
How to Fairly Allocate Easy and 
Difficult Chores

Soroush Ebadian1

University of Toronto

Dominik Peters

University of Toronto

Nisarg Shah

University of Toronto

1 Email: soroush@cs.toronto.edu

mailto:soroush@cs.toronto.edu


Outline

• Introduction

• Envy-freeness up-to one item + Pareto Optimality

• Methods for the division of goods

• Fisher-market-based Algorithms

• Adapting to chores

• Maximin-Share Fairness



Fair Division of Indivisible Chores



Fair Division of Indivisible Chores

-20 -15 -10 -5 -10

-20 -10 -20 -10 -5

-20 -30 -5 -50 -10



Fair Division of Indivisible Chores

Fair and Efficient
Allocations



More Formally

• 𝑛 agents
• 𝑚 indivisible items
• Agent 𝑖 values item 𝑗 at 𝑣!,#
• Chores Instance: 𝑣!,# ∈ ℝ$%

• Work shifts between staff,
house chores between roommates, …

• Goods Instance: 𝑣!,# ∈ ℝ&%
• Estate (inheritance) division,

divorces settlement, …

• Additive utilities: 𝑣! 𝑆 = ∑#∈% 𝑣!,#
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• 𝑛 agents
• 𝑚 indivisible items
• Agent 𝑖 values item 𝑗 at 𝑣!,#
• Chores Instance: 𝑣!,# ∈ ℝ$%

• Work shifts between staff,
house chores between roommates, …
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More Formally

• 𝑛 agents
• 𝑚 indivisible items
• Agent 𝑖 values item 𝑗 at 𝑣!,#
• Chores Instance: 𝑣!,# ∈ ℝ$%

• Work shifts between staff,
house chores between roommates, …

• Goods Instance: 𝑣!,# ∈ ℝ&%
• Estate (inheritance) division,

divorces settlement, …

• Additive utilities: 𝑣! 𝑆 = ∑#∈% 𝑣!,#
Goal: Find an allocation 𝐴 = (𝐴&, 𝐴', … , 𝐴() that is fair and efficient.

-5 -20 -15

-5 -15 -20

5 20 15

10 20 10



• Envy-Freeness (EF):
• No agent prefers another one’s bundle to their allocated bundle.
• I.e., for all pairs of agents 𝑖, 𝑗:

𝑣! 𝐴! ≥ 𝑣!(𝐴#)

Gold Standard Fairness Notion
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Envy-free allocations may not exist.
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• Envy-Freeness (EF):
• No agent prefers another one’s bundle to their allocated bundle.
• I.e., for all pairs of agents 𝑖, 𝑗:

𝑣! 𝐴! ≥ 𝑣!(𝐴#)

Gold Standard Fairness Notion

Envy-free allocations may not exist.

Envies



• Envy-Freeness up to one item (EF1):
• No agent prefers another one’s bundle to their allocated bundle,

after ignoring at most one item.
• Chores Instance: 

For all pairs of agents 𝑖, 𝑗:
∃𝑐 ∈ 𝐴! ∶ 𝑣! 𝐴! ∖ 𝑐 ≥ 𝑣!(𝐴#)

Relaxed Fairness Notion
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• Envy-Freeness up to one item (EF1):
• No agent prefers another one’s bundle to their allocated bundle,

after ignoring at most one item.
• Chores Instance:

For all pairs of agents 𝑖, 𝑗:
∃𝑐 ∈ 𝐴! ∶ 𝑣! 𝐴! ∖ 𝑐 ≥ 𝑣!(𝐴#)

• Goods Instance:
For all pairs of agents 𝑖, 𝑗:

∃𝑔 ∈ 𝐴# ∶ 𝑣! 𝐴! ≥ 𝑣!(𝐴# ∖ {𝑔})

Relaxed Fairness Notion

EF1 allocations always exist.



Efficiency Notion

• Pareto Optimality (PO):
• Allocation 𝐴 is Pareto optimal,

if there is no allocation 𝐵 such that ∀𝑖 ∶ 𝑣! 𝐵 ≥ 𝑣! 𝐴 ,
and ∃𝑗 ∶ 𝑣# 𝐵 > 𝑣# 𝐴 .

𝐴 is not Pareto Optimal as 𝐵 Pareto dominates it.

𝐵 𝐴
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Fair and Efficient Allocations

Does a fair (EF1) and efficient (PO) allocation always exist?



Fair and Efficient Allocations

Goods
• EF1 + PO allocations always exist. 

(Caragiannis et al., 2016)

• Can be found in pseudo-polynomial 
time. (Barman et al., 2018)

• Poly-time when utility levels are poly-
sized / constantly many agents.
(Garg et al., 2021)
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Fair and Efficient Allocations

Goods
• EF1 + PO allocations always exist. 

(Caragiannis et al., 2016)

• Can be found in pseudo-polynomial 
time. (Barman et al., 2018)

• Poly-time when utility levels are poly-
sized / constantly many agents.
(Garg et al., 2021)

Does a fair (EF1) and efficient (PO) allocation always exist?

Open Problem 1.
Can EF1+PO allocations be found in poly time?



Fair and Efficient Allocations

Chores
• Still open for additive valuations.

Goods
• EF1 + PO allocations always exist. 

(Caragiannis et al., 2016)

• Can be found in pseudo-polynomial 
time. (Barman et al., 2018)

• Poly-time when utility levels are poly-
sized / constantly many agents.
(Garg et al., 2021)

Does a fair (EF1) and efficient (PO) allocation always exist?

Our key contribution:
Theorem 1. For Bivalued chores,
EF1 + PO allocations always exist,
and can be found in poly time.

Bivalued utilities:
∀𝑖, 𝑗: 𝑣!,# ∈ 𝑎, 𝑏 ,

𝑎 ≤ 𝑏 ≤ 0,



Results and Techniques for Goods

• Solution 1: Maximizing Nash Welfare (MNW)
i.e., max

/
∏! 𝑣! 𝐴! or max

/
∑! log(𝑣! 𝐴! ).

• Goods: MNW yields EF1 + PO (Caragiannis et al., 2016)
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• Solution 1: Maximizing Nash Welfare (MNW)
i.e., max

/
∏! 𝑣! 𝐴! or max

/
∑! log(𝑣! 𝐴! ).

• Goods: MNW yields EF1 + PO (Caragiannis et al., 2016)

• For integral utilities:
Maximizing Harmonic Welfare yields EF1 + PO

i.e., max
/

∑!𝐻 𝑣! 𝐴! (Montanari et al., 2022)

• 𝐻 𝑖 = 1 + +
,
+ +

-
+ …+ +

!



Results and Techniques for Goods

• Solution 1: Maximizing Nash Welfare (MNW)
i.e., max

/
∏! 𝑣!(𝐴!) .

• Goods: MNW yields EF1 + PO (Caragiannis et al., 2016)

• Chores: (1) Maximizing  ∏! |𝑣! 𝐴! |? or ∏!(𝑣! 𝐴 − 𝑣! 𝐴! )
No, favors higher disutilities. No, counter example.

(2) Maximizing  ∏! |𝑣! 𝐴! | subject to PO?
No, fails EF1. (Example with bivalued utilities, n=4, m=8)

(3) Minimizing  ∏! |𝑣! 𝐴! | ?
No, favors having an idle agent with no tasks.
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Results and Techniques for Goods

• Solution 1: Maximizing Nash Welfare (MNW)
• Extension to Chores: not obvious. 

• Solution 2: Fisher market adaptation (Barman et al. (2018))
• Finds an EF1 + PO allocation in pseudo-poly time
• Idea: a local search terminates due to invariants and potential functions

• Extension to Chores:
• Non-trivial, invariants cease to hold
• Our result:

With a more intricate analysis → EF1 + PO for Bivalued Utilities



Fisher Markets in Fair Division



Fisher Markets

Setup:
• 𝑛 agents, 𝑚 items
• Item prices: p0 ∈ ℝ12

Def. Bang per Buck: 
3!,#
4#

Maximum Bang per Buck: MBB! = max
#

3!,#
4#
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Fisher Markets

Setup:
• 𝑛 agents, 𝑚 items
• Item prices: p0 ∈ ℝ12

Def. Bang per Buck: 
3!,#
4#

Maximum Bang per Buck: MBB! = max
#

3!,#
4#

Equilibrium:
• All items are allocated
• Agents are only allocated MBB items

-3
BB: -1.5

-20
BB: -2

-15
BB: -1.5

-3
BB: -1.5

-15
BB: -1.5

-20
BB: -2

$2 $10 $10

MBB = -1.5

MBB = -1.5

First Welfare Theorem

Pareto Optimal (PO)



Fisher Markets

• An allocation is price envy-free up to one item (pEF1) if
for all pairs of agents 𝑖, 𝑗:

∃𝑐 ∈ 𝐴# ∶ 𝑝 𝐴# ∖ {𝑐} ≤ 𝑝(𝐴!)

pEF1 + equilibrium EF1 + PO



Fisher Markets

• An allocation is price envy-free up to one item (pEF1) if
for all pairs of agents 𝑖, 𝑗:

∃𝑐 ∈ 𝐴# ∶ 𝑝 𝐴# ∖ {𝑐} ≤ 𝑝(𝐴!)

• Algorithmic Framework:
• Start with an allocation and prices in equilibrium
• Make local changes reducing envy (while remaining in equilibrium)
• Reach pEF1 (+ equilibrium)

pEF1 + equilibrium EF1 + PO



Fisher Market Algorithm Ideas

• MBB Graph
• Edge 𝑖 ←

.
𝑗

• Local changes:
Suppose 𝑖 ←

.
𝑗 exists and 𝑝 𝐴! < 𝑝 𝐴# − 𝑝. (violation of pEF1),

then transferring 𝑐 to 𝑖+ (1) remains in the equilibrium
(2) reduces envy “overall”

𝑐

𝑖 𝑗 𝑖 𝑗

𝑐

Price-envies

OwnsMBB!

𝑖 𝑗

𝑐

𝑐



Fisher Market Algorithm for Goods

• MBB Graph
• Edge 𝑖 ←

.
𝑗

• Algorithm Sketch for Goods (Barman et al. 2018)
1. Start with welfare maximizing allocation
2. Least Spender: 𝑙𝑠 = argmin

!
𝑝(𝐴!)

3. While there is 𝑙𝑠 ←
.! 𝑖,←

." 𝑖-←
.# …

.ℓ%! 𝑖ℓ
where 𝑙𝑠 price envies 𝑖ℓ:

Take the shortest path, make a local transfer, go to 2.
4. If not pEF1:

Raise prices of items allocated to 𝒍𝒔 and agents reaching 𝒍𝒔, go to 2.

OwnsMBB!

𝑖 𝑗

𝑐

𝑐



Fisher Market Algorithm for Goods

• MBB Graph
• Edge 𝑖 ←

.
𝑗

• Algorithm Sketch for Goods (Barman et al. 2018)
1. Start with welfare maximizing allocation
2. Least Spender: 𝑙𝑠 = argmin

!
𝑝(𝐴!)

3. While there is 𝑙𝑠 ←
.! 𝑖,←

." 𝑖-←
.# …

.ℓ%! 𝑖ℓ
where 𝑙𝑠 price envies 𝑖ℓ:

Take the shortest path, make a local transfer, go to 2.
4. If not pEF1:

Raise prices of items allocated to 𝒍𝒔 and agents reaching 𝒍𝒔, go to 2.

OwnsMBB!

𝑖 𝑗

𝑐

𝑐

Key Invariants:

↓ max
!

min
"∈$!

𝑝 𝐴! − 𝑝(𝑐)

↑min
!
𝑝(𝐴!)



Attempt 1: Algorithm for Chores

• MBB Graph
• Edge 𝑖 ←

.
𝑗

• Sketch of Adaptation for Chores
1. Start with welfare maximizing allocation
2. Least Spender: 𝑙𝑠 = argmin! 𝑝(𝐴!)
3. While there is 𝑙𝑠 ←

.! 𝑖,←
." 𝑖-←

.# …
.ℓ%! 𝑖ℓ

where 𝑙𝑠 price envies 𝑖ℓ:
Take the shortest path, make a local transfer, go to 2.

4. If not pEF1:
Raise Reduce prices of items allocated to 𝒍𝒔 and agents reaching 𝒍𝒔, go to 2.

OwnsMBB!

𝑖 𝑗

𝑐

𝑐

Key Invariants:

↓ max
!

min
"∈$!

𝑝 𝐴! − 𝑝(𝑐)

↑min
!
𝑝(𝐴!)

Known invariants 
and potential 
functions break.



Algorithm for Bivalued Chores

[Phase 1: Init]

1. Start with welfare maximizing allocation
[Phase 2a]

2.
[Phase 2b: Reallocate chores]

3. Least Spender: 𝑙𝑠 = argmin! 𝑝 𝐴!
4. While there is 𝑙𝑠 ←

.! 𝑖,←
." 𝑖-←

.# …
.ℓ%! 𝑖ℓ

where 𝑙𝑠 price envies 𝑖ℓ after removing 𝑐ℓ>+:
Take the shortest path, make a local transfer, go to 3.

[Phase 3: Price Reduction]

5. If not pEF1:
Reduce prices of items allocated to 𝑙𝑠 and agents reaching 𝑙𝑠 (𝐻?), go to 2.



Algorithm for Bivalued Chores

[Phase 1: Init]

1. Start with welfare maximizing allocation, k = 0
[Phase 2a]

2. Eliminate price envy between 𝐻?’s, k = k + 1
[Phase 2b: Reallocate chores]

3. Least Spender: 𝑙𝑠 = argmin! 𝑝 𝐴!
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Algorithm for Bivalued Chores

[Phase 1: Init]

1. Start with welfare maximizing allocation, k = 0
[Phase 2a]

2. Eliminate price envy between 𝐻?’s, k = k + 1
[Phase 2b: Reallocate chores]

3. Least Spender: 𝑙𝑠 = argmin! 𝑝 𝐴!
4. While there is 𝑙𝑠 ←

.! 𝑖,←
." 𝑖-←

.# …
.ℓ%! 𝑖ℓ

where 𝑙𝑠 price envies 𝑖ℓ after removing 𝑐ℓ>+:
Take the shortest path, make a local transfer, go to 3.

[Phase 3: Price Reduction]

5. If not pEF1:
Reduce prices of items allocated to 𝑙𝑠 and agents reaching 𝑙𝑠, go to 2.

Key Idea:

We can make 𝐻!’s disjoint.

Each agent experiences price 
reduction at most once.
⇒ At most 𝑛 Phase 3’s

Proof by Induction.



So far

• EF1 + PO allocations always exist for bivalued chores

• Major open problems:

• Complexity of EF1 + PO allocations for goods?

• Does EF1 + PO allocations always exist for chores?

• Chores division seems harder than Goods division



Maximin Share Fairness



Another Fairness Notion

• Maximin Share (MMS) Allocation (Budish, 2011)
• For all agents 𝑖,

𝑣! 𝐴! ≥ MMS! (MMS value)

• MMS value of agent 𝑖:
MMS! = max

@A(@!,@",…,@&)
min
@'∈@

𝑣!(𝑃#)



Another Fairness Notion

• Maximin Share (MMS) Allocation (Budish, 2011)
• For all agents 𝑖,

𝑣! 𝐴! ≥ MMS! (MMS value)

• MMS value of agent 𝑖:
MMS! = max

@A(@!,@",…,@&)
min
@'∈@

𝑣!(𝑃#)

Finding MMS values is NP-hard.



MMS Allocations

• MMS allocations may not exist in general. (Procaccia et al. (2014), Kurokowa  et 
al. (2016))

• Approach 1: Approximation results for general instances (Huang and Lu (2021), 
Garg and Taki (2020), …)

• Approach 2: Existential results for restricted instances 
• Binary: 𝑣",$ ∈ 0, 1 or 𝑣",$ ∈ 0,−1
• Ternary: 𝑣",$ ∈ 0, 1, 2 (Amanatidis et al. (2017))
• Lexicographical (Hosseini et al. (2018))
• Two other classes of utilities (This work)



Factored Valuations

• Factored valuations:
𝑣!,# ∈ 0, 𝑝&, 𝑝', … , 𝑝? ∣ 𝑝ℓ = 𝑝ℓ A& ⋅ 𝑞 ,  for some 𝑞 ∈ ℕ.

Lemma. For factored valuations, MMS value and a 
corresponding partition can be found in poly-time.



Personalized Factored Bivalued 

• Personalized Bivalued: 𝑣!,# ∈ 𝑎! , 𝑏!
• Factored: B!

C!
∈ ℕ

• Feige (2022): MMS exists for bivalued utilities (non-personalized).

Theorem 2 (a). For personalized factored bivalued
chores or goods:
• MMS allocation always exist
• MMS + PO allocation can be found in poly time



Weakly Lexicographic Preferences

• Agents rank items by undesirability allowing ties
Undesirability levels: 𝑎 ∼ 𝑏 ∼ 𝑑 ≻ 𝑒 ∼ 𝑓 ≻ {𝑔 ∼ ℎ ∼ 𝑘}

• Ties within a level: 𝑐 ∼ 𝑐D → |𝑣!,E = |𝑣!,E$
E.g. 𝑣!,D = 𝑣!,E

• Lexicographic preference between levels: |𝑣!,E| > ∑E$≺ E |𝑣!,ED |
E.g. 𝑣! 𝑎 > |𝑣! 𝑒, 𝑓, 𝑔, ℎ, 𝑘 |

Theorem 2 (b). For weakly lexicographic chores or goods:
• MMS allocation always exist
• MMS + PO allocation can be found in poly time



Conclusion and Future Work
• EF1 + PO exists for bivalued chores

• Chores seem harder than Goods

• MMS exists for two subclasses of factored utilities
• Weakly lexicographic, Personalized factored bivalued

• Open questions
• EFX + PO for bivalued?

EFX: no envy after removing any chore
• EF1 + PO for trivalued or weakly lexicographic instances?
• MMS for factored valuations?
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