
Searching Constant Width Mazes Captures the
AC 0 Hierarchy

David A. Mix Barrington 1 Chi-Jen Lu 1 Peter Bro Miltersen 2. Sven Skyum 2.

1 Computer Science Department, University of Massachusetts.
2 BRICS, Basic Research in Computer Science, Centre of the Danish National
Research Foundation, Department of Computer Science, University of Aarhus.

Abstract. We show that searching a width k maze is complete for H~,
i.e., for the k'th level of the A C ° hierarchy. Equivalently, st-connectivity
for width k grid graphs is complete for Hk. As an application, we show
that there is a data structure solving dynamic st-connectivity for con-
stant width grid graphs with time bound O(log log n) per operation on
a random access machine. The dynamic algorithm is derived from the
parallel one in an indirect way using algebraic tools.

Introduction

Itt

(a)
i

(b)
Fig. 1. (a) A maze and (b) the corresponding grid graph

Blum and Kozen [4] considered the problem of searching a maze. A maze is
an object as depicted in Figure l(a). Formally, we will define a maze of width m
and length n as follows: Let S,~,m = {1, . . . ,n} × {1, . . . ,m}. We call an element
s of Sn,m a square and identify s with the unit square with center s in the plane.
A maze of width m and length n is a set M of line segments (walls) of length
exactly 1, each separating two squares of Sn,m. Figure l(a) depicts a maze of
width 10 and length 13 (we consider the longer line segments as consisting of
several atomic walls of length 1). A path in the maze between two squares s and
t is a path inside the rectangle [0, n] x [0, m] connecting the centers of s and t
and not intersecting any of the walls in M. The reader is invited to verify tha t
there is a path between s and t in Figure l(a). Blum and Kozen gave bounds
on the power of systems of automata capable of searching a maze, i.e. capable
of deciding whether a path between two given squares in the maze exists. In
complexity theoretic terms, one of their results was that searching a maze is in
deterministic logspace.

* Supported by the ESPRIT Long Term Research Programme of the EU under project
number 20244 (ALCOM-IT).

74

In this paper we consider the complexity of searching a constant width maze,
i.e., rather than letting both n and m be parameters, we fix m to a constant
k >_ 1. Let MAZEk be the problem which takes as input (a Boolean encoding
of) a maze of width k, two squares s and t, and decides if there is a path from
s to t .

We relate the complexity of MAZEk in a strong way to the levels of the
AC ° hierarchy. Recall the following definitions: Non-uniform AC ° is the class of
languages recognizable by families of AND/OR/NOT-circuits of constant depth,
polynomial size, and unbounded fan-in. Inside AC ° we find the following hier-
archy: Non-uniform X~ is the class of languages recognizable by circuits with k
alternating levels of unbounded fan-in AND and OR gates, with the output an
OR-gate and a "zeroth level" of input gates and their negations. Non-uniform
//k is defined analogously, but with the output gate being an AND-gate. Fol-
lowing [1], we define a uniform version of the hiearchy as follows: Uniform/-/k
(Zk) is the class of languages accepted by alternating Turing machines running
in logarithmic time and making exactly k alternations, the first being universal
(existential).

An appropriate class of reductions to use for the non-uniform classes in the
AC ° hierarchy is the class of (non-uniform) p-projections [15]. Similarly, an
appropriate class of reductions to use for the uniform classes is the class of
DLOGTIME-uniform projections (for a precise definition, see Section 2).

Our main result is:

T h e o r e m 1. For k >_ 3, MAZEk is complete for non-uniform YIk under p-
projections and complete for uniform IIk under DLOGTIME-uni]orm projec-
tions.

This seems to be the first example of natural graph problems, complete for the
levels of the AC ° hierarchy.

There is a close correspondence between mazes and grid graphs, as defined
by Itai et al. [11]. An n x k grid graph is an undirected graph G with vertex
set Vn,k = {1, . . . , n) x {1, . . . , k) and with the property that if {(a, b), (c, d)) is
an edge in G, we have la - c I +]b - d I = 1. The length of the grid graph is n
and the width is k. A grid graph is shown in Figure l(b). The st-connectivity
problem USTCON~ for width k grid graphs is the following: Given a grid graph,
and two vertices s and t, decide if s and t are connected in G. There is a trivial
isomorphism between MAZEk and USTCONk: To get from a maze problem to
a grid graph problem, simply make a vertex for each square of the maze, and
put an edge between two vertices if and only if there is not a wall between the
corresponding squares. We shall use the grid graph formulation in the main part
of the paper.

A third setting for these problems is the following variant of bounded-width
branching programs. An n × k switching network is an undirected labelled graph
whose vertices form a rectangular array with k rows and n columns and whose
edges are restricted to be between vertices in adjacent columns. (Switching net-
works are also called "contact schemes" - - see the survey of Razborov [13] for
further background.) Each edge is labelled by an input variable, its negation, or

75

the value 1, and the network accepts a given input string iff there is a path from
a fixed vertex s to another fixed vertex t such that the label of each edge on
the path evaluates to 1 on the input. It is not hard to show that the grid graph
problem is closely related to planar switching networks as follows: USTCONk is
complete, under p-projections, for the class of languages decidable by families
of width-k, polynomial-size planar switching networks. This is because an n x k
planar switching network can be simulated by a kn × k grid graph, and an n × k
grid graph can be simulated by a kn x k planar switching network. We omit the
details of these simulations in this version of the paper.

In our second result, we consider the following dynamic graph problem: Main-
tain, on a random access machine with word size O(logn), a data structure
representing an n × k grid graph under insertions and deletions of edges and
connectivity queries, i.e. queries asking whether there is a path between two
• ¢ertices, given as input. For non-constant width m < n, Eppstein et al provide a
solution to this problem with a time bound O(log n) per operation [6]. We show:

T h e o r e m 2. For any constant k, there is a solution to the dynamic connectivity
problem for width k grid graphs with time complexity O(log log n) per operation.
On the other hand, no solution to the dynamic connectivity problem for width 2
grid graphs has time complexity o(log log n/ log log log n).

We derive the dynamic algorithm from the parallel one in an indirect way: We
note that the existence of the parallel algorithm implies that a certain monoid,
Gk, associated with the width-k problem is aperiodic by results of Barrington
and Therien [2]. Combining this with a result of Thomas [16], we in fact show
that Gk has dot-depth exactly k, providing a natural example of such a monoid
which may be of independent interest. We then use results on dynamic word
problems by Frandsen, Miltersen and Skyum [7] to derive the dynamic algorithm.
Unfortunately, the algorithm obtained is rather impractical; the constant in the
big-O is 22°(4) . The lower bound we get as a corollary to work of Beame and
Fich [3], again by looking at the problem from an algebraic point of view.

2 T h e c o m p l e t e n e s s r e s u l t

An instance of the USTCONk problem consists of a grid graph, a vertex s
and a vertex t. We represent the graph by a number of Boolean edge indicator
variables, one for each edge position in the grid. We pack them in two binary
relations, Eh C_ {1 , . . . , n -- 1} x {1, . . . , k} representing the horizontal edges;
Eh(i , j) is true if and only if there is an edge between (i , j) and (i + 1,j) , and
E~ C {1 , . . . , n} × { 1 , . . . , k - 1}; Ev(i , j) is true if and only if there is an edge
between (i, j) and (i, j + 1). The vertices s and t are represented by two indicator
variables for each vertex v, one which is true iff v = s and one which is true iff
v = t. With the encoding made clear, we can now show the non-uniform part of
Theorem 1.

L e m m a 3 . USTCONk is Hk, for k > 3. The constructed circuit is positive
(monotone) in the edge variables.

76

Proo]. We first show that for all k > 1, the statement "there is a path from
vertex s to vertex t in G" for fixed boundary vertices s and t can be computed
by a positive Hk circuit; that is, we do not let s and t be part of the input and
we assume them to be on the boundary of the grid. Then, we generalize, first to
the case of non-boundary vertices, and then to s and t being given as input.

Base, k = 1: There is a path between s and t if and only if, for all a, if a is
an edge position between s and t, a is an edge. This is a II1 statement in the
edge indicator variables, as desired.

Now suppose k > 1. Given a grid graph G on Vn,k, we define its dual G*
as follows: G* has a vertex s* for each square s of the grid and a vertex c~
representing the region outside the grid. We put an edge between two vertices
u* and v* of G* if and only if the edge position separating u and v in G is not
an edge. Thus, for every edge position e of G there is an edge position e* of
G* and exactly one of G or G* has an edge at that position. G and G* can be
simultaneously embedded in the plane. Note that G* - {c~} is a grid graph on
Yn-l,k-1.

Now, for any given vertices s and t of G, there is a path between s and t in G
if and only if there is not a simple cycle in G* so that if the cycle is drawn in the
plane, s is on the outside of the cycle and t is on the inside of the cycle. Since
s and t are border vertices, such a cycle must go through the vertex c~. Let C
be some cycle going through c~ and let e~ and e~ be the two edges adjacent to

on the cycle. C separates s and t if and only the edge positions el and e2
separate s and t in the following sense: If one tracks the border clockwise from
s back to itself, one of el and e2 is found before hitting t and the other is found
after.

Thus, there is a path from s to t if and only if for all border edge positions
el and e~, such that el and e2 separate s and t, there is not a path in G* - (~)
from u* to v*, where u is the square of G adjacent to el and v is the square of
G adjacent to e2.

The statement "el and e2 separate s and t" is independent of the input.
Since G* - (co) is a grid graph of width k - 1 there is a posi t ive/ /k-1 circuit
deciding whether a path between two fixed border vertices exists. Note that the
inputs of this circuit are edge indicators for G*, i.e. negations of edge indicators
for G. Thus, using DeMorgan's law, checking whether no path between two fixed
border vertices exists can be done by a positive Zk circuit in the primal edge
indicator variables. We conclude that the validity of the entire statement can be
checked by a posit ive//k circuit, as desired.

Now consider the more general problem, where s and t are not on the bound-
ary, but still fixed. Assume without loss of generality that s is to the left of t
or immediately above t. Split the graph into 3 parts - - the part left of s, the
part between s and t, and the part right of t. Compute the transitive closure
for each component, restricted to the vertical border vertices. By the above, this
can be done by O(k 2) Hk circuits, i.e. a constant number. The end result is now
a monotone Boolean function of the computed information. Since the amount
of information is constant, we can compute this function with a positive N C °

77

circuit. Since//~ is closed under positive finite Boolean combinations, the entire
thing is / /k .

Finally, consider the USTCONk problem with s and t being part of the input.
Recall that they are given by two indicator variables for each vertex. For each
value of s and t we can construct a gate Es4 which evaluates to 1 if and only if
the inputs are s and t; this gate is just an AND of two indicator variables. For
each possible value of (s, t), construct t he / /k circuit Cs,t solving the problem
for this value. Now, we adjust C,,t so that it outputs 1, if s or t do not match
the actual input. We do this by giving each of the OR gates of the second layer
from the top of C,,~ one additional input, namely the negation of E84. The end
result is the AND of all these adjusted Cs,t circuits. There is no penalty in depth
if k > 3. Note that the final circuit is no longer positive, but the only negative
literals are these E,4's.

L e m m a 4 . For k > 1, every problem in non-uniform IIk reduces to USTCONk
by a non-uniform p-projection.

Proof. We will show the following stronger statement: For every k > 1, every
problem in non-uniform Hk reduces to USTCONk and every problem in non-
uniform E~ reduces to USTCON~+I by p-projections. Furthermore, the value of
the node s in the reduction is the bottommost left corner of the grid and the
value of the node t in the reduction is the bottommost right comer of the grid.

Given a Hk circuit of size s, we can construct a Hk formula of size s °(1)
computing the same function, so we can assume without loss of generality that we
are given a function which can be computed by a / / k formula. By the definition
of p-projection [15], an alternative formulation of the statement is then this:

Given a Hk formula C, we can construct a polynomial sized, width k grid
graph G(C) where some of the edges are labelled with input variables or their
negations, the bottommost left corner of the grid is labelled s and the bottom-
most right corner of the grid is labelled t, so that, given an input vector x, if we
remove the edges labelled with variables assigned 0, there is a path form s to t
in G(C) if and only if C(x) evaluates to true. Similarly, given a 57k circuit, we
can construct a width k + 1 grid graph with corresponding properties. We will
construct this mapping G by recursion in k.

(a) -- xJ'l- xJ2A " x~r-l-x~" $kl jx~2 _ •

::::: ::::: I

.....

v w

(d) G(C1) I G(C2)] c(c,.) L

Fig. 2. The reduction

18

First suppose a I/1 formula C is given. We can write C as Ai~=l xj~ AAis=l ~ ,
where xj~, i = 1 . . . r and xj~, i = 1 . . . s are input variables. The corresponding
width I grid graph G(C) is shown in figure 2(a). Similarly, if a E1 formula C is
given, we write C as ~]~1 xj~ V ~/i~1 xa, and let G(C) be the width 2 grid graph
of Figure 2(b).

Now, let k > 1 and assume we have both the Ej a n d / / j constructions for
all j < k. Let a / / k formula C be given. We can write it as Ai~l Ci, where the
Ci's are Z:k-1 formulae. Construct the width k graphs G(C~) corresponding to
the Ci's and let G(C) be the graph of Figure 2(c). Note that this graph also has
width k, as desired. Finally, let a Zk formula C be given. Write it as ~/i~1 Ci,
where the Ci's a re / /k -1 formulae. Construct the width k - 1 graphs G(C~)
corresponding to the Ci's and let G(C) be the width k + 1 graph of Figure 2(d).

The correctness of the construction is easily checked.

Lemma 3 and Lemma 4 together gives us the non-uniform part of Theorem 1.
We now make precise the content of the uniform part.

As in Barrington, Immerman, and Straubing [1], we define a log-time Turing
machine to have a read-only input tape of length n, a constant number of read-
write work tapes of total length O(logn), and a read-write input address tape of
length log n. On a given time step the machine has access to the bit of the input
tape denoted by the contents of the address tape (or to the fact that there is no
such bit, if the address tape holds too large a number). An alternating log-time
machine has universal and existential states with the usual semantics. Further-
more, the alternating machine queries its input only once in a computation, in
its last step. We now define uniform Hk as the class of languages accepted by
alternating log-time Turing machines, making exactly k alternations, the first
being universal. It is shown in [1] that this hierarchy is in fact a uniform version
of the AC ° circuit hierarchy, where specific questions about the circuit family
can be answered by a log-time Turing machine.

Recall that a family of p-projections can be viewed syntactically as a family
of maps ~ : (Yl,Y2,...,Ym(n)) "+ (0,1, Xl,X2,...,Xn,XI,X2,...,X.n}, where
re(n) is bounded by a polynomial in n. A DLOGTIME-uniform projection is a
family of projections fin, so that there is a log-time Turing machine which on
input (i, 1 n) outputs the binary encoding of the values of m(n) and a,~(yi) on
a specified work tape. It is easy to see that DLOGTIME-uniform projections
are closed under composition and that uniform //k and Zk are closed under
DLOGTIME-uniform projections. To obtain the uniform part of Theorem 1, we
essentially now have to redo Lemma 3 and Lemma 4, checking that they are valid
in the uniform setting. Due to lack of space, this is omitted from this version of
the paper.

3 The wid th-k grid graph monoid
In this section we consider an algebraic interpretation of our results. We explore
its consequences in Section 4, but we also consider it interesting in its own right.

We define the width k grid graph monoid Gk. It will be a submonoid of the
following monoid Mk: The ground set of Mk is the set of equivalence relations

79

on V2,k = {1, 2} x (1 , . . . , k}, or, equivalently, the set of transitively closed undi-
rected graphs with vertex set V2,k. Let G and H be members of Mk, viewed as
graphs. We now define the composition of G and H. Let U = (1, 3,2} × {1, ..., k}.
Let R be the graph on U obtained by embedding G in U by the embed-
ding (1,y) ~ (1, y), (2, y) -+ (~,y) and embedding H in U by the embedding
(1,y) ~ (23-,y), (2,y) -+ (2,y). Let R* be the transitive closure of R. The com-
position G o H is the restriction of R* to V2,k = {1, 2} x {1, ..., k}. Gk is now
defined to be the submonoid of Mk generated by the transitive closures of the
set of grid graphs on V2,k.

A very intuitive way of viewing G~ is as follows. An element of Gk is a
collection of plane blobs inside the [1, 2] × [1, k] rectangle in the plane, where
a blob is identified with the set of grid points it contains. In Figure 3, (a) are
(b) are two such elements. To multiply two elements, we concatenate them and
scale down the resulting picture by a factor of two on the x-axis. In Figure 3,
(a) and (b) are concatenated to form (c) and then scaled down to (d). Finally,
since two blobs are equivalent if they contain the same elements, we can make a
nicer picture (e) which is equivalent to (d).

|
• • •

(a) (b) (c) (d) (e)
Fig. 3. Elements in Gk and their product

Note that every member of Gk can be described as a word al o a2 o . . . af(k)
where the a~'s are closures of 2 × k grid graphs for some function f (a trivial
upper bound on f (k) is tGkl). Another way of viewing this: Every member of Gk
can be described by the transitive closure of an f(k) x k grid graph, restricted
to the vertical border vertices.

The size of Gk is c2k = ~ (~), i.e. the 2k'th Catalan number. We omit
the proof of this in this version of the paper. Our earlier analysis of grid graphs
can now be interpreted in terms of the algebraic structure of Gk. To use the
vocabulary of for~nal language theory, we may think of a grid graph problem
as a string where the individual letters are elements of Gk. The following result
tells us something about the language of strings representing graphs with a par-
ticular connectivity property. It is star-free (meaning that it can be formed from
one-letter languages by concatenation and boolean operations including comple-
mentation), and has dot-depth k (meaning that the optimal depth of nesting of
concatenation operations is k). See, for example, [12] for further background on
algebraic automata theory.

L e m m a 5. Gk is an aperiodic monoid with dot-depth exactly k.

Proo]. (sketch) We first show that the dot-depth is at most k. In our proof
of Theorem 1, we essentially showed that connectivity in a width-k grid graph

8o

could be expressed by a logical formula with k quantifiers in prenex normal
form, and atomic predicates that either referenced individual edges (properties
of individual "letters" in the input string) or compared two column numbers
(positions of letters in the string). By a theorem of Thomas [16], any language
so describable has a syntactic monoid that is aperiodic with dot-depth k. But
this syntactic monoid is G~ itself, since Gk was designed to exactly capture this
connectivity information.

If the dot-depth of Gk were less than k, we could derive a contradiction as
follows. Consider any circuit C of depth k and size s. By our construction in
Lemma 4, we can construct a word over Gk, of size polynomial in s, whose
product determines the value of C. But if Gk has dot-depth k - 1 or less, this
product can be evaluated by a circuit of depth k - 1 and size polynomial in s,
using a construction of Barrington and Th~rien [2]. Since C was arbitrary, we
have collapsed two distinct levels of the A C ° hierarchy, contradicting a theorem
of Sipser [14].

In Section 4, we only use the aperiodicity of Gk, not its dot-depth. Still, Gk
gives us an example of a natural (or at least easily visualizable) monoid which
we know is aperiodic with dot depth exactly k - - such examples are rare.

4 T h e d y n a m i c g r i d g r a p h c o n n e c t i v i t y p r o b l e m

We consider the following dynamic graph problem: Maintain, on a random ac-
cess machine with word size O(logn), a data structure representing an n × k
grid graph under insertions and deletions of edges mad connectivity queries, i.e.
queries asking whether there is a path between two given vertices.

We are now ready to show Theorem 2 from the introduction. For the upper
bound, we shall use a result of Frandsen, Miltersen, and Skyum [7]. Let S be
a finite monoid. The dynamic range query problem for S is the problem of
maintaining, on a random access machine with word size O(logn), a sequence
(a l ,a2, . . . ,an) E S n under a change(i,b)-operation which changes ai to b E S,
and an operation query(/,j) which returns ai o a~+l o . . . o a j -1 o aj . Frandsen,
Miltersen, and Skyum show that if S is aperiodic, there is a solution to the
dynamic range query problem for S with time bound O(log log n) per operation.
The constant in the big-O is 2 °(Isl).

We show that dynamic reachability reduces to dynamic range queries over
G~ with a constant overhead. By Lemma 5, we have shown the upper bound
of Theorem 2. Suppose we are to maintain a graph on {1, .., n} x {1, ..., k}. We
maintain the product al oa2o...oa,~_l where al is the element of Gk correponding
to the subgraph in {i, i + 1} x {1, ..., k}. A change in the graph corresponds to
a single change of an ai. If we are to answer if there is a path from (xl, Yl)
to (x2,y~) we do the following (assuming xl < x2): We query the subproducts
a = al o...oa~1-1, b = a~l o...oa,~ and c = a,2+l o...oa~. Whether or not there is
a path between (x~, Yl) and (z2, Y2) is completely determined by (a, b, c, Yl, Y2),
and since these are all in a constant range, we can hardwire the answer for each
possible value of the tuple into the algorithm.

81

G(p) G(8) G(c)

Fig. 4. Gadgets for reducing the dynamic prefix problem for L to dynamic connectivity

We now show the lower bound part of Theorem 2. We shall use a result
by Beame and Fich [3]. A regular language L is called indecisive if and only if
for all strings x, there exist z and z' such that xz E L and xz ' ~ L. Given a
language L over an alphabet/7, the dynamic prefix problem for L is the prob-
lem of maintaining a string x = xl . . . xn 6 Zn under a change(i, a) operation
which changes xl to a and a prefix(j) operation which answers the question "Is
x l x 2 . . , xj 6 L?". Beame and Fich show that if L is indecisive, then, in any
implementation of the dynamic prefix problem for L on a RAM with word size
O(logn), if the change operation takes time at most 2 (l°gn)l-°(1) in the worst
case, then the query operation takes time at least 12 (log log n / log log log n) in
the worst case.

Now let L be the regular language (c + s + p)*sp* + p*, i.e. the language
over {c ,s ,p} , where x 6 L if and only if the last letter of x which is not a
p is an s. This language is indecisive, so Beame and Fich's result apply. Now
assume that the dynamic connectivity problem for width 2 grid graphs can be
solved with time bound o(log n log n~ log log log n) per operation. We will show
that the dynamic prefix problem for L can also be solved with time bound
o(log n log n~ log log log n), a contradiction.

Given an instance ala2 "" an of the prefix problem to maintain, we maintain
a grid graph G, of width 2 and length 2n, defined as follows. Consider G to be
divided into n blocks of length 2. The i'th block of G is G(ai), where G is the
mapping defined in Figure 4. Clearly, a change of a symbol in the maintained
string corresponds to a constant number of insert and delete operations in the
dynamic graph. Now, in order to determine if ala2 . . , ai 6 L, we remove all edges
in the i + l 'st block of G using the delete operation of the dynamic connectivity
operation. Then we ask if there is a path from the bottom left vertex of G to
the bottom right vertex of the i ' th block of G. This is the case if and only if
a la2 . . , ai 6 L. After getting the right answer, we restore the data structure by
reinserting the edges of block i. This completes the reduction, and the proof of
Theorem 2.

5 Genera l i za t ion to d irec ted graphs
In a directed grid graph, each edge present has one or both of the two possible
orientations, and we consider finding directed paths from s to t. (Such graphs
correspond to planar nondeterministic branching programs or planar "switching-
and-rectifier networks" [13], except that a directed grid graph need not have
horizontal arrows in only one direction. It follows from the analysis here, of
course, that this additional ability is of no use in the case of constant width.)

All of our theorems about constant-width grid graphs hold for directed grid
graphs. Of course, the lower bounds are trivial extensions, but we must revisit
the upper bounds:

82

L e m m a 6. STCONk is in uniform IIk, with the constructed circuit being posi-
tive in the edge variables.

Proof. (sketch) Given a directed grid graph G, we will define its dual G* as
follows. The possible edge positions of G* are exactly as in the undirected case.
Now let e* be an edge position of G*, we define which orientations of e* are
present in G* as a function of the orientations of e present in G: An orientation
of e* is present if and only if the orientation, turned 90 ° degrees clockwise, is
not an orientation of e.

Now it is easy to see that there is a directed path from s to t if and only
if there is not a directed cycle in G*, going clockwise around t, with s on the
outside. The rest of the proof proceeds exactly as in the proof of Lemma 3 - -
the only operations needed on the column numbers are comparisons.

As before, we can define a monoid whose elements are now directed 2 x k grid
graphs, and show that this monoid is aperiodic with dot-depth exactly k. As a
corollary, we also get the same upper bound on the directed dynamic grid graph
connectivity as on undirected dynamic grid graph connectivity. (Interestingly,
for general graphs, the directed version of the dynamic problem seems to be
much harder than the undirected version).

6 Discussion and open problems

- As mentioned in the introduction, Blum and Kozen showed that the general
problem, where the width is not fixed, is in L. By carrying out our con-
struction in Section 4 for a width of log n, we get that even this restricted
version of the general problem is hard for NC 1. An obvious open question is
to determine the complexity of the general problem precisely: Is it complete
for NC ~, or for L, or does it have intermediate complexity?

- We can also consider the general version of the problem for directed grid
graphs, which is still hard for NC 1 but which we only know to be in NL.
Our notion of duality gives a simple positive reduction of this problem to its
complement, suggesting (but of course not proving, as N L is in fact closed
under complement, by a more complicated reduction) that it is not NL-
complete. There are potentially interesting restrictions of this problem as
well, where we prohibit edges in one or two of the four directions.

- A similar gap occurs in our understanding of the dynamic grid graph con-
nectivity problem, if the width of the graph is non-constant. If the width is
a free parameter m, with the restriction 2 < m <_ n, the following is known:
Eppstein et al [6] construct a data structure with a time bound of O(log n)
per operation and Eppstein [5] shows a lower bound of f)(Iog m/log log m).
This lower bound is improved by HusfeIdt and Rauhe [8] to ~(m), provided
rn < log n/log log n. Our upper bound is 22°('~) log log n and our lower bound
is/2 (log log n / log log log n), provided m > 2. Combining everything, we get
a lower bound of/2(min(m, log n/log log n) + log log n/log log log n) and an
upper bound of O(min(logn, 22°(m) loglogn)) with a big gap to close.

83

Acknowledgements

We would like to thank Paul Beame and Arny Rosenberg for help with historical
references, Howard Straubing and Denis Therien for very helpful discussions
about au tomata theory and monoids, and Sairam Subramanian for very helpful
discussions about dynamic graph problems. This work was greatly facilitated by
the March 1997 Dagstuhl workshop in Boolean Function Complexity, a t tended
by the first and third authors.

References
1. D. A. M. Barrington, N. Immerman and H. Stranbing. On uniformity within NC 1

Journal of Computer and System Sciences, 41(3):2Z4-306.
2. D. A. M. Mix Barrington and D. Th4rien. Finite monoids and the fine structure

of NC 1. Journal of the ACM, 35(4):941-952, October 1988.
3. P. Beame and F. Fich. On searching sorted lists: A near-optimal lower bound.

Manuscript, 1997.
4. M. Blum and D. Kozen. On the power of the compass (or why mazes are easier to

search than graphs). In 19th Annual Symposium on the Foundations of Computer
Science, pages 132-142, October 1978.

5. D. Eppstein. Dynamic connectivity in digital images. Technical Report 96-13,
Univ. of California, Irvine, Department of Information and Computer Science,
1996.

6. D. Eppstein, G. Italiano, R. Tamassia, R. E. Tarjan, J. Westbrook, and M. Yung.
Maintenance of a minimum spanning forest in a dynamic planar graph. Journal
of Algorithms, 13:33-54, 1992.

7. G. S. Frandsen, P. B. Miltersen, and S. Skyum. Dynamic word problems. Journal
of the ACM 44:257-271, 1997.

8. T. Husfeldt and T. Rauhe. Hardness results for dynamic problems by extensions
of Fredman annd Saks' chronogram method.. Manuscript, 1997.

9. N. Immerman. Languages that capture complexity classes. SIAM Journal on
Computing, 16(4):760-778, 1987.

10. N. Immerman and S. Landau. The complexity of iterated multiplication. Infor-
mation and Computation, 116(1):103-116, January 1995.

11. A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter. Hamilton paths in grid graphs.
SIAM Journal on Computing, 11(4):676-686, 1982.

12. J. E. Pin. Varieties of Formal Languages. New York: Plenum Press, 1986.
13. A. A. Razborov. Lower Bounds for deterministic and nondeterministic branching

programs. In L. Budach, ed., Fundamentals of Computation Theory, 8th Inter-
national Conference: FCT '91. Lecture Notes in Computer Science 529, 47-60.
Berlin, Springer Verlag, 1991.

14. M. Sipser. Borel sets and circuit complexity. In Proceedings, 15th ACM Symposium
on the Theory of Computing, 1983, 61-69.

15. S. Skyum and L. G. Valiant. A complexity theory based on Boolean algebra. Jour-
nal of the ACM, 32(2):484-502, April 1985.

16. W. Thomas. Classifying regular events in symbolic logic. J. Comput. System Sci.
25, 1982, 360-376.

