How to Fairly Allocate Easy and Difficult Chores

Soroush Ebadian¹ University of Toronto

Dominik Peters University of Toronto

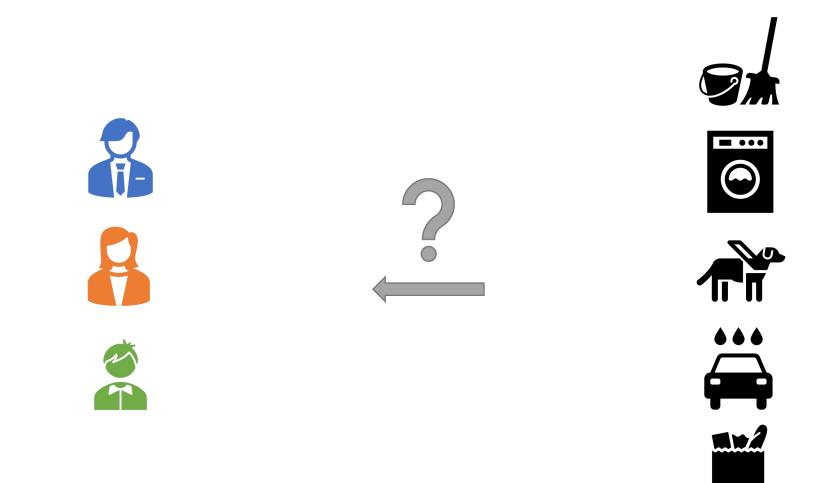
Nisarg Shah University of Toronto

¹ Email: <u>soroush@cs.toronto.edu</u>

Outline

- Introduction
- Envy-freeness up-to one item + Pareto Optimality
 - Methods for the division of goods
 - Fisher-market-based Algorithms
 - Adapting to chores
- Maximin-Share Fairness

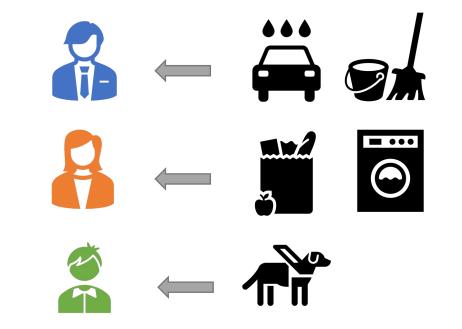
Fair Division of Indivisible Chores



Fair Division of Indivisible Chores

					3
	-20	-15	-10	-5	-10
R	-20	-10	-20	-10	-5
	-20	-30	-5	-50	-10

Fair Division of Indivisible Chores



Fair and Efficient Allocations

More Formally

- *n* agents
- *m indivisible* items
- Agent *i* values item *j* at $v_{i,j}$
 - Chores Instance: $v_{i,j} \in \mathbb{R}_{\leq 0}$
 - Work shifts between staff, house chores between roommates, ...

• Additive utilities: $v_i(S) = \sum_{j \in S} v_{i,j}$

More Formally

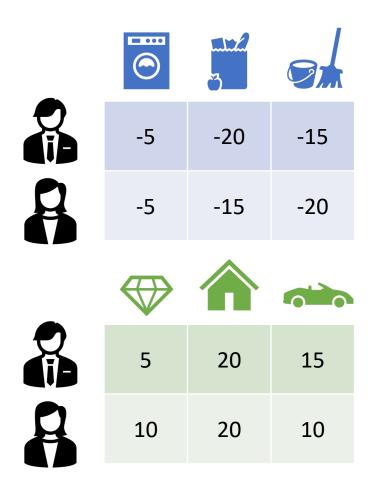
- n agents
- *m indivisible* items
- Agent i values item j at $v_{i,j}$
 - Chores Instance: $v_{i,j} \in \mathbb{R}_{\leq 0}$
 - Work shifts between staff, house chores between roommates, ...
 - Goods Instance: $v_{i,j} \in \mathbb{R}_{\geq 0}$
 - Estate (inheritance) division, divorce settlement, ...
- Additive utilities: $v_i(S) = \sum_{j \in S} v_{i,j}$

	\bigcirc	ŭ Č	
	-5	-20	-15
2	-5	-15	-20
	5	20	15
R	10	20	10

More Formally

- n agents
- *m indivisible* items
- Agent i values item j at $v_{i,j}$
 - Chores Instance: $v_{i,j} \in \mathbb{R}_{\leq 0}$
 - Work shifts between staff, house chores between roommates, ...
 - Goods Instance: $v_{i,j} \in \mathbb{R}_{\geq 0}$
 - Estate (inheritance) division, divorces settlement, ...
- Additive utilities: $v_i(S) = \sum_{j \in S} v_{i,j}$

Goal: Find an allocation $A = (A_1, A_2, ..., A_n)$ that is *fair* and *efficient*.



- Envy-Freeness (EF):
 - No agent prefers another one's bundle to their allocated bundle.
 - I.e., for all pairs of agents *i*, *j*:

 $v_i(A_i) \ge v_i(A_j)$

- Envy-Freeness (EF):
 - No agent prefers another one's bundle to their allocated bundle.
 - I.e., for all pairs of agents *i*, *j*:

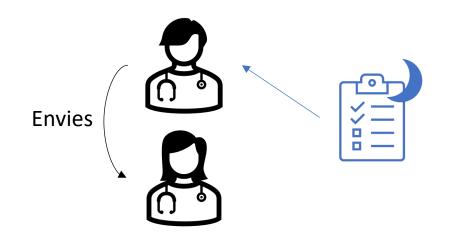
 $v_i(A_i) \geq v_i(A_j)$

Envy-free allocations may not exist.

- Envy-Freeness (EF):
 - No agent prefers another one's bundle to their allocated bundle.
 - I.e., for all pairs of agents *i*, *j*:

 $v_i(A_i) \geq v_i(A_j)$

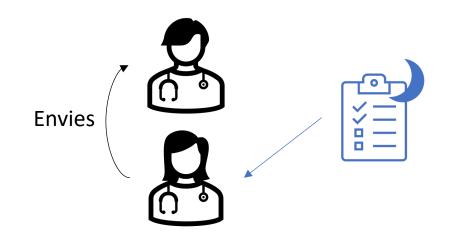
Envy-free allocations may not exist.



- Envy-Freeness (EF):
 - No agent prefers another one's bundle to their allocated bundle.
 - I.e., for all pairs of agents *i*, *j*:

 $v_i(A_i) \geq v_i(A_j)$

Envy-free allocations may not exist.



Relaxed Fairness Notion

- Envy-Freeness up to one item (EF1):
 - No agent prefers another one's bundle to their allocated bundle, after ignoring at most one item.
 - Chores Instance:

For all pairs of agents *i*, *j*:

 $\exists c \in A_i : v_i(A_i \setminus \{c\}) \ge v_i(A_j)$

Relaxed Fairness Notion

- Envy-Freeness up to one item (EF1):
 - No agent prefers another one's bundle to their allocated bundle, after ignoring at most one item.
 - Chores Instance: For all pairs of agents i, j: $\exists c \in A_i : v_i(A_i \setminus \{c\}) \ge v_i(A_j)$
 - Goods Instance:
 - For all pairs of agents *i*, *j*:

 $\exists g \in A_j : v_i(A_i) \ge v_i(A_j \setminus \{g\})$

Relaxed Fairness Notion

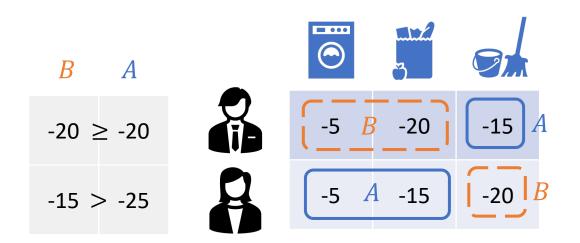
- Envy-Freeness up to one item (EF1):
 - No agent prefers another one's bundle to their allocated bundle, after ignoring at most one item.
 - Chores Instance: For all pairs of agents i, j: $\exists c \in A_i : v_i(A_i \setminus \{c\}) \ge v_i(A_j)$
 - Goods Instance:
 - For all pairs of agents *i*, *j*:

 $\exists g \in A_j : v_i(A_i) \ge v_i(A_j \setminus \{g\})$

EF1 allocations *always* exist.

Efficiency Notion

- Pareto Optimality (PO):
 - Allocation A is Pareto optimal, if there is no allocation B such that $\forall i : v_i(B) \ge v_i(A)$, and $\exists j : v_i(B) > v_i(A)$.



A is **not** Pareto Optimal as B Pareto dominates it.

Does a *fair* (EF1) and *efficient* (PO) allocation always exist?

Does a *fair* (EF1) and *efficient* (PO) allocation always exist?

Goods

- EF1 + PO allocations always exist. (Caragiannis et al., 2016)
- Can be found in pseudo-polynomial time. (Barman et al., 2018)
- Poly-time when utility levels are polysized / constantly many agents. (Garg et al., 2021)

Does a *fair* (EF1) and *efficient* (PO) allocation always exist?

Goods

• EF1 + PO allocations always exist. (Caragiannis et al., 2016)

Open Problem 1.

Can EF1+PO allocations be found in poly time?

- Can be found in pseudo-polynomial time. (Barman et al., 2018)
- Poly-time when utility levels are polysized / constantly many agents. (Garg et al., 2021)

Does a *fair* (EF1) and *efficient* (PO) allocation always exist?

Chores

• Still open for additive valuations.

Our key contribution: Theorem 1. For Bivalued chores, EF1 + PO allocations always exist, and can be found in poly time.

Bivalued utilities:

 $\forall i, j: v_{i,j} \in \{a, b\}, \\ a \le b \le 0,$

Goods

- EF1 + PO allocations always exist. (Caragiannis et al., 2016)
- Can be found in pseudo-polynomial time. (Barman et al., 2018)
- Poly-time when utility levels are polysized / constantly many agents. (Garg et al., 2021)

Solution 1: Maximizing Nash Welfare (MNW)

 i.e., max ∏_i v_i(A_i) or max ∑_i log(v_i(A_i)).
 Goods: MNW yields EF1 + PO (Caragiannis et al., 2016)

Solution 1: Maximizing Nash Welfare (MNW)

 i.e., max ∏_i v_i(A_i) or max ∑_i log(v_i(A_i)).
 Goods: MNW yields EF1 + PO (Caragiannis et al., 2016)

• For integral utilities: Maximizing Harmonic Welfare yields EF1 + PO i.e., $\max_{A} \sum_{i} H(v_i(A_i))$ (Montanari et al., 2022) • $H(i) = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{i}$

- Solution 1: Maximizing Nash Welfare (MNW) i.e., $\max_{A} \prod_{i} v_{i}(A_{i})$.
 - Goods: MNW yields EF1 + PO (Caragiannis et al., 2016)
- Chores: (1) Maximizing ∏_i |v_i(A_i)|? or ∏_i(v_i(A) v_i(A_i)) No, favors higher disutilities. No, counter example.
 (2) Maximizing ∏_i |v_i(A_i)| subject to PO? No, fails EF1. (Example with bivalued utilities, n=4, m=8)
 (3) Minimizing ∏_i |v_i(A_i)| ? No, favors having an idle agent with no tasks.

- Solution 1: Maximizing Nash Welfare (MNW)
 - Extension to Chores: not obvious.

- Solution 1: Maximizing Nash Welfare (MNW)
 - Extension to Chores: not obvious.
- Solution 2: Fisher market adaptation (Barman et al. (2018))
 - Finds an EF1 + PO allocation in pseudo-poly time
 - Idea: a *local search* terminates due to *invariants* and potential functions

- Solution 1: Maximizing Nash Welfare (MNW)
 - Extension to Chores: not obvious.
- Solution 2: Fisher market adaptation (Barman et al. (2018))
 - Finds an EF1 + PO allocation in pseudo-poly time
 - Idea: a *local search* terminates due to *invariants* and potential functions
 - Extension to Chores:
 - Non-trivial, *invariants* cease to hold
 - Our result:

With a more intricate analysis \rightarrow EF1 + PO for **Bivalued** Utilities

Fisher Markets in Fair Division

Setup:

- *n* agents, *m* items
- Item prices: $p_j \in \mathbb{R}_{\geq 0}$

	\$2	\$10	\$10
	©	()	•
8	-3	-20	-15
	<u>BB: -1.5</u>	BB: -2	<u>BB: -1.5</u>
R	-3	-15	-20
	<u>BB: -1.5</u>	<u>BB: -1.5</u>	BB: -2

Def. Bang per Buck: $\frac{v_{i,j}}{p_j}$

Maximum Bang per Buck: $MBB_i = \max_j \frac{v_{i,j}}{p_j}$

Setup:

- *n* agents, *m* items
- Item prices: $p_j \in \mathbb{R}_{\geq 0}$

\$2\$10
$$i$$
 i i

Def. Bang per Buck: $\frac{v_{i,j}}{p_j}$

Maximum Bang per Buck:
$$MBB_i = \max_j \frac{v_{i,j}}{p_j}$$

Equilibrium:

- All items are allocated
- Agents are only allocated MBB items

First Welfare Theorem

Pareto Optimal (PO)

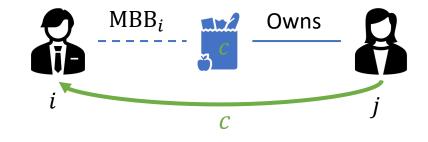
• An allocation is price envy-free up to one item (pEF1) if for all pairs of agents i, j: $\exists c \in A_j : p(A_j \setminus \{c\}) \leq p(A_i)$

• An allocation is price envy-free up to one item (pEF1) if for all pairs of agents i, j: $\exists c \in A_j : p(A_j \setminus \{c\}) \leq p(A_i)$

- Algorithmic Framework:
 - Start with an allocation and prices in equilibrium
 - Make local changes reducing envy (while remaining in equilibrium)
 - Reach pEF1 (+ equilibrium)

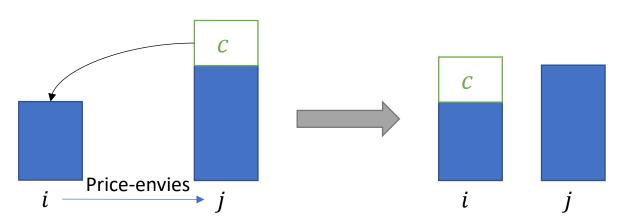
Fisher Market Algorithm Ideas

- MBB Graph
 - Edge $i \stackrel{c}{\leftarrow} j$
- Local changes:



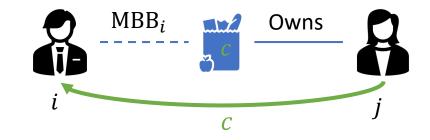
Suppose $i \stackrel{c}{\leftarrow} j$ exists and $p(A_i) < p(A_j) - p_c$ (violation of pEF1), then transferring c to i_1 (1) remains in the equilibrium

(2) reduces envy "overall"



Fisher Market Algorithm for Goods

- MBB Graph
 - Edge $i \stackrel{c}{\leftarrow} j$



- Algorithm Sketch for Goods (Barman et al. 2018)
 - 1. Start with welfare maximizing allocation
 - 2. Least Spender: $ls = \operatorname{argmin} p(A_i)$

3. While there is
$$ls \stackrel{c_1}{\leftarrow} i_2 \stackrel{c_2}{\leftarrow} i_3 \stackrel{c_3}{\leftarrow} \dots \stackrel{c_{\ell-1}}{\leftarrow} i_\ell$$

where ls price envies i_ℓ :

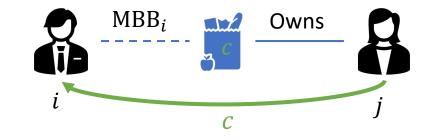
Take the shortest path, make a local transfer, go to 2.

4. If not pEF1:

Raise prices of items allocated to *ls* and agents reaching *ls*, go to 2.

Fisher Market Algorithm for Goods

- MBB Graph
 - Edge $i \stackrel{c}{\leftarrow} j$



- Algorithm Sketch for Goods (Barman et al. 2018)
 - 1. Start with welfare maximizing allocation
 - 2. Least Spender: $ls = \operatorname{argmin} p(A_i)$
 - 3. While there is $ls \stackrel{c_1}{\leftarrow} i_2 \stackrel{c_2}{\leftarrow} i_3 \stackrel{c_3}{\leftarrow} \dots \stackrel{c_{\ell-1}}{\leftarrow} i_\ell$ where ls price envies i_ℓ :

Key Invariants: $\downarrow \max_{i} \min_{c \in A_{i}} p(A_{i}) - p(c)$ $\uparrow \min_{i} p(A_{i})$

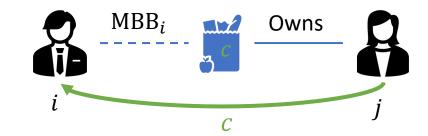
Take the shortest path, make a local transfer, go to 2.

4. If not pEF1:

Raise prices of items allocated to *ls* and agents reaching *ls*, go to 2.

Attempt 1: Algorithm for *Chores*

- MBB Graph
 - Edge $i \stackrel{c}{\leftarrow} j$



Sketch of Adaptation for Chores

- 1. Start with welfare maximizing allocation
- 2. Least Spender: $ls = \operatorname{argmin}_i p(A_i)$
- 3. While there is $ls \stackrel{c_1}{\leftarrow} i_2 \stackrel{c_2}{\leftarrow} i_3 \stackrel{c_3}{\leftarrow} \dots \stackrel{c_{\ell-1}}{\leftarrow} i_\ell$ where ls price envies i_ℓ :

Take the shortest path, make a local transfer, go to 2.

4. If not pEF1:

Raise <u>Reduce prices</u> of items allocated to *ls* and agents reaching *ls*, go to 2.

Known invariants and potential functions break.

Key Invariants:

$$\downarrow \max_{i} \min_{c \in A_{i}} p(A_{i}) - p(c)$$

$$\uparrow \min_{i} p(A_{i})$$

Algorithm for **Bivalued** Chores

[Phase 1: Init]

1. Start with welfare maximizing allocation

[Phase 2a]

2.

[Phase 2b: Reallocate chores]

- 3. Least Spender: $ls = \operatorname{argmin}_i p(A_i)$
- 4. While there is $ls \stackrel{c_1}{\leftarrow} i_2 \stackrel{c_2}{\leftarrow} i_3 \stackrel{c_3}{\leftarrow} \dots \stackrel{c_{\ell-1}}{\leftarrow} i_{\ell}$ where ls price envies i_{ℓ} after removing $c_{\ell-1}$:

Take the shortest path, make a local transfer, go to 3.

[Phase 3: Price Reduction]

5. If not pEF1:

Reduce prices of items allocated to ls and agents reaching ls (H_k), go to 2.

Algorithm for **Bivalued** Chores

[Phase 1: Init]

1. Start with welfare maximizing allocation, **k** = **0**

[Phase 2a]

2. Eliminate price envy between H_k 's, k = k + 1

[Phase 2b: Reallocate chores]

- 3. Least Spender: $ls = \operatorname{argmin}_i p(A_i)$
- 4. While there is $ls \stackrel{c_1}{\leftarrow} i_2 \stackrel{c_2}{\leftarrow} i_3 \stackrel{c_3}{\leftarrow} \dots \stackrel{c_{\ell-1}}{\leftarrow} i_{\ell}$ where ls price envies i_{ℓ} after removing $c_{\ell-1}$:

Take the shortest path, make a local transfer, go to 3.

[Phase 3: Price Reduction]

5. If not pEF1:

Reduce prices of items allocated to *ls* and agents reaching *ls*, go to 2.

Algorithm for **Bivalued** Chores

[Phase 1: Init]

1. Start with welfare maximizing allocation, k = 0

[Phase 2a]

2. Eliminate price envy between H_k 's, k = k + 1

[Phase 2b: Reallocate chores]

3. Least Spender:
$$ls = \operatorname{argmin}_i p(A_i)$$

4. While there is $ls \stackrel{c_1}{\leftarrow} i_2 \stackrel{c_2}{\leftarrow} i_3 \stackrel{c_3}{\leftarrow} \dots \stackrel{c_{\ell-1}}{\leftarrow} i_\ell$ where ls price envies i_ℓ after removing $c_{\ell-1}$: Take the shortest path, make a local transfer, go to 3.

[Phase 3: Price Reduction]

5. If not pEF1:

Reduce prices of items allocated to *ls* and agents reaching *ls*, go to 2.

Key Idea: We can make H_k 's disjoint. Each agent experiences price reduction at most once. \Rightarrow At most *n* Phase 3's

Proof by Induction.

So far

- EF1 + PO allocations always exist for **bivalued** chores
- Major open problems:
 - Complexity of EF1 + PO allocations for goods?
 - Does EF1 + PO allocations always exist for chores?

• Chores division seems *harder* than Goods division

Maximin Share Fairness

Another Fairness Notion

- Maximin Share (MMS) Allocation (Budish, 2011)
 - For all agents *i*,

 $v_i(A_i) \ge \text{MMS}_i$ (MMS value)

• MMS value of agent *i*:

$$\mathsf{MMS}_i = \max_{P = (P_1, P_2, \dots, P_n)} \min_{P_j \in P} v_i(P_j)$$

Another Fairness Notion

- Maximin Share (MMS) Allocation (Budish, 2011)
 - For all agents *i*,

 $v_i(A_i) \ge \text{MMS}_i$ (MMS value)

• MMS value of agent *i*:

$$\mathsf{MS}_i = \max_{P = (P_1, P_2, \dots, P_n)} \min_{P_j \in P} v_i(P_j)$$

Finding MMS values is **NP-hard**.

MMS Allocations

- MMS allocations may **not** exist in general. (Procaccia et al. (2014), Kurokowa et al. (2016))
 - Approach 1: Approximation results for general instances (Huang and Lu (2021), Garg and Taki (2020), ...)
 - Approach 2: Existential results for *restricted* instances
 - Binary: $v_{i,j} \in \{0, 1\}$ or $v_{i,j} \in \{0, -1\}$
 - Ternary: $v_{i,j} \in \{0, 1, 2\}$ (Amanatidis et al. (2017))
 - Lexicographical (Hosseini et al. (2018))
 - Two other classes of utilities (This work)

Factored Valuations

• Factored valuations:

$$v_{i,j} \in \{0, p_1, p_2, \dots, p_k\} \mid p_\ell = p_{\ell-1} \cdot q$$
, for some $q \in \mathbb{N}$.

Lemma. For *factored* valuations, MMS value and a corresponding partition can be found in **poly-time**.

Personalized Factored Bivalued

- Personalized Bivalued: $v_{i,j} \in \{a_i, b_i\}$
- Factored: $\frac{a_i}{b_i} \in \mathbb{N}$

Theorem 2 (a). For personalized *factored* bivalued **chores** or **goods**:

- MMS allocation always exist
- MMS + PO allocation can be found in poly time

• Feige (2022): MMS exists for bivalued utilities (non-personalized).

Weakly Lexicographic Preferences

- Agents rank items by undesirability allowing ties Undesirability levels: $\{a \sim b \sim d\} > \{e \sim f\} > \{g \sim h \sim k\}$
- Ties within a level: $c \sim c' \rightarrow |v_{i,c}| = |v_{i,c'}|$

E.g. $v_{i,a} = v_{i,b}$

• Lexicographic preference between levels: $|v_{i,c}| > \sum_{c' \prec c} |v_{i,c'}|$ E.g. $|v_i(a)| > |v_i(\{e, f, g, h, k\})|$

Theorem 2 (b). For weakly lexicographic **chores or goods:**

- MMS allocation always exist
- MMS + PO allocation can be found in poly time

Conclusion and Future Work

- EF1 + PO exists for bivalued chores
 - Chores seem harder than Goods
- MMS exists for two subclasses of factored utilities
 - Weakly lexicographic, Personalized factored bivalued

Open questions

- EFX + PO for bivalued?
 - EFX: no envy after removing **any** chore
- EF1 + PO for trivalued or weakly lexicographic instances?
- MMS for factored valuations?

Acknowledgements

Our EF1 + PO result was recently independently obtained by a AAAI paper, using a similar technique (Garg et al. (2022))

Thank you!