estimation



Future Directions

~

O(log n) depth?
Intermediate: O (log® n) construction, O(log n)apply?

Directed Laplacian in polylog depth?

Simple algorithm in CONGEST?
Intermediate: EREW PRAM

Flow algorithms in parallel?



Thanks!



