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Abstract

This set of notes is intended as a summary of two lectures on Boolean function analysis given at
University of Toronto’s Theory Student Seminar. The goal is to introduce the basics of the subject and
introduce its applications in computational social choice and approximation algorithms. Most of the
results presented in these notes can be found in the textbook [O’D14], which is freely available online.

1 Introduction

A Boolean function f is a function f : {−1, 1}n → {−1, 1} where {−1, 1}n is the set of n-bit strings. The
study of Boolean functions is a central topic in theoretical computer science. Analysis of Boolean functions
refers to a method of studying Boolean functions using Fourier analysis, or equivalently their representation
as multilinear polynomials.

Definition 1. Given a subset S ⊆ [n], the parity function is defined by χS(x1, . . . , xn) =
∏

i∈S xi.
The Fourier expansion of a Boolean function f is an expansion of f as a polynomial:

f(x1, . . . , xn) =
∑
S⊆[n]

f̂(S)χS =
∑
S⊆[n]

f̂(S)
∏
i∈S

xi.

For instance, let Majn be the majority function on n bits, which outputs 1 if at least n
2 input bits are

equal to 1. Then

Maj3(x1, x2, x3) =
1

2
x1 +

1

2
x2 +

1

2
x3 −

1

2
x1x2x3.

We record the following lemma which shows some properties of the Fourier expansion. We define an

inner-product on the space of functions f : {−1, 1}n → R by setting ⟨f, g⟩ =
1

2n

∑
x∈{−1,1}n

f(x)g(x) given

any two such functions f, g.

Lemma 1. Let F be the vector space of all functions f : {−1, 1}n → R. Then,

1. The set of 2n parity functions χS form an orthonormal basis of F under the inner product. Therefore,
the Fourier expansion of a Boolean function exists and is unique.

2. The Fourier coefficients of f can be computed by f̂(S) = ⟨f, χS⟩.

3. The Fourier coefficients satisfy
∑

S⊆[n] f̂(S)
2 = ⟨f, f⟩.

4. The inner product satisfies ⟨f, g⟩ =
∑

S⊆[n] f̂(S)ĝ(S) for any f, g ∈ F .

Proof. See [O’D14, Chapter 1.4].

The goal of analysis of Boolean functions is to deduce their properties from knowledge of their Fourier
expansion. We will see several examples in the rest of these notes.
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2 Basic Concepts in Boolean Function Analysis

2.1 Influence of Boolean Functions

We let X be a uniformly distributed random variable over {−1, 1}n.

Definition 2. Given a string x ∈ {−1, 1}n and a coordinate i, let x⊕i be x with the ith bit negated. If
f(x⊕i) ̸= f(x), then i is a pivotal coordinate for f at x.

For example, if f =Maj3, then 1 is pivotal for f at (−1,−1, 1) since f(−1,−1, 1) = −1 but f(1,−1, 1) =
1.

Definition 3. The influence of coordinate i for f is the probability Infi(f) = P[f(X⊕i) ̸= f(X)]. Equiva-
lently it is the fraction of strings x ∈ {−1, 1}n for which i is pivotal for f at x.

For example, Inf1(Maj3) =
1
2 since there are exactly 4 pivotal inputs: (−1,−1, 1), (1,−1, 1), (1, 1,−1), (−1, 1,−1)

out of 8.

Definition 4. Let x be a string, and let xi→b be x with the ith bit replaced by b. The ith discrete derivative
of f is the function defined by

Dif(x) =
f(xi→1)− f(xi→−1)

2
.

Observe that Dif(x) =

{
0 i not pivotal for f at x

±1 i is pivotal for f at x
.

Hence, we conclude that Infi(f) = EX∼{−1,1}n [(Dif(X))2]. This gives us a way to compute influences
using the Fourier expansion.

Theorem 1. Let f =
∑

S⊆[n] f̂(S)χS. Then:

1. The Fourier expansion of the function Dif is Dif =
∑

S⊆[n]i∈S f̂(S)χS\{i}.

2. The influence of coordinate i for f is equal to Infi(f) =
∑

i∈S f̂(S)
2.

Proof. See [O’D14, Theorem 2.20].

Observe that this justifies the name “derivative” for the operatorDi, sinceDi acts as partial differentiation
operator ∂

∂xi
on the Fourier expansion.

The notion of influence can be applied in complexity theory, in particular to study the computational
power of small-depth circuits (also known as AC0 circuits). See [O’D14, Chapter 4] for further details.

2.2 Noise Stability of Boolean Functions

Definition 5. Let −1 ≤ ρ ≤ 1. Random variables (X,Y ) are ρ-correlated if X is chosen uniformly at
random from {−1, 1}n, and the bits of Y are assigned as

Yi =

{
Xi with probability 1

2 + 1
2ρ

−Xi with probability 1
2 − 1

2ρ
.

Observe that if (X,Y ) are ρ-correlated, then for each bit E[Xi] = E[Yi] = 0, but E[XiYi] = ρ.

Definition 6. Let (X,Y ) be ρ-correlated. The ρ-noise stability of a function f : {−1, 1}n → R is Stabρ(f) =
E(X,Y )[f(X)f(Y )]. In particular, if f has output ±1, then Stabρ(f) = 2P(X,Y )[f(X) = f(Y )]− 1.

Intuitively, functions with high noise stability change little under perturbations of their input. Conversely,
the parity function

∏n
i=1 xi will have low noise stability since changing any input bit changes the output

value.
We again have a formula for the noise stability in terms of the Fourier expansion.
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Theorem 2. Let −1 ≤ ρ ≤ 1 and suppose f =
∑

S⊆[n] f̂(S)χS . Then,

1. The noise stability of the parity function χS is Stabρ(χS) = ρ|S|.

2. The noise stability of f is Stabρ(f) =
∑

S⊆[n] f̂(S)
2ρ|S|

Proof. See [O’D14, Proposition 2.47].

3 Application 1: Social Choice

To see how the idea of noise stability can be applied, we consider a problem in social choice. We consider
an election with 3 candidates a, b, c. Suppose in a certain society, a third of the population has preferences
a > b > c, another third has preferences c > a > b and another third has preferences b > c > a. Then
aggregating the preferences, we see that a majority of the population prefer a over b, and a majority of the
population prefer b over c. However, a majority of the population also prefers c over a! This non-transitivity
of preferences is known as a Condorcet paradox, first observed by the Marquis de Condorcet in 1785 [DC14],
and appeared to imply that the system of majority vote may lead to inconclusive results.

In the general set up, we fix some voting rule f : {−1, 1}n → {−1, 1} that aggregates a result from n
voters casting votes in a two candidate election. Given candidates a, b, c where each of n votes has a ranking
over the candidates:

• We hold a two-candidate election with a (+1) and b (-1), votes x and outcome f(x).

• We hold a two-candidate election with b (+1) and c (-1), votes y and outcome f(y).

• We hold a two-candidate election with c (+1) and a (-1), votes z and outcome f(z).

We say that an election has a Condorcet winner if the situation of cyclic preferences is avoided. This
condition is sometimes known as rationality.

Definition 7. The election has a Condorcet winner if there is a candidate that wins all of the pair-
wise elections that it participates in. In particular, for a three-candidate election, the election outcome
(f(x), f(y), f(z)) is not (1, 1, 1) or (−1,−1,−1).

Using these definitions, we can compute the probability of a Condorcet winner in certain situations.

Theorem 3. Suppose the voters come from an impartial culture, that is voters select a ranking of the three
candidates uniformly at random. Then under voting rule f , the probability an election has a Condorcet
winner is 3

4 (1− Stab−1/3(f)).

Proof. Let NAE3 : {−1, 1}3 → {0, 1} be the function NAE3(x, y, z) =

{
0 x = y = z

1 otherwise
. Then

NAE3(x, y, z) =
3

4
− 1

4
xy − 1

4
xz − 1

4
yz,

and the probability that the election has a Condorcet winner is Ex,y,z[NAE3(f(x), f(y), f(z))] where
x, y, z are the votes cast. Each vote (xi, yi, zi) is chosen uniformly at random from the set whereNAE3(x, y, z) =
1 :

{(−1, 1, 1); (1,−1, 1); (1, 1,−1); (1,−1,−1); (−1, 1,−1); (−1,−1, 1)},

so we see that E[xi] = E[yi] = E[zi] = 0 and E[xiyi] = E[yizi] = E[xizi] = 2
6 − 4

6 = − 1
3 . Hence using the

definition of noise stability, we have

E[NAE3(f(x), f(y), f(z))] =
3

4
− 3

4
Stab−1/3(f).
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As a corollary of this calculation, we obtain a proof of Arrow’s Impossibility Theorem [Arr50], which
places a strong condition on all voting rules that avoid the Condorcet paradox. This proof was originally
due to Kalai [Kal02]. A proof is also available at [Tal20] or [O’D14, Section 2.5].

Theorem 4. Suppose f is a unanimous voting rule. (i.e. if all votes are for candidate i then i should
be selected). If there is always a Condorcet winner in a three-candidate election, then f is a dictatorship
function (eg. f(x) = xi for some index i).

Proof. If there is always a Condorcet winner, then

1 =
3

4
− 3

4
Stab−1/3(f) =

3

4
− 3

4

∑
S⊆[n]

(−1

3
)|S|f̂(S)2 =

3

4
− 3

4

n∑
k=0

(−1

3
)kW k(f),

where W k(f) =
∑

S⊆[n]|S|=k f̂(S)
2. This is equivalent to

∑n
k=0(−

1
3 )

kW k(f) = − 1
3 . Observe that

n∑
k=0

(−1

3
)kW k(f) ≥ −1

3
W 1(f)− 1

27
(1−W 1(f)),

so
∑n

k=0(−
1
3 )

kW k(f) = − 1
3 implies that W 1(f) = 1.

Observe that all functions with W 1(f) = 1 satisfy f(x) = xi or f(x) = −xi for some index i. To see
this, we write f(x) =

∑n
i=1 aixi, and conclude that the derivative Djf(x) = aj is non-zero and constant for

some index j. However, since f is Boolean, Djf(x) ∈ {−1, 0, 1} for each x ∈ {−1, 1}n Hence, aj = ±1 and
the condition

∑n
i=1 a

2
i = 1 implies that f = ±xj for some index j.

Since the voting rule is unianimous, we conclude that our voting rule is f(x) = xj for some index j.

3.1 The Noise Stability of Majority

Using the formula computed in Theorem 3, we may also wonder about the probability of a Condorcet winner
using commonly used voting rules (eg. when f is a majority vote). The motivates the computation of the
noise stability of majority. We can get a good approximation of the noise stability using the central limit
theorem, as described in [O’D14, Section 5.2].

Let sgn(x) =

{
1 x > 0

−1 x < 0
be the sign function, and we observe that the majority function on n bits can

be rewritten as Majn(x) = sgn(
∑n

i=1
1√
n
xi).

Observe that if (x, y) are ρ-correlated string of length ns, then by the central limit theorem, the vector

(
1√
n

n∑
i=1

xi,
1√
n

n∑
i=1

yi) converges in distribution to a normal random variables (Sx, Sy) with mean

[
0
0

]
and

covariance matrix

[
1 ρ
ρ 1

]
as n→ ∞. Therefore, as n→ ∞, we can approximate

Stabρ(Majn) = E(X,Y )[Majn(X)Majn(Y )] → E[sgn(Sx)sgn(Sy)] = 1− 2P(SxSy < 0).

Observe that we can generate (Sx, Sy) by picking any two unit vectors u, v ∈ R2 with inner product

⟨u, v⟩ = ρ, and setting Sx = ⟨u, g⟩ and Sy = ⟨v, g⟩ for some normal random vector g with mean

[
0
0

]
and

covariance

[
1 0
0 1

]
.

Now observe that SxSy < 0 exactly when ⟨u, g⟩ < 0 or ⟨v, g⟩ > 0 or vice versa. In other words, the angle
between u and g is acute or the angle between v and g is obtuse (or vice versa). This happens exactly the
line g′ perpendicular to g cuts the angle between u, v. By rotational symmetry of g and g′, we conclude that

P(SxSy < 0) =
θ

π
,

where θ = arccos ρ is the angle between u and v. Therefore, we conclude:
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Theorem 5. The ρ-noise stability of the majority function Majn approaches 1− 2 arccos ρ
π as n→ ∞.

Hence, using Theorem 3, we can also conclude:

Theorem 6 (Guilbaud’s Formula). In an three candidate election using the majority vote rule where voters
have impartial preferences, the probability of a Condorcet winner approaches 3

2π arccos(− 1
3 ) = 0.912... as the

number of voters tends to infinity.

4 Application 2: Property Testing and CSPs

4.1 Property Testing

A second application of Boolean function analysis involves the theory of approximation algorithms and
constraint satisfaction problems. To do this we first need to introduce the idea of property testing. A
property P is a subset of all Boolean functions. One example we will consider is linearity testing: the set of
all Boolean functions satisfying f(x+ y) = f(x) + f(y) (if f : {0, 1}n → {0, 1}) .

Definition 8. Given two Boolean functions f, g, the distance between them is dist(f, g) = P[f(x) ̸= g(x)],
which is the probability they differ on a uniform random input x ∈ {−1, 1}n.

Given a property P and a function f , the distance between f and P is dist(f,P) = ming∈P dist(f, g).

Definition 9. An r-query property tester for P aims to decide whether or not a given function f belongs
to P or not using the following procedure:

• Chooses strings x1, . . . , xr ∈ {−1, 1}n according to some distribution.

• Evaluates f(x1), . . . , f(xr).

• Based on the outcomes, decide if f ∈ P or not (deterministically)

We require that if f ∈ P, then the test accepts f with probability one. Otherwise, there should be some
constant λ such that if dist(f,P) ≥ ϵ, then the test accepts with probability ≤ 1− λϵ.

A natural goal in property testing is to minimize the number of queries needed. Here, we will present a
three-query test for linearity, developed by BLR in [BLR93]. The test proceeds as follows:

• Choose strings x, y uniformly at random and compute x+ y.

• Check if f(x) + f(y) = f(x+ y). If this condition is satisfied, accept, otherwise reject.

Theorem 7. If the BLR linearity test accepts function f with probability at least 1− ϵ, then dist(f, χS) ≤ ϵ
for some linear function χS.

Proof. See [O’D14, Theorem 1.30].

4.2 Constraint Satisfaction Problems (CSPs)

There is a close connection between the theory of property testing and constraint satisfaction problems. We
first give a few examples of CSPs before stating the formal definition:

• In Max-3-SAT, one is given a Boolean formula in conjunctive normal form, and one finds to find an
assignment to the variables that satisfies as many clauses as possible.

• In Max-Cut, one is given a graph G = (V,E), and one wants to find a partitioning of the vertex set
such that as many edges cross the cut as possible.

Both of these problems can be phrased as versions of the Max-CSP problem we will now formally describe.
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Definition 10. A CSP consists of a domain Ω and a set of predicates Ψ, where each ψ ∈ Ψ is a function
ψ : Ωr → {0, 1}. We call r the arity of the constraint ψ.

An instance of Max-CSP(Ψ) over a set of variables V consists of a list (S = {v1, . . . , vr}, ψ) where each
S ⊆ V is a subset of variables of the appropriate arity for ψ ∈ Ψ. A constraint is satisfied by assignment
F : V → Ω if ψ(F (v1), . . . , F (vr)) = 1.

The value val(I) of an instance I is the maximum fraction of satisfied constraints over all possible
assignments F : V → Ω. The goal of the Max-CSP(Ψ) problem is to find an assignment F : V → Ω, which
maximizes the val(I), given any instance of the problem.

For the two CSPs (Max-3-Sat and Max-Cut) we have described, it is NP-Hard to decide if an instance
I of a CSP is satisfiable (eg. distinguishing instances where val(I) = 1 versus the case where val(I) < 1).
This motivates the study of approximation algorithms for CSPs.

Definition 11. Let 0 ≤ α < β ≤ 1. An algorithm is an (α, β)-approximation algorithm for Max-CSP(Ψ) if
on any instance I with val(I) ≥ β, the algorithm outputs an assignment with val(I) ≥ α.

For example, the Goemans-Williamson algorithm for Max-Cut is polynomial time approximation algo-
rithm achieving an (0.878β, β)-approximation. The algorithm is briefly described in [O’D14, Section 11.7].

However, assuming Khot’s Unique Games Conjecture and existence of an appropriate property tester,
there are strong limitations on polynomial-time approximation algorithms for CSPs.

Definition 12. The ρ-stable influence of i on f is

Infρi (f) = Stabρ(Dif) =
∑
i∈S

ρ|S|−1f̂(S)2.

Definition 13. Let Ψ be a set of predicates over the domain {−1, 1}, and 0 ≤ a < β ≤ 1. A (α, β)-dictator
versus no notables test using predicate set Ψ is a property test satisfying the following conditions:

• If f is a dictator function (eg. f(x) = xi for some index i), then the test accepts with probability at
least β.

• If f is “far” from being a dictator function, in the sense that if has no (ϵ, ϵ)-notable coordinates (every
coordinate satisfies Inf1−ϵ

i (f) ≤ ϵ), then the test accepts with probability at most α + λ(ϵ) for some
function λ(ϵ) → 0 as ϵ→ 0.

• The acceptance or rejection decision of the tester uses evaluations of the function f and predicates
from Ψ only.

The following is the key result connecting property testing and CSPs, assuming the unique games con-
jecture, first proven in [KKMO07].

Theorem 8. Assume the Unique Games Conjecture. Suppose we have a CSP over domain Ω = {−1, 1} and
predicate set Ψ. If there is an (α, β)-dictator versus no notables test using predicate set Ψ, then for every
δ > 0, it is NP-hard to (α+ δ, β − δ)-approximate Max-CSP(Ψ).

As an application of this theorem, we consider the hardness of approximating the CSP Max-3-Lin. In
this CSP, the domain is {0, 1} and constraints are linear equations of the form xi + xj + xk = b where
b ∈ {0, 1}. Note that we have an approximation algorithm for Max-3-Lin with approximation factor 1

2
since a random assignment of the variables to {0, 1} satisfies half of the equations in expectation. However,
we have the following result:

Theorem 9. Assume the Unique Games Conjecture, then it is NP-hard to approximate Max-3-Lin with a
factor of ( 12 + δ, 1− δ) for any δ > 0.

By our theorem, it suffices to design a (12 , 1−δ) dictator versus no notables test whose decision predicates
are of the form f(x) + f(y) + f(z) = b (or f(x)f(y)f(z) = b over the {−1, 1} basis) to prove the hardness
result. It turns out that appropriately modifying the BLR test produces the needed property test with
the given parameters. The Hastad test performs the following steps given query access to a function f :
{−1, 1}n → {−1, 1}:
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• Choose x, y ∈ {−1, 1}n uniformly and independently.

• Choose a bit b ∈ {−1, 1} uniformly and let z be the string defined bitwise by zi = b(xiyi).

• Let z′ be z where each bit is flipped with probability 1− δ.

• Accept if f(x)f(y)f(z′) = b.

Theorem 10. The Hastad test is a ( 12 , 1−
δ
2 ) dictator-versus-no notables test, using the predicate set from

Max-3-Lin.

Proof. See [O’D14, Section 7.4] for details.

A property test construction can be used to prove optimality of the Goemans-Williamson algorithm for
Max-Cut assuming the unique games conjecture and the “majority is stablest” theorem proved in [MOO05],
as discussed in [O’D14, Section 11.7].

4.3 Open Problems about Approximation Algorithms

Finally, we note that there are still many open problems concerning approximability of CSPs. One interesting
open problem concerns quantum CSPs. In classical CSPs, the goal is to find a bit string {0, 1}n that
maximizes a set of given constraints. For quantum CSPs, the analogous problem is to find a complex vector
|ψ⟩ of dimension 2n and unit norm that maximizes the inner product ⟨ψ|H|ψ⟩ for some Hermitian matrix
H. The matrix H is known as the Hamiltonian. Equivalently, one wants to compute a good approximation
to the maximum eigenvalue of H. Writing down all components of a vector of dimension 2n or the matrix H
requires exponential time, so one usually restricts attention to vectors and matrices with a polynomial time
description.

For example, one can maximize over the set of product state vectors, which are vectors where |ψ⟩ is
expressible as a tensor product |ψ⟩ = |ψ1⟩⊗ · · · ⊗ |ψn⟩ with each |ψi⟩ ∈ C2. Since we now have a polynomial
size description of a product state |ψ⟩ (ie. one only needs to write down 2n numbers rather than 2n to
describe the vector), we can investigate if one can efficiently find the optimal product state solution for the
quantum CSP in polynomial time. This assumption that the maximizer of ⟨ψ|H|ψ⟩ is given by a product
state is not always satisfied, but in many cases of interest the optimal state is well-approximated by product
states. For a rigorous analysis for when product states are a good approximation, see [BH13].

In recent work by [HNP+21], it is proven that under the unique games conjecture it is hard to find good
product state approximations for a certain class of Hamiltonians. We recall that the Pauli matrices are the
2 by 2 matrices given by

I =

[
1 0
0 1

]
X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
.

Tensor products of the Pauli matrices are then operators on a vector space with larger dimension.
Given a graph G with n vertices, we define the Max-Cut Hamiltonian by

HMC =
∑

(i,j)∈E

I ⊗ I − Zi ⊗ Zj

2
,

and the Quantum Max-Cut Hamiltonian by

HQMC =
∑

(i,j)∈E

I ⊗ I −Xi ⊗Xj − Yi ⊗ Yj − Zi ⊗ Zj

2
.

We observe that the name max-cut Hamiltonian is justified since the maximum eigenvalue of HMC is equal to
the number of edges in a max cut of G. Much less is known about the quantum max-cut problem, compared
to the classical max-cut problem where we have an optimal polynomial time algorithm (at least assuming
the unique games conjecture). The following results are the current state of the art on the quantum max-cut
problem:

7



Theorem 11. Let G be a graph and HQMC be the quantum max-cut Hamiltonian. Recall that our objective
is to find a state of unit norm |ψ⟩ that maximizes ⟨ψ|HQMC |ψ⟩ .

1. It is possible to output a state |ψ⟩ which is a tensor product of one and two qubit states in randomized
polynomial time, achieving an approximation factor of at least 0.53. [AGM20, PT21]

2. Assuming the Unique Games Conjecture, it is NP-hard to compute a (0.956+ ϵ)-approximation to the
optimal state, or optimal product state, any ϵ > 0. [HNP+21]

The techniques in [HNP+21] use many of the notions of Fourier analysis introduced in these notes, such
as noise stability of functions. These notions in their paper are also generalized from Boolean functions
to real-valued functions. It is an interesting open problem to improve either of the results mentioned in
Theorem 11 for quantum max-cut.
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